
The Static Diffie-Hellman Problem
or

A 3
√
n algorithm for finding some discrete logs

Robert Gallant

Certicom Corp.

R. Gallant – ECC’05 – p. 1

Overview
an algorithm for finding discrete logarithms
applicability of algorithm to (attacking) existing
protocols/systems
an interpretation of the algorithm as a reduction

R. Gallant – ECC’05 – p. 2

What is the discrete log problem
Given a group <G> of prime order n generated by the group
element G, the discrete log problem (DLP) (in <G>) is:

Given a random A ∈ <G>, find the integer a such that
A = aG.

An algorithm that finds and outputs the required integer a is
said to solve the discrete logarithm problem.

Many cryptographic protocols are based on the (assumed)
difficulty of solving the discrete log problem in certain
groups.

R. Gallant – ECC’05 – p. 3

Shanks √n algorithm for solving DLP
Shanks’s baby-step giant-step algorithm (BSGS) finds the
integer a such that A = aG with about 2

√
n group

operations.

Basic idea of algorithm: Let q = d√ne.
Imagine the group elements arranged as follows:

R. Gallant – ECC’05 – p. 4

Shanks √n algorithm for solving DLP

0G 1G 2G . . . (q − 1)G

qG (q + 1)G (q + 2)G . . . (2q − 1)G

2qG (2q + 1)G (2q + 2)G . . . (3q − 1)G

.

((q − 1)q)G ((q − 1)q + 1)G ((q − 1)q + 2)G . . .

All n elements of the group here. The matrix has q columns
and q rows.

Finding the integer a such that A = aG is akin to finding
where the given element A lives in this matrix.

R. Gallant – ECC’05 – p. 5

Inutition for Shanks BSGS algorithm
We don’t want to compute every element of the matrix to
find A.

Geometrically we see there must be an intersection of the
column containing G and the row containing A.

Shanks’ Baby-Step-Giant-Step algorithm (BSGS):
Compute the elements in the column containing G (giant
steps) and the elements in the row containing A (baby
steps), along with the the corresponding ‘offsets’. (About 2q
elements to compute and store.)

Find the intersection: at this point the offsets gives us a
relation between G and A and allows us to find the integer a
such that A = aG.

R. Gallant – ECC’05 – p. 6

Algorithm inputs and assumptions
The inputs to our algorithm are as follows:

a generator G of the group <G>
the group order n, which must be prime
integers u, v > 0 such that n = uv + 1

a group element A (the element whose logarithm we
seek)
a function SDHPA()

Our algorithm assumes that
each group element is represented by a unique binary
string
we are given an efficient way to add/subtract arbitrary
group elements (via an oracle, for example)

R. Gallant – ECC’05 – p. 7

The input function SDHPA()

The algorithm requires as input a function

SDHPA() : <G> → <G>

T → aT

We do not need details about the function implementation.
We simply evaluate the function at certain inputs.

In terms of public key cryptography, this function performs
the basic private key operation corresponding to the public
key A: It scalar-multiplies an arbitrary input point T by the
private key a.

R. Gallant – ECC’05 – p. 8

The input function SDHPA()

Recall the Diffie-Hellman function in <G>: Given arbitrary
group elements B = bG,C = cG,

DH : <G>×<G> → <G>

(B,C)→ bcG

The SDHPA function solves the Diffie-Hellman problem
when one of the inputs is fixed to be the point A. i.e.

SDHPA(T) = DH(A, T)

i.e., It is the Diffie-Hellman function on a (very) restricted
set of inputs.

R. Gallant – ECC’05 – p. 9

Outline of algorithm
Recall the order of G is a prime n = uv + 1.
Suppose w generates F ∗

n .

Imagine the group elements arranged as follows:

0G

w0G w1G w2G . . . wu−1G

wuG wu+1G . . . w2u−1G

w2uG w2u+1G . . . w3u−1G
...

w(v−1)uG w(v−1)u+1G . . . wvu−1G

This matrix is u by v and NOT necessarily √n×√n (like the
earlier Shanks BSGS matrix.)

