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Motivation

Discrete logarithm in Jacobians : ~» get a curve over k = F,

such that |Jac(C')(k)| contains a big prime factor.
Two strategies :

1. Take random curves and compute quickly |Jac(C) (k)|
~~ [-adics methods, canonical lift, cohomological
methods or deformation. If ¢ > 2 : in small
characteristics only (classically ¢ = 2% with N big).

2. We construct a curve over a number field such that the
endomorphism ring of its Jacobian is known and with

Complex Multiplication (CM). Then one reduces this
curve modulo random prime ideals to get good
Jacobians : on [, with p big.



What is the AGM over C?

Introduced originally over C to solve elliptic integrals. It is
a convergent sequence

a, + b,
(af'n,—l—l) bn+1) — ( 9 Y anbn)

~~ fast computation of periods of elliptic curves.

In genus 2, there is a generalization called Borchard’s
means. It is a special case of the duplication formulae for
theta constants.

Remark : Dupont are using them to compute periods on ge-

nus 2 curves or reciprocally Theta constants.
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1. Input : an ordinary curve C of genus g over Fyw.

2. Construct a nice lift C' over Qyn.

3. Computation of 2-adic numbers (1950))1-:1,,_,29 containing
enough information on Jac(C).

4. Construct a sequence (9\) € (Q,v )% which
‘converges’ to the canonical lift of C.

Why convergence? ‘by hand’ for ¢ = 1, result of Carls in

general.
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In the point counting (case N big) :
1. For free in the sequence, information on the Frobenius :

Normg, /@, (195"’) / q9§”+1)) converges to o« = +m; ... m,.

2. Computation of the minimal polynomial Py, of
a+ 29V /a.

3. Output : the characteristic polynomial of the Frobenius
XC-
In the CM case (IV < 10):
1. Reconstruction of the curve.

2. Computation of the invariants in Q,.

3. Computation of the minimal polynomials of the
invariants.
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General features of the AGM methods

® Itis based on the canonical lift.
~- restricted to ordinary abelian varieties.

~» computations in the p-adics require good models to

avoid ramified extensions.
® Use of LLL because

one obtains less than the characteristic polynomial

(g > 3).

reconstruction of class polynomials from one curve only.
® [tis based on formulae coming from the complex

theory.

~» general (for every dimension) and elegant.

~» passing from analogy to a true p-adic theory is hard.

~~ to link the algebra of the curve with the analytic part

(analogs of Thomae’s formula) : limited so far to

g = 1,2, 3 or hyperelliptic curves.



Complex Multiplication (case of g = 2)

Definition : Let K/Q be an extension of degree 4, with ring
of integers Ok. K is a CM field if it is an imaginary
quadratic extension of a real quadratic field K.

K may be given by K = Q(iv/ a + bv/d) with d and (a, b)
square free.

Definition : a type is a couple of two non-conjugate
embeddings ¢; : K — C.



Restrictions

CM construction : if I C Ok is an ideal, one considers
(1) == {(¢1(a), p2(a)) C C*,a € I}.

It is a lattice and C*/®(]) is an abelian variety A such that
K C End’(A). We will assume for simplicity :

1. K cyclic or non-Galois = A is absolutely simple.
2. hg, =1 (i.e Ky is principal) : A is principally polarized.

3. K # Q((5) = pux = {£1} (to limit the number of
polarizations).

4. End(A) = Ok (A is said principal).



Analytic constructions of class polynomials

Van Wamelen and Weng for genus 2 curves.

® Construct S the set of isomorphism classes of principal

abelian surfaces with CM field K.
With our assumptions, if K cyclic (resp. non-Galois) then

S| = hi (resp. 2hk).

® Represent each isomorphism class by (2; € H, such that
A (C) = C* /(7% + Q,77).

® For each (); compute the associated theta constants and
then the absolute invariants 1, 22, 3.

® Compute H,(X) =[]s(X —i,) € QX], n=1,2,3.

® Reconstruct the curve with the invariants (Mestre).



Analytic method (end)

® [ook for unramified primes p in K (= ordinary
reduction) for which the equation Nk, k,(7) = p has
solutions.

Remark : The equation has 0, 2 (K cyclic) or 0, 2,4 (K
non-Galois) solutions up to conjugacy.

® Proposition : |Jac(C)(F,)| is equal to f(1) where f; is
the minimal polynomial of one of the solutions.



Canonical lift AGM and CM

Join work with Gaudry, Houtmann, Kohel, Weng.
Let C'/IFyr be an ordinary genus 2 curve whose Jacobian J
is absolutely simple. Let K = Endoy (J) = Q(m).

