Identity-Based Cryptography: Panacea or Pandemonium?

Kenny Paterson
Information Security Group
Royal Holloway, University of London

kenny.paterson@rhul.ac.uk

Definitions

Panacea:

A remedy for all diseases, evils or difficulties; a cure-all.

Pandemonium:

"... Pandemonium, Citie and proud seate Of Lucifer..."

Paradise Lost, John Milton, 1667.

(Colloquially, any noisy or unpleasant place.)

Overview

- Public key cryptography.
- Why is PKI so hard?
- Identity-based cryptography a panacea?
 - Basic description and features.
 - Example applications.
- Advertising break.
- Identity-based cryptography pandemonium?
 - A more detailed look at identity-based cryptography.
 - Patents.
- Condusions

Public Key Cryptography (PKC)

- Also known as asymmetric cryptography.
- Each user has two keys: public and private.
- Alice's public key typically used for:
 - encryption to Alice by Bob
 - verification of Alice's signatures by Bob
- Alice's private key typically used for:
 - decryption by Alice
 - signing by Alice
- No need for Alice and Bob to share a common key before they begin secure communications!
 - Compare with symmetric key cryptography.

The Need for PKI

- We need some way of enabling Bob to actually find Alice's key.
 - A directory service for encryption applications.
 - Or delivered as part of a protocol, or along with a signature.
- But how does Bob know that Alice's public key really is Alice's (and not Eve's)?
 - We need some way of binding public keys with identities.
 - Certificates in most circumstances.
- We will also need some way of signalling that a public key is no longer to be relied upon.
 - Alice's private key might become exposed, or she might leave the company.
 - A revocation mechanism.

PKI Components

- Registration Authority (RA)
 - Authenticates individuals/entities, optionally checks for possession of private key matching public key.
 - Passes off result to Certification Authority.
- Certification Authority (CA)
 - Issues certificates: CA issues signatures binding public keys and identities.
 - Relying parties need authentic copy of CA's public key...
- Directory Service
 - Directory of public keys/certificates.
- Revocation Service
 - May involve distribution of Certificate Revocation List (CRL) or on-line certificate status checking (OCSP).

Using the Infrastructure

Example PKIs

- SSL server certificates, authenticated via root certificate embedded in browser
 - Certificate hierarchy.
 - Provides server (not client!) authentication for e-commerce.
 - Rare example of open PKI.
- IPSec certificates
 - Gateway-gateway VPN and remote access solutions.
 - PKC enables authentication of endpoints via IKE protocol.
 - Generally closed PKI.
- Identrus PKI
 - Trust for b2b commerce, banks acting as CAs.
 - Complicated set of rules and contracts needed to define roles, responsibilities and liabilities.
 - Closed PKI.

Some PKI Problems

- Infrastructure should be largely invisible, but PKI often isn't.
- Legal and regulatory concerns.
- Interoperability and standards.
- Deployment and on-going management of costly and complex infrastructure.
- Commercial/business issues.
- The bottom line: in commercial circles, PKI has come to be seen by many as an over-hyped technology which has not lived up to its promise.

Complexity and PKI

- There is a massive complexity gap between the concept of public key cryptography and its realisation in the form of a traditional PKI.
- From an application perspective, the ability to provide nonrepudiation seems to be the unique feature separating public key from symmetric key.
 - Once one appreciates the real-world complexities, symmetric key systems appear equally attractive in many circumstances!
- Certificates and their management are the source of some problems.
 - So somehow getting rid of certificates might help?

Identity-based Cryptography

Original idea due to Shamir (1984):

- Public keys derived directly from system identities (e.g. an e-mail address or IP address).
- Private keys generated and distributed to users in by a trusted authority (TA) who has a master key.
- As long as:
 - Bob is sure of Alice's identity and
 - The TA has given the private key to the right entity,

then Bob can safely encrypt to Alice without consulting a directory and without checking a certificate.

Identity-based Cryptography

12

Identity-based Cryptography

- Apparently, elimination of certificates produces a far simpler infrastructure.
 - We'll examine this in more detail soon...
- Identifier often used in place of identity.
 - Reflecting idea that any string can be used to derive public keys.
- IBE = Identity/Identifier-based encryption.
- ID-PKE = ID-based public key encryption.
- ID-PKC = ID-based public key cryptography.