Also note,
wtu(wkuG) = w(k+t)uG

R. Gallant – ECC’05 – p. 10

Basic idea of our algorithm
The function SDHPA() mapping T → aT allows us to
compute a known multiple A′ of the element A that is
(somewhere) in the same column as G. (The first column.)

We will then apply a baby-step giant-step algorithm to the
elements of the first column which will lead to the logarithm.

R. Gallant – ECC’05 – p. 11

Jump to the first column...
The group element A = aG is somewhere in this matrix.
Assume a = wd for some d. We focus on finding d.

Evaluate the SDHPA function at A = wdG. We get back the
group element aA = wdwdG = w2dG.

Evaluate the function at the element w2dG to obtain the
element w3dG. Continue in this manner.

After calling the function u times, we get the element
A′ = wudG.

This element is in the first column of our matrix.

R. Gallant – ECC’05 – p. 12

Do BSGS variant in first column
We have A′ = wudG in the first column of the matrix. The
element G = w0G is also in the first column of the matrix.

Because the first column is closed under multiplication by
powers of wu, we can do a baby-step-giant-step algorithm
in the first column:

Set of baby steps {wiuG, i}. (i = 0 . . .
√
v.)

Set of giant steps {w−j
√

vuA′, j}. (j = 0 . . .
√
v.)

This finds the integer α such that A′ = wuαG.

Thus: A′ = wudG = wuαG, and wuv = 1
Thus: d ≡ α mod v.

This takes about 2
√
v steps so far. R. Gallant – ECC’05 – p. 13

Using α = d mod v

Because d ≡ α mod v, the group element w−αA = w−αwdG

is in the set
{wivG|i = 0 . . . u− 1}

This set is closed under multiplication by powers of wv, so
again we can do a baby-step-giant-step algorithm in this set
to find an integer β such that wβvG = w−αA.

Thus: w−αA = wβvG so A = wα+βvG.
Thus: As A = wdG we have d = α + βv and so the desired
logarithm a = wα+βv mod n.

This second BSGS step takes about 2
√
u steps.

R. Gallant – ECC’05 – p. 14

Result
Suppose that G generates a group of prime order
n = uv + 1, and that in addition to the element A we are
given a SDHPA(·) function.

Then there is an algorithm for finding an integer a such that
A = aG that requires u calls to the SDHPA function and at
most 2(

√
u+
√
v) group scalar multiplies and table lookups.

R. Gallant – ECC’05 – p. 15

Least work case with this algorithm
The algorithm works for any choice of positive integers u, v
such that n = uv + 1. The algorithm requires u calls to the
SDHPA function and about 2(

√
u+
√
v) scalar

multiplications in the group <G>.

If u ≈ 3
√
n, then the logarithm a can be found with u calls to

the SDHP function and off-line work of about 2 log2(n) 3
√
n

operations in <G>.

Disregarding work factors that are logarithmic in the group
order n, this algorithm requires 3

√
n steps to find a logarithm.

R. Gallant – ECC’05 – p. 16

Notes on algorithm...
Notes:

algorithm is basically a generic algorithm
Pohlig-Hellman
For 3
√
n steps, you need a factor of n− 1 of size about

3
√
n.

For 3
√
n steps you must query the SDHPA oracle 3

√
n

times, which may be very unrealistic in practice.
However, the algorithm will be faster than a square root
algorithm even with a logarithmic (in n) number of
oracle queries.
there is Pollard rho variant (removing need for large
amounts of storage)

R. Gallant – ECC’05 – p. 17

Algorithm relevance (as an attack)
If this algorithm is to be relevant as an attack on a protocol:

need access to SDHPA() function from somewhere
protocol must be discrete-log based with a group
where finding logs takes longer than 3

√
n work

(otherwhise this algorithm is no faster than existing
methods)

Taking logarithms in (most) elliptic curve groups often
assumed to take √n work.

R. Gallant – ECC’05 – p. 18

Protocols providing a SDHP(·)
Ford-Kaliski Key Retrieval
Basic Elgamal encryption
Chaum and van Antwerpen Undeniable Signatures

These protocols were originally described using the group
F ∗

p .
In this case index calculus algorithms will find logarithms
faster that the algorithm presented here.