Theorem : there exists a p.p. abelian surface (called
canonical lift), JT/Qy- which lifts J and such that

Endg,. (JT) = Endg,, (J).
It can be obtained explicitly by the AGM as a sequence in

Q, which converges to the invariants associated to J7.

Proposition : JT = Jac(CT). The curve CT is a CM-curve
with CM field K. Moreover J' is principal <=
Endpy (J) — OK.



Ordinary genus 2 curves

The AGM can be applied to every ordinary hyperelliptic
curve for point counting and with restrictions 1-4 for CM
constructions.

For genus 2,
C/Fyr : y* +v(x)y = u(z)v().

The polynomial v is square free of degree 3 and u has
degree less or equal to 3.

Remark : the Jacobian J of C' has four 2-torsion points
defined over the extensions generated by the 3 points
(cv;, 0) where v(a;) = 0. We denote k = F,, ¢ = 2%, this
extension.



Initialization

One lifts C over Q, : lift arbitrarily u,v to U,V € Q,[z] and
define

C/Q,:Y?=2y+ V() =V(z)(V(z)+4U(z)).

One can factorize the right member

3 3
C/Q,:Y? = H(az — ;) H(x — (a; + 4s;)).
i=1 i=1
Initialization :
€1 = I, €3 = T2, €5 = I3,

ey = 1 + 481, €1 = a9+ 489, eg = 13+ 43



Initialization (more)

A = (e1 —e3)(es—es)(es —er)(es —eq)(es — eg)(eg — €2
B = (e1—e3)(ez3—eg)(eg —e1)(ea —eq)(es —e5)(es — e
C = (e1—eq)(eqs—es)(es —er)(ea —e3)(ez — eg)(eg — €3
D = (e; —e4)(es —eg)(eg —eqr)(ea —esz)(es — e5)(es — eg

Remark : these numbers are 2-adics analogs of
9[881(0)*, 9[361(0)%, 9[§21(0)", ¥[9](0)".

Then (A, Bo, Co, Do) := (1,+/B/A,\/C/A,\/D/A).

The square root of an element of the form 1 4 87, is the
unique element of Z, of the form 1 + 4Z,.




Convergence

One uses Borchard’s means to get a sequence in Z, :
(An7 Bn7 CTM Dn) — (An-|-17 Bn—|-17 On-l-lv Dn+1)'

These formulae are :

An—l—l 1 1 Cn—l—l — 9
B V Aan + v CnDn D V AnDn + v BnCn
= n+1 —
2 2

This sequence converges to the Galois cycle of invariants
associated to the canonical lift.

Remark : One may also use Richelot algorithm.



End for point counting

Compute the norm of A,,/A,+1 for a sufficiently large n ~~
approximation of a = £mms.

Mestre showed that knowing « is sufficient to recover the
Frobenius polynomial "up to a sign” (no LLL needed, no
longer true for g > 2).

Records : Use of fast norm and Newton lift (Lercier, Lubicz)

qg N Lift Norm Total
1 100002 1d18 1d16 3d10
2 32770 7d22  6h 8d4
3 4098 6d8 25mn  6d8
For cryptography (g = 1, N = 168) 6.04s with FGH and

0.08s with Harley.
Complexity : O(n?) in time and space.




Back to CM : Reconstruction of the curve

Rosenhain model
C:yP=z(x —1)(z— M)z — ) (z — N3)
where the )\; are given by the following expressions :

193
9202

9393
9202

9391
303

)\1: )\2: )\3:

; are given by ...



Reconstruction (more)

01 =9[%](0), 92 =9[%](0), 95 =[] (0),

9a = 9go] (0), 5 =F[57](0), P = I[g](0)-

The (general) duplication formula give these elements
from the sequence :

19% = Bn, ,19% — DTL’

92 VAn-1Bn—1 —/Cn-1Dn_1 92 Ap—1—Bp-1+Cnp_1—Dp_1
3 2 ’ 4 4 ’

92 VAn-1Cn—1 —y/Bn_1Dpn_1 92 — Ap—1—Bp—1 —Cp—1+ Dn_1
Sl 6 — .

2
~+ An approximation with precision NV of the canonical lift

(or of one of its conjugates) after N iterations.



Reconstruction of the invariants

Knowing \; ~ I, I4, I, I1¢ (Igusa invariants) ~» absolute
Invariants il = ]25/]10, i2 = 1314/]10, ’ig = ]22]6/110-

Knowing these invariants with enough precision one uses

LLL : linear relations between {1,4,,12,...,:2"<} and one
gets

Hy(iy) = Hy(iy) = Hs(iz) = 0.

Moreover one constructs relations
L1(i1,19,13) = La(t1,19,13) = 0.

® Relations Li, Ly allow to avoid combinatoric problems
between the (2h )3 roots.

