
Simplified high-speed high-distance
list decoding for alternant codes

Daniel J. Bernstein

Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. This paper presents a simplified list-decoding algorithm to
correct any number w of errors in any alternant code of any length n with
any designed distance t + 1 over any finite field Fq; in particular, in the
classical Goppa codes used in the McEliece and Niederreiter public-key
cryptosystems. The algorithm is efficient for w close to, and in many cases
slightly beyond, the Fq Johnson bound J ′ = n′−

√
n′(n′ − t− 1) where

n′ = n(q − 1)/q, assuming t + 1 ≤ n′. In the typical case that qn/t ∈
(lgn)O(1) and that the parent field has (lgn)O(1) bits, the algorithm
uses n(lgn)O(1) bit operations for w ≤ J ′ − n/(lgn)O(1); O(n4.5) bit
operations for w ≤ J ′ + o((lgn)/ lg lgn); and nO(1) bit operations for
w ≤ J ′ + O((lgn)/ lg lgn).

1 Introduction

Take any prime power q; integer m ≥ 1; integer n ≥ m with n ≤ qm; integer
t ≥ 1 with t ≤ n/m; distinct α1, . . . , αn ∈ Fqm ; and nonzero β1, . . . , βn ∈ Fqm .
Define

C =
{

(β1f(α1), . . . , βnf(αn)) :

f ∈ Fqm [x]; deg f < n− t; βif(αi) ∈ Fq for each i
}
.

This set C is an [n,≥ n−mt,≥ t+ 1] linear code over Fq. In other words: it is a
subspace of the Fq-vector space Fnq ; it has dimension at least n−mt, i.e., at least
qn−mt elements; and any two distinct elements of it have Hamming distance at
least t+ 1, i.e., differ in at least t+ 1 coordinates.

Any code C defined as above is called an alternant code. This class of
codes was introduced by Helgert in [38], independently by Chien and Choy in
[22], and independently by Delsarte in [28]. The class includes binary Reed–
Solomon codes, which had been introduced by Reed and Solomon in [47]; BCH
codes, which had been introduced by Hocquenghem in [39] and independently
by Bose and Ray-Chaudhuri in [16]; various odd-characteristic generalizations

This work was supported in part by NIST grant 60NANB10D263 and in part
by the Cisco University Research Program. Permanent ID of this document:
f529c2ab14c4ec22244b0a3f0190089b. Date: 2011.09.15.

2 Daniel J. Bernstein

introduced by Gorenstein and Zierler in [33]; and classical Goppa codes, which
had been introduced by Goppa in [31] and [32].

The w-error-correction problem for C is the problem of finding c ∈ C, given a
vector at distance w from c. For w ≤ bt/2c the vector dictates a unique possibility
for c, but this does not mean that c is easy to find. There are at least qn−mt

codewords, and the cost of enumerating them all is exponential in n, except in
the (rarely used) case that t is very close to n/m. Fortunately, early research
produced much better algorithms for the bt/2c-error-correction problem:

• Peterson in [46] introduced an algorithm using nO(1) arithmetic operations
in Fqm . Each of those operations uses a polynomial number of bit operations,
under the extremely weak assumption that qm has nO(1) bits. Applications
typically choose qm to have only O(lg n) bits.
• Berlekamp in [7] introduced an algorithm using only O(n2) operations in

Fqm . If qm has (lg n)O(1) bits then each operation in Fqm uses (lg n)O(1) bit
operations, so Berlekamp’s algorithm uses n2(lg n)O(1) bit operations.
• Justesen in [42], and independently Sarwate as reported in [48], introduced

an algorithm using only n(lg n)2+o(1) operations in Fqm . If qm has only
(lg n)O(1) bits then this algorithm uses only n(lg n)O(1) bit operations.

What about w > bt/2c? The big-field Johnson bound states that there are
only polynomially many possibilities for c if w < n −

√
n(n− t− 1), assuming

t + 1 ≤ n. Guruswami and Sudan, in a famous 1998 paper [35], introduced a
polynomial-time algorithm to compute the list of possibilities for c if w < n −√
n(n− t− 1). An intermediate range of w was already covered by an algorithm

of Sudan in [50], but [35] introduced “multiplicities” to push w much higher.
Even better, the Fq Johnson bound states that there are only polynomially

many possibilities for c if w < n′ −
√
n′(n′ − t− 1) where n′ = n(q − 1)/q,

assuming t + 1 ≤ n′ and q ∈ nO(1). In 2000 Koetter and Vardy introduced a
polynomial-time algorithm to compute the list of possibilities; see [34, Section
6.3.8]. Compared to the unique-decoding case w = bt/2c, the big-field Johnson
bound extends the distance by approximately t2/8n, and the Fq Johnson bound
further extends the distance by approximately t2/8n(q − 1); this improvement
is particularly impressive for q = 2.

