Pairings on hyperelliptic curves A survey

Steven Galbraith

Royal Holloway University of London

September 27, 2005

Plan of talk

The three W's of hyperelliptic cryptography:

- Was?
- Warum?
- ► Wie?

- What?
- ► Why?
- ► hoW?

Pairings and cryptography Efficient implementation of pairings An example

What are hyperelliptic curves?

Pairings and cryptography Efficient implementation of pairings An example

Elliptic curves

 An elliptic curve is the set of solutions to a (non-singular) equation

$$E: y^2 = x^3 + Ax + B.$$

- There is a 'magic' group operation on points (x, y) on E. The identity element is the point at infinity, which I will call 0.
- This group operation is described by algebraic formulae which can be easily implemented on a computer.

Hyperelliptic curves

 An (imaginary) hyperelliptic curve (of genus 2) is the set of solutions to a (non-singular) equation

$$C: y^2 = x^5 + Ax^3 + Bx^2 + Cx + D.$$

- There is a 'magic' group operation on (multi-)sets {(x₁, y₁), (x₂, y₂)} of points on C.
 The identity element is the empty set {}, denoted 0.
- We formalise this using the language of divisors. The group in question is then the divisor class group or Jacobian of the curve C, denoted Jac(C).
- This group operation is described by algebraic formulae which are relatively easily implemented on a computer.

Pairings and cryptography Efficient implementation of pairings An example

Why use hyperelliptic curves?

Pairings and cryptography Efficient implementation of pairings An example

Potential advantages of hyperelliptic curves (I)

- ▶ Let q be a prime power and suppose we take curves over the finite field F_q.
- Then $\#E(\mathbb{F}_q) \approx q$ whereas $\#\operatorname{Jac}(C)(\mathbb{F}_q) \approx q^2$.
- In other words, with hyperelliptic curves one has the desired group size using smaller base fields.
- If field elements fit into a single register then there is a significant speedup.

Pairings and cryptography Efficient implementation of pairings An example

Potential advantages of hyperelliptic curves (II)

(Katagi, Kitamura, Akishita and Takagi)

- One can sometimes use 'special' or 'degenerate' divisors which comprise a single point rather than a pair of points.
- The group operations are simplified if one of the divisors is of this form.

Pairings and cryptography Efficient implementation of pairings An example

OK, so how do we do it?

Discrete logarithm based cryptography

- Let *E* be an elliptic curve over \mathbb{F}_q .
- Let *P* be a point of large prime order *r*.
- ► User A chooses a random integer 1 < a < r and computes P_A = aP.
- User A's public key is P_A and the private key is a.
- The discrete logarithm assumption is that it is hard to compute a from P and P_A.

El Gamal encryption

- To send a message m to user A first obtain an authentic copy of their public key.
- Choose a random 1 < k < r and compute R = kP and kP_A .
- Derive a bitstring H(kP_A) of the same length as the message m.
- Transmit $(R, S) = (R, m \oplus H(kP_A))$ to user A.
- On receipt, user A recovers the message as $m = S \oplus H(aR)$.
- The above system is easily generalised to hyperelliptic curves. (One might choose P to be a degenerate divisor to slightly speed up encryption.)

The Weil pairing on elliptic curves

- Let *E* be an elliptic curve over \mathbb{F}_q and suppose $r \mid \#E(\mathbb{F}_q)$.
- The embedding degree is the smallest integer k such that $r \mid (q^k 1)$.
- Define $E[r] = \{P \in E(\overline{\mathbb{F}}_q) : rP = 0\}.$

• Define
$$\mu_r = \{g \in \mathbb{F}_{q^k}^* : g^r = 1\}.$$

The Weil pairing is a function

$$e_r: E[r] \times E[r] \longrightarrow \mu_r$$

which is:

- Bilinear. Hence $e_r(aP, bQ) = e_r(P, Q)^{ab}$.
- Non-degenerate, so for every point P ∈ E[r] except 0 there is some Q ∈ E[r] such that e_r(P, Q) ≠ 1.

An example curve

Let

$$E: y^2 = x^3 + x$$

over \mathbb{F}_p where $p \equiv 3 \pmod{4}$ is prime.