IBE – A Short History

- Shamir devised only an ID-based signature scheme.
- Construction of *truly practical* and *secure* ID-based encryption scheme an open problem until 2001.
 - Several insecure/inefficient proposals.
- Sakai, Ohgishi and Kasahara (SCIS, Jan. 2001)
 - Written in Japanese.
 - Pairing-based scheme, but no security model or proofs.
 - English version apparently rejected from Asiacrypt 2000.
- Boneh and Franklin (Crypto, August 2001)
 - Written in English.
 - Pairing-based scheme, practical and provably secure.
- Cocks' scheme (IMA Conference, Dec. 2001)
 - Scheme based on quadratic residuosity, not bandwidth efficient.
 - Research done in mid 1990's at UK government agency.
 - B&F paper prompted publication of Cocks' work.

Apparent Benefits of ID-PKC

- Certificate-free.
 - No processing, management or distribution of certificates.
- Directory-less.
 - Bob can encrypt for Alice without looking-up Alice's public key first.
 - Indeed, Alice need not have her private key when she receives Bob's encryption.

Apparent Benefits of ID-PKC

- Automatic revocation.
 - Simply extend identifier to include a validity period.
 - Alice's private key becomes useless at end of each period.
 - Alice needs to obtain private for current period in order to decrypt.
 - No need for CRLs or OCSP.
- Built-in support for key recovery.
 - When Alice leaves the organisation (or is run over by a bus).
 - Also enables applications like content scanning of e-mail at server.

Applications of ID-PKC

- ID-PKC and pairing-based crypto have undergone an extraordinarily rapid development since 2001.
 - Paulo Baretto's Pairing Based Crypto Lounge (no longer being updated?)
 - Apparent extensive use of Bellare's crypto topic generator.
 - http://www-cse.ucsd.edu/users/mihir/crypto-topic-generator.html
 - Growing commercial interest.
- Potential applications for ID-PKC
 - Secure e-mail.
 - Cryptographic workflow.
 - Domain-based security, GRID security architecture, securing router advertisements, ad hoc networks,...

ID-PKC and Secure e-mail

- ID-PKC seems well-suited to encryption for e-mail and other messaging technologies in corporate environments.
 - Natural candidate for TA.
 - Low interaction with infrastructure for sender.
 - Recipient of encrypted e-mail need not be pre-enrolled.
 - Key recovery feature allows message hygiene services to be conducted at mail server/organisational boundary.
 - Potential for lower costs through lightweight infrastructure requirements (compared to PKI-based solution).
 - Seems likely to be first mass-market application of ID-PKC:
 - Voltage Security: www.voltage.com

18

ID-PKC and Secure e-mail

- Is secure e-mail the killer application?
- Voltage Security certainly hope so:

"IBE easily solves some of the problems that have traditionally made implementing and supporting encryption technology difficult and expensive."

Luther Martin, Principal Engineer, Voltage Security in "Identity-based encryption: a closer look", The ISSA Journal, June 2005.

19

ID-PKC and Secure e-mail

But...

- Difficult to build non-repudiation services.
- May need to integrate with existing PKI-based authentication services.
- Voltage Security whitepaper, March 2005:
 - "Combining IBE with PKI enables a secure messaging environment to benefit from the advantages of both systems."
- Do we really need secure e-mail anyway?
 - Lots of hype around SOX, HIPAA, GLBA,...

Cryptographic Workflow

- Identifier could be any string
- What if public key determined before private key?
 - Bob selects identifier string expressing a policy.
 - Bob encrypts message of value to Alice using public key matching the identifier.
 - Bob relies on TA to only release matching private key if conditions expressed in policy met by Alice.
- TA becomes a decryption policy enforcer.

21

Cryptographic Workflow

Example of Workflow

- Bob selects identifier for Alice:
 Identifier = "Alice && over 18 && transaction value < \$100".
- Bob sends Alice content encrypted under public key derived from this identifier.
- Alice convinces TA she satisfies conditions expressed in the identifier – age and limit on transaction value.
- TA then gives Alice private key matching identifier.
- Finally, Alice can decrypt to obtain content.

