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DLP-based Cryptosystems

• Let g generate cyclic group Gq of order q.
Discrete Logarithm Problem (DLP):
Given A ∈ Gq, determine 0 ≤ a < q s.t. ga = A.

• Most common choices for Gq

Finite Fields Subgroup Gq ⊆ F∗
pn of a finite field.

Elliptic Curves Subgroup Gq ⊆ E(Fpn) of an elliptic curve.

• Pairing provides the connection. A bilinear map

e : E(Fpn)× E(Fpn)→ F∗
pkn

preserving lots of structure.
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Structure of Finite Fields
Some Notation

• Euler totient function φ(n)
The number of integers f with 0 < f ≤ n coprime to n.

• Cyclotomic Polynomials.
Φd(p) is the d-th cyclotomic polynomial.

d Φd(p)

1 p − 1
2 p + 1
3 p2 + p + 1
4 p2 + 1
5 p4 + p3 + p2 + p + 1
6 p2 − p + 1
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Finite Field Representation

• The multiplicative group F∗
pn is cyclic

and has cardinality pn − 1, where

pn − 1 =
∏
d |n

Φd(p)

• Let Td(Fpe) ⊂ F∗
pn with de|n be subgroup of order Φd(pe).
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Finite Field Representation

• The multiplicative group F∗
p6 is cyclic

and has cardinality p6 − 1, where

p6 − 1 =
∏
d |6

Φd(p)

• Let Td(Fpe) ⊂ F∗
p6 with de|6 be subgroup of order Φd(pe).
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Finite Field Representation

• The multiplicative group F∗
p6 is cyclic

and has cardinality p6 − 1, where

p6 − 1 = (p − 1) (p + 1) (p2 + p + 1) (p2 − p + 1)
T1(Fp) T2(Fp) T3(Fp) T6(Fp)

• For de|6, let Td(Fpe) ⊂ F∗
p6 be subgroup of order Φd(pe).

• Combinations are also possible.
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Finite Field Representation

• The multiplicative group F∗
p6 is cyclic

and has cardinality p6 − 1, where

p6 − 1 = (p − 1) (p + 1) (p2 + p + 1) (p2 − p + 1)
T1(Fp2)

• For de|6, let Td(Fpe) ⊂ F∗
p6 be subgroup of order Φd(pe).

• Combinations are also possible.
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Finite Field Representation

• The multiplicative group F∗
p6 is cyclic

and has cardinality p6 − 1, where

p6 − 1 = (p − 1) (p + 1) (p2 + p + 1) (p2 − p + 1)
T2(Fp3)

• For de|6, let Td(Fpe) ⊂ F∗
p6 be subgroup of order Φd(pe).

• Combinations are also possible.



Introduction Working with Cyclotomic Subgroups Applications to Pairings Conclusion

Outline

Introduction
DLP-based Cryptosystems
Structure of Finite Fields
Security, Compression and Efficiency

Working with Cyclotomic Subgroups
Trace-Based Methods (LUC, XTR)
Torus-Based Methods
Asymptotically Optimal Compression

Applications to Pairings
Description, Computation and Postprocessing



Introduction Working with Cyclotomic Subgroups Applications to Pairings Conclusion

Security
Attacking the DLP

Index Calculus in Full Field: DLP in Fpn is assumed to be as
hard as n log2 p bit prime DLP:

n log2 p > 1024

Pohlig-Hellman: Necessity: prevent working in a subfield of Fpn ,
work in subgroup of prime order in the cyclotomic subgroup.

Gq ⊆ Tn(Fp) ⊆ F∗
pn

Pollard ρ: Attacks Gq without using structure in O(
√

q).

log2 q > 160

Index Calculus in Torus: (Granger and Vercauteren, Crypto’05)
Exponential in p, but for some parameters beats Pollard ρ.
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Compression

● ● ● ● ● ●

● ●

• Standard way of representing F∗
p6 with 6 elts in Fp.