- Then $#E(\mathbb{F}_p) = p+1$ and so if $r \mid (p+1)$ then k = 2.
- There is a distortion map ψ(x, y) = (−x, iy) where i ∈ 𝔽_{p²} satisfies i² = −1.
- ▶ So $P \in E(\mathbb{F}_p)$ of order > 2 implies $e_r(P, \psi(P)) \neq 1$.
- The point $Q = \psi(P)$ satisfies $\pi_p(Q) = pQ$.

The Boneh-Franklin identity-based encryption scheme (BasicIdent)

- Let G be a group of points of order r on an elliptic curve. Let e be a pairing e : G × G → µ_r, for example the Weil or Tate pairing twisted by a distortion map.
- The trusted authority (TA) has a master public key P, P_{pub} = sP and master private key s.
- User A with identity (or identifier) ID_A has public key $H_1(ID_A) \in G$ which can be computed by anyone.
- User A receives private key $d_A = sH_1(ID_A)$ from the TA.

The Boneh-Franklin identity-based encryption scheme (BasicIdent)

To encrypt message m to user A we do

- Compute user A's public key $H(ID_A)$.
- Choose random 1 < k < r and compute R = kP.
- Transmit $(R, m \oplus H_2(e(P_{pub}, kH(ID_A))))$.

On receipt of (R, S) user A recovers the message as

$$m = S \oplus H_2(e(R, d_A)).$$

Other applications of pairings

Some history:

- Miller (1986)
- Menezes-Okamoto-Vanstone (MOV) (1993)
- Frey-Rück (1994)
- Mitsunari-Sakai-Kasahara (1999)
- Sakai-Oghishi-Kasahara (2000)
- Joux (2000)
- Verheul (2001)
- Boneh-Franklin (2001)

Since then there have been numerous applications, see Paulo Barreto's pairing based crypto lounge.

Curves and divisors

- Let C be an elliptic or genus g curve over \mathbb{F}_q .
- Fix a base-point $P_0 \in C(\mathbb{F}_q)$.
- Every (degree zero) divisor class has a representative of the form

$$(P_1)+\cdots+(P_n)-n(P_0)$$

where $0 \le n \le g$ and $P_i \in C(\overline{\mathbb{F}}_q)$. These are called reduced divisors.

▶ Given two (degree zero) divisors D₁, D₂ there exists a function g such that

$$D_1+D_2+(g)$$

is a reduced divisor.

Such functions arise naturally from the elliptic curve addition rule or from Cantor's algorithm.

Miller functions

- Let D be a degree 0 divisor on C and n ∈ N.
 Let D_n be a reduced divisor equivalent to nD.
- A Miller function is any function $f_{n,D}$ such that

$$(f_{n,D})=nD-D_n.$$

In the elliptic curve case

$$(f_{n,P}) = n(P) - (nP) - (n-1)(0).$$

If D has order r then the Tate pairing is

$$\langle D, D' \rangle_r = f_{r,D}(D').$$

 To get a uniquely defined value must compute the reduced Tate pairing

$$\langle D,D'\rangle_r^{(q^k-1)/r}$$

Miller functions

- Let *E* be an elliptic curve and let $P \in E(\mathbb{F}_q)$.
- Let I and v be the lines in the elliptic curve addition of [n]P and [m]P.
- Then we can define

$$f_{n+m,P} = f_{n,P}f_{m,P}I/v.$$

Efficient computation of pairings

- Galbraith-Harrison-Soldera (2002)
- Barreto-Kim-Lynn-Scott (2002)
- Rubin-Silverberg (2002)
- Eisenträger-Lauter-Montgomery (2002+2003)
- Duursma-Lee (2003)
- Choie-Lee (2003)
- Scott-Barreto (2004)
- Granger-Page-Stam (2004)
- Lange-Frey (2004)
- Barreto-Galbraith-Ó hÉigeartaigh-Scott (2004/2005)
- Kang-Park (2004/2005)

The contribution of Duursma and Lee

Duursma and Lee study the curve $y^2 = x^p - x \pm 1$ over \mathbb{F}_p . They replace r (or the small multiple of r) by $q^{k/2} + 1$. This speeds up the final exponentiation. Further, they propose:

- 1. A nice choice of function for computing pD in the divisor class group.
- 2. The definition of a pairing on points (in g > 1) rather than divisors.
- 3. A shorter loop than would be expected for the given value of *r*.
- 4. Incorporating Frobenius operations directly into the formulae.

