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Plan of talk

The three W’s of hyperelliptic cryptography:

I Was?

I Warum?

I Wie?

I What?

I Why?

I hoW?
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Was?

What are hyperelliptic curves?
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Elliptic curves

I An elliptic curve is the set of solutions to a (non-singular)
equation

E : y2 = x3 + Ax + B.

I There is a ‘magic’ group operation on points (x , y) on E .
The identity element is the point at infinity, which I will call 0.

I This group operation is described by algebraic formulae which
can be easily implemented on a computer.
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Hyperelliptic curves

I An (imaginary) hyperelliptic curve (of genus 2) is the set of
solutions to a (non-singular) equation

C : y2 = x5 + Ax3 + Bx2 + Cx + D.

I There is a ‘magic’ group operation on (multi-)sets
{(x1, y1), (x2, y2)} of points on C .
The identity element is the empty set {}, denoted 0.

I We formalise this using the language of divisors.
The group in question is then the divisor class group or
Jacobian of the curve C , denoted Jac(C ).

I This group operation is described by algebraic formulae which
are relatively easily implemented on a computer.
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Warum?

Why use hyperelliptic curves?
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Potential advantages of hyperelliptic curves (I)

I Let q be a prime power and suppose we take curves over the
finite field Fq.

I Then #E (Fq) ≈ q whereas #Jac(C )(Fq) ≈ q2.

I In other words, with hyperelliptic curves one has the desired
group size using smaller base fields.

I If field elements fit into a single register then there is a
significant speedup.
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Potential advantages of hyperelliptic curves (II)

(Katagi, Kitamura, Akishita and Takagi)

I One can sometimes use ‘special’ or ‘degenerate’ divisors which
comprise a single point rather than a pair of points.

I The group operations are simplified if one of the divisors is of
this form.
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Wie?

OK, so how do we do it?
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Discrete logarithm based cryptography

I Let E be an elliptic curve over Fq.

I Let P be a point of large prime order r .

I User A chooses a random integer 1 < a < r and computes
PA = aP.

I User A’s public key is PA and the private key is a.

I The discrete logarithm assumption is that it is hard to
compute a from P and PA.
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El Gamal encryption

I To send a message m to user A first obtain an authentic copy
of their public key.

I Choose a random 1 < k < r and compute R = kP and kPA.

I Derive a bitstring H(kPA) of the same length as the message
m.

I Transmit (R,S) = (R,m ⊕ H(kPA)) to user A.

I On receipt, user A recovers the message as m = S ⊕ H(aR).

I The above system is easily generalised to hyperelliptic curves.
(One might choose P to be a degenerate divisor to slightly
speed up encryption.)
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The Weil pairing on elliptic curves

I Let E be an elliptic curve over Fq and suppose r | #E (Fq).

I The embedding degree is the smallest integer k such that
r | (qk − 1).

I Define E [r ] = {P ∈ E (Fq) : rP = 0}.
I Define µr = {g ∈ F∗

qk : g r = 1}.
I The Weil pairing is a function

er : E [r ]× E [r ] −→ µr

which is:

I Bilinear. Hence er (aP, bQ) = er (P,Q)ab.
I Non-degenerate, so for every point P ∈ E [r ] except 0 there is

some Q ∈ E [r ] such that er (P,Q) 6= 1.
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An example curve

I Let
E : y2 = x3 + x

over Fp where p ≡ 3 (mod 4) is prime.

I Then #E (Fp) = p + 1 and so if r | (p + 1) then k = 2.

I There is a distortion map ψ(x , y) = (−x , iy) where i ∈ Fp2

satisfies i2 = −1.

I So P ∈ E (Fp) of order > 2 implies er (P, ψ(P)) 6= 1.

I The point Q = ψ(P) satisfies πp(Q) = pQ.
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The Boneh-Franklin identity-based encryption scheme
(BasicIdent)

I Let G be a group of points of order r on an elliptic curve.
Let e be a pairing e : G × G → µr , for example the Weil or
Tate pairing twisted by a distortion map.

I The trusted authority (TA) has a master public key
P,Ppub = sP and master private key s.

I User A with identity (or identifier) IDA has public key
H1(IDA) ∈ G which can be computed by anyone.

I User A receives private key dA = sH1(IDA) from the TA.
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The Boneh-Franklin identity-based encryption scheme
(BasicIdent)

To encrypt message m to user A we do

I Compute user A’s public key H(IDA).

I Choose random 1 < k < r and compute R = kP.

I Transmit (R,m ⊕ H2(e(Ppub, kH(IDA)))).

On receipt of (R,S) user A recovers the message as

m = S ⊕ H2(e(R, dA)).
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Other applications of pairings

Some history:

I Miller (1986)

I Menezes-Okamoto-Vanstone (MOV) (1993)

I Frey-Rück (1994)

I Mitsunari-Sakai-Kasahara (1999)

I Sakai-Oghishi-Kasahara (2000)

I Joux (2000)

I Verheul (2001)

I Boneh-Franklin (2001)

Since then there have been numerous applications, see Paulo
Barreto’s pairing based crypto lounge.
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Curves and divisors

I Let C be an elliptic or genus g curve over Fq.
I Fix a base-point P0 ∈ C (Fq).
I Every (degree zero) divisor class has a representative of the

form
(P1) + · · ·+ (Pn)− n(P0)

where 0 ≤ n ≤ g and Pi ∈ C (Fq).
These are called reduced divisors.

I Given two (degree zero) divisors D1,D2 there exists a function
g such that

D1 + D2 + (g)

is a reduced divisor.
I Such functions arise naturally from the elliptic curve addition

rule or from Cantor’s algorithm.
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Miller functions

I Let D be a degree 0 divisor on C and n ∈ N.
Let Dn be a reduced divisor equivalent to nD.