• However, T6(Fp) ⊂ F∗
p6 is considerably smaller.

• Can’t we represent using only 2 elts in Fp?

• More general: Represent Tn(Fp) with Aφ(n)(Fp) giving
compression factor n/φ(n).
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Efficiency

Single exponentiation
Compute A = ga, given g ∈ Gq and a ∈ Zq.

Double exponentiation
Compute gahb, given g, h ∈ Gq and a, b ∈ Zq.

Compression and Decompression
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LUC
Smith and Skinner

Let Tr : Fp2 → Fp, Tr (g) = gp + g.

F∗
p2 Gp+1/σ Fp

F∗
p2 Gp+1/σ Fp

⊃ Tr

⊃ Tr −1

exponentiate recurse
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Let Tr : Fp2 → Fp, Tr (g) = gp + g.

F∗
p2 Gp+1/σ Fp

F∗
p2 Gp+1/σ Fp

⊃ Tr

⊃ Tr −1

exponentiate recurse

Let g ∈ Gp+1 and va = Tr (ga) then

va+b = vavb − va−b
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LUC
Smith and Skinner

Let Tr : Fp2 → Fp, Tr (g) = gp + g.

F∗
p2 Gp+1/σ Fp

F∗
p2 Gp+1/σ Fp

⊃ Tr

⊃ Tr −1

exponentiate recurse

Pro Gives factor 2 compression

Pro Faster than field exponentiation.

Con Conjugacy problems (σ)
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XTR
Lenstra and Verheul (Crypto 2000)

Let Tr : Fp6 → Fp2 , Tr (g) = gp4
+ gp2

+ g.

F∗
p6 Gp2−p+1/σ Fp2

F∗
p6 Gp2−p+1/σ Fp2

⊃ Tr −1

⊃ Tr

exponentiate recurse
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XTR
Lenstra and Verheul (Crypto 2000)

Let Tr : Fp6 → Fp2 , Tr (g) = gp4
+ gp2

+ g.

F∗
p6 Gp2−p+1/σ Fp2

F∗
p6 Gp2−p+1/σ Fp2

⊃ Tr −1

⊃ Tr

exponentiate recurse

Let g ∈ Gp2−p+1 and ca = Tr (ga) then

ca+b = cacb − cp
bca−b + ca−2b
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XTR
Lenstra and Verheul (Crypto 2000)

Let Tr : Fp6 → Fp2 , Tr (g) = gp4
+ gp2

+ g.

F∗
p6 Gp2−p+1/σ Fp2

F∗
p6 Gp2−p+1/σ Fp2

⊃ Tr −1

⊃ Tr

exponentiate recurse

Pro Gives factor 3 compression

Pro Three times faster than field exponentiation

Con Conjugacy problems (σ)
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HEX
Stam and Lenstra (2002)

F∗
p6 Gp2−p+1

F∗
p6 Gp2−p+1

⊃

⊃

exponentiate exponentiate
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HEX
Stam and Lenstra (2002)

F∗
p6 Gp2−p+1

F∗
p6 Gp2−p+1

⊃

⊃

exponentiate exponentiate

Pro Three times faster than field exponentiation

Con No compression.
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The Algebraic Torus

• The algebraic torus Tn(Fpe) is defined as

Tn(Fpe) =
⋂

d |n,d 6=n

Ker [NFpne /Fpde
]

• Tn(Fp) is the subgroup of F∗
pn of cardinality Φn(p).

• Rationality of torus implies efficient almost bijection with
Aφ(n)(Fp).