However no special features of F ∗
p were used, and in one

case it was stated that ‘the elliptic curve variant is obvious’.

R. Gallant – ECC’05 – p. 19

Recent protocol providing a SDHP(·)
Ford-Kaliski Key Retrieval: is currently undergoing
standardization.
This protocol is based on the discrete logarithm problem
and draft versions of the standard allow for elliptic curve
variants.

In this protocol, a user enters password π into a trusted
client, which contacts a trusted server. A long term secret a
is stored on the server on behalf of the client.

R. Gallant – ECC’05 – p. 20

Ford-Kaliski protocol flow outline

Client Server
b ∈R [1, n− 1]

c = gb
π

c−−−→ s = ca

z = sb
−1 mod n s←−−−

Value z = ga
π is called a hardened password. It is a function

of the (weakly protected) secret π and a (strongly protected)
secret a.

The protocol helps guard against dictionary attacks on the
password.

R. Gallant – ECC’05 – p. 21

Attacking this protocol
The server provides an SDHPA oracle to the client.

An adversary could use the server as an SDHP oracle to
recover the (long term) private key a using the algorithm we
describe.

For example if doing this protocol with elliptic curve groups
this might lead to a 3

√
n attack to find a, which might be less

work than you would otherwise expect.

The draft standards were specifically modified to account
for this attack presented here.

R. Gallant – ECC’05 – p. 22

Elgamal provides a SDHP() oracle
Basic Elgamal encryption is already known to have
problems.

Nonetheless...
Basic Elgamal encryption also provides an SDHP oracle.

R. Gallant – ECC’05 – p. 23

Elgamal Encryption
Basic ElGamal Encryption: Alice chooses a private key a
and computes her public key as A = aG.

Bob picks random r and encrypts message m ∈ <G> to
Alice:

(B,C) = (rG, rA+m)

Alice decrypts ciphertext (B,C) to plaintext

m = C − aB

R. Gallant – ECC’05 – p. 24

Chosen ciphertext as SDHP oracle
Chosen Ciphertext Attack: Send any (B,C) to Alice, and
she reveals the decryption m.

This provides an SDHP oracle: To get Alice to compute aT
for arbitrary T ∈ <G>, send Alice:

(T,R),

where R can be chosen arbitrarily.

Alice returns the decrypted plaintext:

m = R− aT .

Eve easily calculates aT = R−m.

R. Gallant – ECC’05 – p. 25

Chosen ciphertext on Elgamal
Thus if (repeated) chosen ciphertext attacks are possible
against Alice, then she provides a SDHPA oracle so the
earlier algorithm can be applied.

Basic ElGamal encryption is already known to be
vulnerable to chosen ciphertext attacks in the sense that
Eve can use a chosen ciphertext query to decrypt any other
past ciphertext.

This attack uses Alice to find a, with which all ciphertexts
(past and future) can be deciphered off-line.

For example if doing basic Elgamal with elliptic curve
groups this might lead to a 3

√
n attack to find a, which might

be less work than you would otherwise expect.
R. Gallant – ECC’05 – p. 26

Another interpretation of the algorithm
For some groups of size n, the algorithm finds the discrete
logarithm of A in considerably less than √n time.

This is a reduction from finding the discrete logarithm of A
to computing the SDHPA() function. (NOT a polynomial
reduction)

This reduction can be interpreted as: If you assume finding
the discrete logarithm of A requires at least √n work then
computing the SDHPA() function requires almost √n work.

R. Gallant – ECC’05 – p. 27

Applying this to Elliptic Curves
Because each SDHPA function is the Diffie-Hellman
function with one input restricted to A, this is a statement
that if the discrete logarithm problem ‘is hard’ then the
Diffie-Hellman problem ‘is hard’.

For example if <G> is an elliptic curve group of prime order
n = uv + 1 with u ≈ 3

√
n, and we assume no algorithm can

solve the discrete logarithm problem in less than √n steps,
then this is saying...