® The H; may be only factors of class polynomials (not a
issue for applications).



The choice of the curve

Let C'/IFyr be an ordinary genus 2 curve.
1. Is x, irreducible ?
2. Is K = Q(7)/Q non-Galois or cyclic?
3. Is hi of the right size and hi, = 1? (remark : r|hk.)
4. Is Endg , (J) = Ok ?

How to check that?

We have
Z\m) C Z|m, 7] C End(J) C Ok.

Remark : as 7™ = 2" /7, |[Z|n, 7| : Z|r]] is a power of 2.



Determination of O : End(J))

let n be an integer, o : J — J an endomorphism and ~ the
Rosati involution.

Lemma : Let n be odd (resp. n = 2™). a(P) = 0 (resp.
a(P) = 0 and @(P) = 0) for all P € J[n|(k) iff there exists
B € End(J) such that a = [n|g.

Remark : efficient computations with n-torsion points.



Is the endomorphism ring maximal ?

1. One determines the index of Z|w, 7] in Ok and (if # 1)
the structure of the extension O /Z|w, 7).

2. Let fi(m,@)/n4,..., fi(n,7T)/n; be a basis of Ok over
Z|m,7|. For each odd factor [; (resp. factor 2™) of n; one

determines the action of 7 on J[;|(k) (resp. on

J[2™:](k)) and one rejects the curve if the action of

fi(m,7) (resp. fi(m,7) or f;(7, 7)) on this group is non
Zero.



An example over Fg

Let Fg = Fy[w] with w? +w + 1 = 0. Let

u=(w?+w+1)z? + wzr + w?
v=ao’+ (w*+w+1)z*+z+w+ 1.

The Frobenius polynomial is

z* — 323 + 322 — 241 + 64.

It defines an imaginary quadratic extension of Q(v/61).
One has hg = 3 (for the other curves over Fg hx = 6 or 12).

[OK : Z[ﬂ'“ = 8 but Z[ﬂ',f] — OK.

The relations are given by ....



Relations

2634240 — 23449121055031161162885760479530571253924%
—1126395843903042384561722768451301500394025565862831564 1
—217741510339585406004124674853471766322478483156070093428548305107573
—1593641994054440870937630653070363836936366222692321471303808012543988702i2
—772328827101733729625315065485404327361936033911609442197748801803777975572
4322997208503353791442904096277403298406755724679392771235950917055375817125!
43,

31845 + 3034589098230805101980535043
—288136191649832893917062077388710908375i3
+753110832515821367749096990899427029369367852656375i:
—64912730947592053931240048268759791425565888555156283000012
+512065244591992233358858681228726038539915018527646447680800000i2
—242729201551569096286616270971131120449527443900342023922233408000000,



32448 + 27437461181384763694011881346%3
—35204080604931845265596273380705748924033 1143
+117892215333408106648417396848072570044473963942296600343
+50992879098264551485642755853537750581665889092002072268721642
+2281302828261745748785515658319193659498255108217763297301594342443
—194627707132727224036285973133204401034007902817343828521298858611945472,

63389573892000043 + 85175950351310374%i5 — 24223189268382753213
+5288870125564977603% — 2671415018933342i143 + 10103099744994882i1 213
+498068270516667479i1i2 — 31685827189272975i113 + 1849868709635303060i1
+1100241578433867445 — 16195247750833904i343 + 80016484649077407143
+228622640238253145i213,



et.

52586040050922240:3 + 348046133200631478i2 i + 19788972081057810%243
+26236309645913329728i2 — 1611043809046282405i1 i2i3 — 375378278977065791041 42
+1519575925397564523i1 12 + 2446649956939951033i1 i3 — 174664005895462793671
+1153484491100961901i232 — 6729087358177501571i2i3 — 3413986566072687702i2
—1585090558318459827i3 — 10377834109186130040i2 — 12385238120639343570i3,
14283163413570062i1i2 — 2196521724202653041 4233 — 91100503911673906i1 72
+875381955415632041 42 + 741410787750267041 43 — 8509767043223936011
+316002807512354045 — 19415412647408141435i3 — 1122785550350395142
+28513098102060099i2i2 — 101049976189868573i2i3 — 10890112918608090i3
+4281845504110404043



Conclusions

® Record : an example with class number = 50 over Fs,
(precision 65000 bits). The leading coefficient of H; is
390 . 11196, 1760237 . 4124 . 7312 . 8312 . 1818 . 69112,

#® Improvements:

1. Use more information : one knows the conjugates of
the invariants ~» LLL in smaller dimensions.

2. New strategy : r < 7 : enumerate all the curves ~
quadratic LLL, data base (Houtmann, Kohel).

3. In the choice of curves : can we detect them quickly ?
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