• Algebraic torus known to be rational for n the product of
two prime powers. So 6 yes, but 30 unknown.
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The Quotient Group for T2(Fp) = Gp+1
Rubin and Silverberg

Pow : F∗
p2/F∗

p → Gp+1, Pow(g) = gp−1

F∗
p2

T2(Fp)

Gp+1 F∗
p2/F∗

p

F∗
p2

T2(Fp)

Gp+1 F∗
p2/F∗

p

⊃ Pow

⊃ Pow−1

exponentiate exponentiate

Pro Gives factor 2 compression

Pro Full Functionality

Pro Fast mixed coordinate style exponentiaton
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CEILIDH
Rubin and Silverberg (Crypto’03)

Compression map Zip : T6(Fp)\{1, a} → A2(Fp)\T2(Fp)

F∗
p6 T6(Fp) A2(Fp)

F∗
p6 T6(Fp) A2(Fp)

⊃ Zip −1

represents Zip

exponentiate

Pro Gives factor 2 compression

Pro Full Functionality

Con Seems slow to implement
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KYLIE
Granger et al. (ANTS 2004)

The T2 compression is a substage of CEILIDH.

Gp2−p+1 F∗
p6/F∗

p3 A2(Fp)

Gp2−p+1 F∗
p6/F∗

p3 A2(Fp)

Pow 1
2Zip −1

Pow−1 1
2Zip

exponentiate exponentiate

Pro Gives factor 2 compression

Pro Full Functionality

Pro Almost as fast as XTR
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Adding Affinity
Usage by chaining

Given a map

f : Tn(Fp)× Am(Fp)→ Aφ(n)+m(Fp)

we can create maps for simultaneous compression

fi : (Tn(Fp))i × Am(Fp)→ Aiφ(n)+m(Fp)

1. (g1, ●●●●●)→ ●●●●●●●

2. (g2, ●●●●●)→ ●●●●●●●

3. (g3, ●●●●●)→ ●●●●●●●
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T30(Fp)× A2(Fp)→ A10(Fp)
Van Dijk et al. (Eurocrypt 2005)

Based on equality Φ30(p)Φ6(p) = Φ6(p5)

T30(Fp)× A2(Fp) T30(Fp)× T6(Fp) T6(Fp5) A2(Fp5)

T30(Fp)× A2(Fp) T30(Fp)× T6(Fp) T6(Fp5) A2(Fp5)

Zip unCRT
Zip −1

Zip −1 CRT Zip

exponentiate

Pro Beats Van Dijk and Woodruff (Crypto 2004).

Pro Beats XTR/CEILIDH-compression ≥ 2 points.

Con T30 susceptible to Rob-Fré attack.
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Pairings

Let E(Fpm)[q] ⊆ E(Fpm) and let q|pkm−1

• The pairing is a map

eq : E(Fpm)[q]× E(Fpkm)[q]→ F∗
pkm/(F∗

pkm)q

• Easy observation of eq ’s range

F∗
pkm/(F∗

pkm)q ' Gq ⊆ Tk (Fpm) ⊆ F∗
pkm

• Properties of the pairing
non-degeneracy ∀P 6= OE ∃Q ∈ E(Fpkm)[q] :

eq(P, Q) 6= 1 ∈ F∗
pkm/(F∗

pkm)q

bilinearity eq([n]P, Q) = eq(P, [n]Q) = eq(P, Q)n

computability Let q|r |pkm−1. Then
eq(P, Q)(p

km−1)/q = er (P, Q)(p
km−1)/r .



Introduction Working with Cyclotomic Subgroups Applications to Pairings Conclusion

Pairings

Let E(Fpm)[q] ⊆ E(Fpm) and let q|pkm−1

• The pairing is a map

eq : E(Fpm)[q]× E(Fpkm)[q]→ F∗
pkm/(F∗

pkm)q

• Easy observation of eq ’s range

F∗
pkm/(F∗

pkm)q ' Gq ⊆ Tk (Fpm) ⊆ F∗
pkm

• Properties of the pairing
non-degeneracy ∀P 6= OE ∃Q ∈ E(Fpkm)[q] :

eq(P, Q) 6= 1 ∈ F∗
pkm/(F∗

pkm)q

bilinearity eq([n]P, Q) = eq(P, [n]Q) = eq(P, Q)n

computability Let q|r |pkm−1. Then
eq(P, Q)(p

km−1)/q = er (P, Q)(p
km−1)/r .