In the elliptic curve group G, solving the Diffie-Hellman
problem takes about √n steps.

R. Gallant – ECC’05 – p. 28

DLP and DHP connections
Several works reduce the discrete logarithm problem to the
Diffie-Hellman problem.

den Boer (’88)
Mauer-Wolf (’96)
Boneh-Lipton (’96)
Muzereau, Smart, Vercauteren (’04)

These are all polynomial or subexponential reductions and
are generally much stronger statements than that given by
the reduction outlined here.

R. Gallant – ECC’05 – p. 29

DLP and DHP connections
Although our reduction is weaker, it is a little different.

Other works reduce the problem of finding an arbitrary
discrete log to the problem of computing the (two-input)
Diffie-Hellman function.

Our reduction is from computing the logarithm of a single
element A to computing the Diffie-Hellman function on a
restricted domain dependent on A, namely SDHPA.

R. Gallant – ECC’05 – p. 30

Bounds
The reduction can be used to get explicit bounds. For
example

If finding the logarithm a of A costs at least √n operations in
<G>, and a scalar multiplication in <G> costs C, and
n = uv + 1 with u ≈ 9C2, then computing the SDHPA() costs
at least √

n

27C2
.

operations in <G>.

This is a reasonably tight reduction for elliptic curves.

Incidentally, the bound is similar to those calculated in the
Muzereau, Smart and Vercauteran paper.

R. Gallant – ECC’05 – p. 31

Possible to do better?
We have shown that if in addition to the standard inputs to a
generic algorithm for solving discrete logarithms, one is
given an additional input SDHPA(), then one can
sometimes compute the logarithm of A in about 3

√
n work.

Perhaps it is possible to do even better than this?

R. Gallant – ECC’05 – p. 32

Possible to do better?
The paper ‘Short Signatures Without Random Oracles’
(Boneh, Boyen) defines the q-Strong Diffie-Hellman
Problem .

Given an isomorphism ψ from <G1> to <G2>, with
ψ(G2) = G1. Groups have prime order n.
The problem is (additive notation):
Given a (q + 2)-tuple (G1, G2, aG2, a

2G2, a
3G2, . . . a

qG2) as
input, output a pair (c, 1

a+cG1) for some c ∈ Z
∗
n.

R. Gallant – ECC’05 – p. 33

Possible to do better?
In that paper they prove that a generic algorithm for solving
this problem must take at least 3

√
n steps.

A generic algorithm given aG2, a
2G2, a

3G2, . . . a
qG2 gets

basically the same inputs as our algorithm.

Their proof shows that no generic algorithm, additionally
given a SDHPA function, can find logarithms much faster
than the one we describe.

R. Gallant – ECC’05 – p. 34

Summary
A generic-ish algorithm for finding discrete logarithms
applicability of algorithm to attacking existing
protocols/systems
interpretations of the algorithm as a reduction

R. Gallant – ECC’05 – p. 35

	Overview
	What is the discrete log problem
	Shanks $sqrt {n}$ algorithm for solving DLP
	Shanks $sqrt {n}$ algorithm for solving DLP
	Inutition for Shanks BSGS algorithm
	Algorithm inputs and assumptions
	The input function $sdhp {A}()$
	The input function $sdhp {A}()$
	Outline of algorithm
	Basic idea of our algorithm
	Jump to the first column...
	Do BSGS variant in first column
	Using $alpha = d �mod v$
	Result
	Least work case with this algorithm
	Notes on algorithm...
	Algorithm relevance (as an attack)
	Protocols providing a $sdhp {}(cdot)$
	Recent protocol providing a $sdhp {}(cdot)$

	Ford-Kaliski protocol flow outline
	Attacking this protocol
	Elgamal provides a $sdhp {}()$
oracle
	Elgamal Encryption
	Chosen ciphertext as $sdhp {}$ oracle
	Chosen ciphertext on Elgamal
	Another interpretation of the algorithm
	Applying this to Elliptic Curves
	 DLP and DHP connections
	 DLP and DHP connections
	Bounds
	Possible to do better?
	Possible to do better?
	Possible to do better?
	Summary