Workflow Extensions

- Bob selects identifier for Alice:
 - Identifier = "Alice && over 18 && transaction value < \$100".
- Now each component of policy corresponds to private key from different TA.
 - TA vouching for identity.
 - TA vouching for age.
 - TA handling payments.
- Alice convinces each TA in turn that she satisfies conditions expressed in the identifier.
- Alice gets a private key component from each TA and combines them to produce her final private key.
- Alice can decrypt to obtain content.
- Arbitrary Boolean expressions can be handled
 - Smart; Al-Riyami, Malone-Lee and Smart; Bagga and Molva,...

Workflow via PKI

- Cryptographic workflow is a nice idea, but it doesn't actually require ID-PKC . . .
 - TA has become policy enforcer, trusted to perform certain actions.
 - Now high degree of interaction between Alice and TA.
 - Each new policy is likely to be unique and require fresh private key.
- Alternative approach with same trust assumptions and message flows:
 - Bob encrypts content under TTP's (ordinary) public key and sends to Alice along with policy for decryption.
 - Alice takes encrypted content to TTP who decrypts it for Alice, provided Alice satisfies policy.

Further Applications of ID-PKC

- Domain-based security (Smetters and Durfee, 12th USENIX Security Symposium, 2003).
 - Each DNS domain acts as TA for clients in the domain.
 - Use DNSSEC PKI to authenticate TA parameters.
 - Adapt DNS to transport TA public parameters between domains.
 - Support for inter- and intra-domain IP and e-mail security.
 - Various mechanisms for private key distribution including:
 - SSL (possibly with client certificates based on PKI!)
 - Distribution via e-mail to authenticate clients.
 - Or transmission over trusted network segment.
 - Proof of concept coded in Java on Linux.

Further Applications of ID-PKC

- GRID security (Lim and P., preprint).
 - Pure-ID-PKC architecture designed to meet security requirements for GRIDs:
 - Single Sign-On.
 - Delegation via proxying.
 - Secure channels.
 - Use of Gentry-Silverberg hierarchical ID-PKC to handle hierarchy of root TA, local TA, user, and user proxy.
 - Exploit identifiers to specify delegation policies, reduce round-trips and ease revocation.
 - ID-based version of SSL handshake protocol.
 - Select ID-PKC parameters to minimise bandwidth and computation.

Advertising

- Advances in Elliptic Curve Cryptography
- Cambridge University Press, LMS Lecture Note Series, Volume 317.
- ISBN 0 521 60415 X.
- Editors: I.F. Blake, G. Seroussi, N.P. Smart.
- Contributors: N.P. Smart, D. Brown, A.W. Dent, E.
 Oswald, M. Joye, F. Vercauteren, P. Gaudry, F. Hess,
 S.D. Galbraith, K.G. Paterson.

"Other elliptic curve cryptography books are available."

ID-PKC – Pandemonium?

- Focus so far on positive aspects of ID-PKC: certificate-free, directory-less, automatic revocation and key recovery.
- We've not really examined the operational issues associated with ID-PKC.
 - Only hinted at difficulties of private key distribution and the nonrepudiation issue.
- Now we take a closer look...

... and discover that ID-PKC is not as straightforward as it at first appears.

Public Parameters

- Bob needs an *authentic copy* of the TA's public parameters before he can safely encrypt to Alice.
 - To prevent man-in-middle attacks.
- One solution is to hard-code TA parameters into dient applications.
 - Could be OK for dosed applications, but not very flexible.
 - Could use hierarchical approach to support multiple applications and parties.
- Another solution:
 - Certify TA parameters using a PKI.
 - A hybrid solution, as adopted in Smetters and Durfee.
 - Still need to distribute and check these certified parameters.

Registration

- A secure enrollment process is still needed.
 - Pre-enrollment can be avoided, but Alice does need to enroll at some point!
 - Secure process needed to ensure that Alice's private key is really being delivered to Alice.
 - PKI only needs an authentic channel.
 - ID-PKC needs a channel that is both authentic and confidential.