Introduction Working with Cyclotomic Subgroups Applications to Pairings Conclusion

Pairings

Let E(Fpm)[q] ⊆ E(Fpm) and let q|pkm−1

• The pairing is a map

eq : E(Fpm)[q]× E(Fpkm)[q]→ F∗
pkm/(F∗

pkm)q

• Easy observation of eq ’s range

F∗
pkm/(F∗

pkm)q ' Gq ⊆ Tk (Fpm) ⊆ F∗
pkm

• Properties of the pairing
non-degeneracy ∀P 6= OE ∃Q ∈ E(Fpkm)[q] :

eq(P, Q) 6= 1 ∈ F∗
pkm/(F∗

pkm)q

bilinearity eq([n]P, Q) = eq(P, [n]Q) = eq(P, Q)n

computability Let q|r |pkm−1. Then
eq(P, Q)(p

km−1)/q = er (P, Q)(p
km−1)/r .



Introduction Working with Cyclotomic Subgroups Applications to Pairings Conclusion

Pairings

Let E(F3m)[q] ⊆ E(F3m) and let q|36m−1

• The pairing is a map

eq : E(F3m)[q]× E(F36m)[q]→ F∗
36m/(F∗

36m)q

• Easy observation of eq ’s range

F∗
36m/(F∗

36m)q ' Gq ⊆ T6(F3m) ⊆ F∗
36m

• Properties of the pairing
non-degeneracy ∀P 6= OE ∃Q ∈ E(F36m)[q] :

eq(P, Q) 6= 1 ∈ F∗
36m/(F∗

36m)q

bilinearity eq([n]P, Q) = eq(P, [n]Q) = eq(P, Q)n

computability Let q|r |36m−1. Then
eq(P, Q)(3

6m−1)/q = er (P, Q)(3
6m−1)/r .
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Pairings
Exponentiation after the Pairing

E(F3m)[q]× E(F36m)[q]

F∗
36m/(F∗

36m)q

Gq ⊆ T6(F3m) ⊆ F∗
36m

Gq ⊆ T6(F3m) ⊆ F∗
36m

eq

Pow

exponentiate

Trace-based:

2001: Stam and Lenstra’s Euclidean
method takes only 10.3.

2004: Scott and Baretto’s ternary
ladder takes 12.

Torus-based: (Granger et al., 2005)
Depending on the bag of tricks,
between 4.5 and 9.
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Trace-based:

2001: Stam and Lenstra’s Euclidean
method takes only 10.3.

2004: Scott and Baretto’s ternary
ladder takes 12.

Torus-based: (Granger et al., 2005)
Depending on the bag of tricks,
between 4.5 and 9.
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ladder takes 12.

Torus-based: (Granger et al., 2005)
Depending on the bag of tricks,
between 4.5 and 9.
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Pairings
Actual Computation

Algorithm 1 : The Duursma-Lee Algorithm
input : Two points P = (x1, y1) and Q = (x2, y2) in E(Fpm)[q]
output : e33m+1(P, Q) ∈ F∗

36m/F∗
33m

f ← 1
for i = 1 to m do

x1 ← x3
1 , y1 ← y3

1
µ← x1 + x2 + b, λ← −y1y2σ − µ2

g ← λ− µρ− ρ2, f ← f · g
x2 ← x1/3

2 , y2 ← y1/3
2

end
return f

• Using traces does not work.
• Using naive implementation takes 20M.
• Exploiting sparsity takes 15M, with loop unrolling 14M.
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Conclusion

• For large characteristic, trace-based systems have a slight
efficiency edge.

• However, torus-based gives wider range of functionality.

• Adding affinity gives better compression for T30 than
CEILIDH.

• For small characteristic, torus-based systems have the
edge.

• Using traces inside the pairing evaluation seems doomed.
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