The eta pairing

- ► Joint work with Barreto, Ó hÉigeartaigh and Scott.
- This is a generalisation and improvement of the methods of Duursma and Lee.
- It applies to supersingular curves over finite fields of small characteristic.
- Some related ideas have been used by Barreto, Hess and Scott for ordinary elliptic curves over fields of large prime characteristic.

The eta pairing

- Let C be a supersingular curve over \mathbb{F}_q with embedding degree k.
- Let ψ be a distortion map from Jac(C)(F_q) into the trace zero subgroup of Jac(C)[r].
- Let D be a divisor on C defined over 𝔽_q with order dividing N. Let D' be another divisor.
- ► For suitable *T* (see next slide) we define the **eta pairing**

$$\eta_T(D,D')=f_{T,D}(\psi(D')).$$

Bilinearity of the eta pairing

- Let notation be as above.
- Let D have order dividing N and let $M = (q^k 1)/N$.

• Let
$$T = q + cN$$
.

- Let $D' = \psi(D)$. Then $TD' = \pi_q(D')$.
- Suppose $T^a + 1 = LN$ for some $a \in \mathbb{N}$ and $L \in \mathbb{Z}$.

Then

$$\left(\langle D, \psi(D') \rangle_N^M\right)^L = (\eta_T (D, D')^M)^{aT^{a-1}}$$

The genus 2 example

Consider the supersingular genus 2 curve

$$C: y^2 + y = x^5 + x^3 + d$$

over \mathbb{F}_{2^m} where gcd(m, 6) = 1 and d = 0 or 1.

- For example, take m = 103 and d = 0.
- The embedding degree is 12.
- The group order of the Jacobian is

$$N = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1.$$

There is a nice octupling formula

$$[8]D = \phi \pi_2^6(D)$$

where

$$\phi(x,y) = (x+1, y+x^2+1).$$

The genus 2 example

- It follows that $[2^{3m}]D = \phi^m(D)$.
- ► Take $T = 2^{3m} (2^m \mp 2^{(m+1)/2} + 1)N = \mp 2^{(3m+1)/2} 1.$

• Then
$$TD = \phi^m(D)$$
.

- Also $T^2 + 1 = LN$ where $L = 2^{m+1} \mp 2^{(m+3)/2} + 2$.
- Hence, the BGOS theorem implies η_T is bilinear.
- ► The eta pairing with $T = \mp 2^{(3m+1)/2} 1$ is computed using $\approx m/2$ octuplings.
- ► The final exponentiation is complicated and involves an extra ≈ m/2 squarings.
- For details please read the paper.

An efficient Boneh-Franklin scheme in this case

- The TA chooses a degenerate divisor P_{pub}, a master private key 1 < s < r, and computes the reduced divisor P = s⁻¹P_{pub}.
- User A has public key the degenerate divisor H₁(ID_A).
 So we are hashing to points rather than divisors.
- ► The private key d_A = sH₁(ID_A) is not likely to be a degenerate divisor.
- ► To encrypt to user A requires the pairing computation

 $e(P_{pub}, H_1(ID_A))^k$

which is a pairing of degenerate divisors and so is very fast.

The Boneh-Franklin scheme continued

- The decryption operation requires a pairing computation between general divisors, which is at least 3 times slower than a pairing between degenerate divisors.
- This is similar to RSA with small public exponent, where the public operations are fast, while private operations are not so fast.

Timings

(For roughly 1200-bits finite field security.)

- Eta pairing (degenerate divisors in genus 2): 1.87ms.
- BKLS (degenerate divisors in genus 2): 3.15ms.
- Eta pairing (general divisors genus 2): 6.42ms.
- Eta (elliptic curves characteristic 2): 3.50ms.
- Eta (elliptic curves characteristic 3): 5.36ms.
- Duursma-Lee (characteristic 3): 8.42ms.