I A Miller function is any function fn,D such that

(fn,D) = nD − Dn.

I In the elliptic curve case

(fn,P) = n(P)− (nP)− (n − 1)(0).

I If D has order r then the Tate pairing is

〈D,D ′〉r = fr ,D(D ′).

I To get a uniquely defined value must compute the reduced
Tate pairing

〈D,D ′〉(q
k−1)/r

r .
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Miller functions

I Let E be an elliptic curve and let P ∈ E (Fq).

I Let l and v be the lines in the elliptic curve addition of [n]P
and [m]P.

I Then we can define

fn+m,P = fn,P fm,P l/v .

Steven Galbraith Pairings on hyperelliptic curves A survey



Introduction
Pairings and cryptography

Efficient implementation of pairings
An example

Efficient computation of pairings

I Galbraith-Harrison-Soldera (2002)

I Barreto-Kim-Lynn-Scott (2002)

I Rubin-Silverberg (2002)

I Eisenträger-Lauter-Montgomery (2002+2003)

I Duursma-Lee (2003)

I Choie-Lee (2003)

I Scott-Barreto (2004)

I Granger-Page-Stam (2004)

I Lange-Frey (2004)

I Barreto-Galbraith-Ó hÉigeartaigh-Scott (2004/2005)

I Kang-Park (2004/2005)
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The contribution of Duursma and Lee

Duursma and Lee study the curve y2 = xp − x ± 1 over Fp.
They replace r (or the small multiple of r) by qk/2 + 1. This
speeds up the final exponentiation.
Further, they propose:

1. A nice choice of function for computing pD in the divisor class
group.

2. The definition of a pairing on points (in g > 1) rather than
divisors.

3. A shorter loop than would be expected for the given value
of r .

4. Incorporating Frobenius operations directly into the formulae.
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The eta pairing

I Joint work with Barreto, Ó hÉigeartaigh and Scott.

I This is a generalisation and improvement of the methods of
Duursma and Lee.

I It applies to supersingular curves over finite fields of small
characteristic.

I Some related ideas have been used by Barreto, Hess and Scott
for ordinary elliptic curves over fields of large prime
characteristic.
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The eta pairing

I Let C be a supersingular curve over Fq with embedding
degree k.

I Let ψ be a distortion map from Jac(C )(Fq) into the trace
zero subgroup of Jac(C )[r ].

I Let D be a divisor on C defined over Fq with order dividing N.
Let D ′ be another divisor.

I For suitable T (see next slide) we define the eta pairing

ηT (D,D ′) = fT ,D(ψ(D ′)).
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Bilinearity of the eta pairing

I Let notation be as above.

I Let D have order dividing N and let M = (qk − 1)/N.

I Let T = q + cN.

I Let D ′ = ψ(D). Then TD ′ = πq(D
′).

I Suppose T a + 1 = LN for some a ∈ N and L ∈ Z.

I Then (
〈D, ψ(D ′)〉MN

)L
= (ηT (D,D ′)M)aT

a−1
.
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The genus 2 example

I Consider the supersingular genus 2 curve

C : y2 + y = x5 + x3 + d

over F2m where gcd(m, 6) = 1 and d = 0 or 1.
I For example, take m = 103 and d = 0.
I The embedding degree is 12.
I The group order of the Jacobian is

N = 22m ± 2(3m+1)/2 + 2m ± 2(m+1)/2 + 1.

I There is a nice octupling formula

[8]D = φπ6
2(D)

where
φ(x , y) = (x + 1, y + x2 + 1).

Steven Galbraith Pairings on hyperelliptic curves A survey



Introduction
Pairings and cryptography

Efficient implementation of pairings
An example

The genus 2 example

I It follows that [23m]D = φm(D).

I Take T = 23m − (2m ∓ 2(m+1)/2 + 1)N = ∓2(3m+1)/2 − 1.

I Then TD = φm(D).

I Also T 2 + 1 = LN where L = 2m+1 ∓ 2(m+3)/2 + 2.

I Hence, the BGOS theorem implies ηT is bilinear.

I The eta pairing with T = ∓2(3m+1)/2 − 1 is computed using
≈ m/2 octuplings.

I The final exponentiation is complicated and involves an extra
≈ m/2 squarings.

I For details please read the paper.
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An efficient Boneh-Franklin scheme in this case

I The TA chooses a degenerate divisor Ppub, a master private
key 1 < s < r , and computes the reduced divisor
P = s−1Ppub.

I User A has public key the degenerate divisor H1(IDA).
So we are hashing to points rather than divisors.

I The private key dA = sH1(IDA) is not likely to be a
degenerate divisor.

I To encrypt to user A requires the pairing computation

e(Ppub,H1(IDA))k

which is a pairing of degenerate divisors and so is very fast.
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The Boneh-Franklin scheme continued

I The decryption operation requires a pairing computation
between general divisors, which is at least 3 times slower than
a pairing between degenerate divisors.

I This is similar to RSA with small public exponent, where the
public operations are fast, while private operations are not so
fast.
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Timings

(For roughly 1200-bits finite field security.)

I Eta pairing (degenerate divisors in genus 2): 1.87ms.

I BKLS (degenerate divisors in genus 2): 3.15ms.

I Eta pairing (general divisors genus 2): 6.42ms.

I Eta (elliptic curves characteristic 2): 3.50ms.

I Eta (elliptic curves characteristic 3): 5.36ms.

I Duursma-Lee (characteristic 3): 8.42ms.
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The End
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