Registration

- A secure channel is needed for registration and delivery of private keys.
 - How is this to be achieved in practice?
 - How often will the channel be used?
 - What security level does it need to provide?
 - For example, is delivery via e-mail appropriate?
 - If we have such a channel, what alternative uses might be found for it?
 - Where should we store private keys once we've distributed them?

Reality of ID-based cryptography

Effect of Catastrophic Compromise

What is the cost of compromise of the master secret?

- Potentially higher than cost of compromise of CA signing key in PKI:
 - CA in PKI could re-issue all certificates under new signing key.
 - No dient private keys are compromised.
 - Only temporary exposure to threat of rogue certificates being used by encrypting/verifying party.
 - Meanwhile, in ID-PKC, all past encrypted messages are exposed and all old signatures become worthless.
- In reality, a CA/TA compromise is unacceptable in either architecture.
 - In both cases, appropriate steps to prevent occurrence are needed.

Key Escrow

The other side of key recovery:

- TA can calculate all the private keys in the system.
- PKI is more flexible in this respect.
- May limit applicability of ID-PKC to certain applications where some degree of trust in TA is inherent.
 - In fact, open PKIs are largely a myth and many PKIs operate under similar trust assumptions anyway.
- Split TA or certificateless PKC as possible solutions.

Inability to Provide Non-repudiation

- Another consequence of key escrow.
- TA could forge signatures if an ID-based signature were adopted.
 - So need to trust TA not to do that.
- However, EU electronic signature legislation requires private key to be under "sole control" of signer in order for signatures to be fully recognised.
 - So may be incompatible with some legislative regimes.
- Since certificate can always be sent along with signature, ID-PKC does not seem to have a big advantage here anyway.
- Then why do we have so many ID-based signature algorithms???

Non-repudiation (ctd.)

- In fact, use of ID-based signatures would be reasonable in some (many?) applications:
 - True non-repudiation is not always needed.
 - Non-repudiation rarely enforced using legislation, but rather by PKI scheme rules and contracts.
 - ID-PKC scheme rules could permit use of ID-based signatures, provided appropriate trust relationships in place.
 - (But we still don't need 27 different signature algorithms!)

Revocation in ID-PKC

- A revocation mechanism is needed in ID-PKC just as in traditional PKI.
 - In event of key compromise or change of status of entity related to identifier.
 - But how can you revoke an identifier?
- The simple "automatic revocation" solution:
 - Bob simply extend Alice's identifier to include a validity period.
 - Granularity of expiry times determines rate of private key issuance (yearly, weekly, daily,...).
 - Could conveniently specify expiry policy in TA's parameters.
- Hence "no need for CRLs or OCSP".

Reality of Revocation in ID-PKC

- Granularity also determines maximum length of exposure period between compromise of private key and update of public key.
- So higher security application would need shorter validity period and hence higher rate of private key issuance.
 - Extra workload on TA.
 - TA may need to be highly available.
 - Secure channel needs to be used at frequent intervals.
 - Should be invisible to users.
 - Could use previous identifier and private key if not compromised.

Reality of Revocation in ID-PKC

- In a PKI, a (delta) CRL can be pushed out at regular intervals limiting exposure period.
 - Or even every time a key is compromised,
- This is not true of the automated revocation mechanism.
- Ultimately, in high security applications, real-time information concerning status of identifiers/private keys will be needed.
- Then an OCSP-like solution will be required.
- Where is the cross-over point where OCSP becomes more cost-effective than automatic revocation?
 - Detailed comparison needed.
- Reality: an effective revocation mechanism requires the timely distribution of authentic status information, irrespective of which public key technology is used.
 - Automatic revocation may not always be appropriate for ID-PKC.

A Thought Experiment

- Imagine situation where fine-grained identifiers are in use.
 - E.g. workflow application or frequent automated revocation.
- Then TA is on-line and frequent use is made of secure channel between TA and dients.
- If the channel is sufficiently secure and convenient to support this, what else could it be used for?

A Thought Experiment

A radical proposal: turn the TA into a KDC distributing *symmetric* keys to Alice and Bob.

- Assume Alice and Bob each have secure channel with TA/KDC.
- Use secure channels between KDC and users to distribute session keys.
- Session keys then used to protect application data between Alice and Bob.
- Canonical example: Needham-Schroeder protocol.
 - Similar message flow to ID-PKC approach.
 - Can be done without Bob ever contacting KDC.

42

A Symmetric Approach

Analysis of Thought Experiment

- What have we lost with this symmetric approach?
- Apparently, only the ability to provide non-repudiation services!
 - Recall, we agreed earlier that this was the unique feature separating public key from symmetric key.
- But ID-PKC doesn't provide true non-repudiation!
 - In fact, KDC can provide arbitrated non-repudiation through use of symmetric key only.
 - Similar level of trust required in KDC as in TA.
- So we've lost nothing at all?
 - Maybe only a few extra protocol flows.
 - And no pairing calculations needed (sorry Mike and Paulo!)

Warning! Warning! Warning! Warning!

- I am not a patent attorney, just an interested bystander.
- Nothing I am about to say concerning patents should be interpreted as a legal opinion.
- Nothing here is intended to be against the interests of any particular party or parties.

- "Systems and methods for identity-based encryption and related cryptographic techniques".
- Inventors: Dan Boneh and Matthew Franklin.
- US application 10/218,697.
- Provisional application filed August 13th 2001.
- Published May 1st 2003 (Pub No US 2003/0081785).
- Available for free from US patent office.
- Not yet granted.
- 82 daims in published version.
- Most claims concerned purely with IBE using bilinear maps.

Claim 70:

"A method of providing system parameters for a cryptographic system comprising: providing a system parameter representing an algebraic group G_1 and an algebraic group G_2 and providing a system parameter representing a bilinear map $\text{Vhat}\{e\}$ mapping pairs of elements of G_1 to elements of G_2 ."

- Appears to attempt to cover all pairing based cryptography using modified pairings!
- Yet there appears to be significant prior art using modified pairings in cryptographic settings.
 - At least Verheul's paper at EUROCRYPT 2001.
 - This paper is referenced in Boneh and Franklin's CRYPTO 2001 paper.

- Quite common for daims to cover more than has actually been demonstrated in a patent application.
- But:
 - Existence of Verheul's work may technically invalidate broadest claims covering pairing-based cryptography.
 - The work of Sakai et al. from SCIS 2001, if regarded as having been in the public domain prior to August 13th 2001, could potentially invalidate all the claims.
- Even so, the US patent may still be granted intact.
- Detailed analysis of US 6886096 (granted patent) may also be interesting.

- It is perfectly reasonable for inventors to seek intellectual property protection for their work.
- But legal uncertainty surrounding the technology may actually hinder its widespread adoption.
 - Haven't we all been here before with ECC?
 - Lack of standardisation also an issue here.
 - P1363 activity now proposed.
- Alternative approaches to ID-PKC which seek to avoid existing patents/patent applications are under development.

Complexity and ID-PKC

- There is a complexity gap between the *concept* of ID-PKC and its *realisation* in real-world applications.
 - Doesn't this sound familiar?
- This makes certain initially attractive applications less compelling in practice.
- Getting rid of certificates helps.
 - But maybe not as much as we'd like to think...

Conclusions

- Traditional PKI has well documented problems and has not met (unrealistic) market expectations.
- Identity-based cryptography as an alternative
 - Solves some problems but introduces others.
 - Not the right choice for every application.
 - May be best suited to "corporate" or domain-restricted/closed applications where there is a natural choice for the TA.
- Lessons from history:
 - Avoid over-egging the pudding with unsupportable claims for the technology.
 - Don't misjudge the size of the gap between cryptographic theory and security practice.
 - Patents are legitimate tools, but can decelerate uptake of technology.
 - Don't forget about symmetric key cryptography.

Acknowledgements

- Talk based on joint research over last few years with: Sattam Al-Riyami, Hoon Wei Lim, Fred Piper, Geraint Price.
- PKI dub: a research forum sponsored by Abbey, APACS, Barron McCann, beTRUSTed, BT exact Technologies, CESG, Hewlett-Packard Laboratories Bristol, Indicii Salus, Mondex and Prudential.
 - http://www.isg.rhul.ac.uk/research/projects/pkidub
- Thanks also to the organisers of ECC9.