Unfortunately, “polynomial time” does not mean fast. Several subsequent
papers have improved the complexity of list decoding, but each paper fails at
least one, if not all, of the following desiderata:

• Speed. For example, the recent paper [4] reports list-decoding cost “quadratic
in the blocklength n” (counting the number of operations in Fqm); but this
is asymptotically much larger than the n(lg n)2+o(1) that had been achieved
decades earlier for w = bt/2c.
• Effectiveness (how many errors are decoded). For example, the recent paper

[52] is limited to the big-field Johnson distance, significantly below the Fq
Johnson distance if q is small.
• Simplicity. For example, [3]—one of the few papers reporting essentially-

linear-time list decoding—is sufficiently general to handle arbitrary weights,

Simplified high-speed high-distance list decoding for alternant codes 3

such as the optimized Koetter–Vardy weights; but the user is required to
trace the desired weights (after scaling and rounding to integers) through a
thicket of degree computations.

It seems that every implementation of code-based cryptography avoids list de-
coding, even though [11, Section 7] pointed out years ago that list decoding im-
proves the tradeoff between key size and security level against all known attacks.
One can blame the non-use of list decoding on the lack of simple high-speed high-
distance decoding algorithms. Some list-decoding papers try to compensate by
adding generality, for example studying higher-genus algebraic-geometry codes,
but if list decoding is not usable even for the most basic constructions of alter-
nant codes then obviously it will also not be usable for higher-genus codes!

This paper presents a list-decoding algorithm that is simultaneously (1) fast,
(2) effective, and (3) simple. The algorithm continues to work for arbitrarily
large values of w, although its speed degrades as w approaches and passes the
Fq Johnson bound. Specifically, in the typical case that n/t, q, and lg qm are all
in (lg n)O(1), the algorithm uses

• n(lg n)O(1) bit operations for w ≤ n′ −
√
n′(n′ − t− 1)− n/(lg n)O(1);

• O(n4.5) bit operations for w ≤ n′ −
√
n′(n′ − t− 1) + o((lg n)/ lg lg n); and

• nO(1) bit operations for w ≤ n′ −
√
n′(n′ − t− 1) +O((lg n)/ lg lg n).

Note that the n(lg n)O(1) bound does not imply competitive speed with other
n(lg n)O(1) algorithms; it merely implies that the speed ratio is bounded by
(lg n)O(1). However, the O(n4.5) bound allows easy comparisons to, e.g., the
n7+o(1) achieved in [4, Corollary 5.8] for w slightly below n′ −

√
n′(n′ − t− 1),

or the n6+o(1) achieved in [6] for w slightly below n−
√
n(n− t− 1).

The word “simplified” in the title might suggest that I obtained this algo-
rithm by starting from an existing acceleration of the Koetter–Vardy algorithm
and simplifying it. I actually obtained the algorithm in a completely different
way. I started with a very simple algorithm by Howgrave-Graham that was pub-
lished in 1997 and that was subsequently understood to have the same decoding
capability as the Guruswami–Sudan algorithm. I then tweaked the Howgrave-
Graham algorithm to match the Koetter–Vardy results. The Howgrave-Graham
algorithm does not seem to be widely known among coding theorists, includ-
ing those working on code-based cryptography; see Section 3 and [9] for further
discussion of the history.

2 Review of fast arithmetic

This section reviews several standard subroutines for fast multiplication, fast
lattice-basis reduction, etc.

All of the algorithms here are Fqm-algebraic algorithms, i.e., sequences of
additions, subtractions, multiplications, divisions, and comparisons of elements
of Fqm . For a formal definition of this model of computation see, e.g., [18]. Cost

4 Daniel J. Bernstein

here refers to total algebraic complexity over Fqm , i.e., the number of arithmetic
operations performed in Fqm .

The weak assumption lg qm ∈ (lg n)O(1) implies that each of these operations
in Fqm can be carried out using (lg n)O(1) bit operations. The weaker assumption
lg qm ∈ nO(1) implies that each of these operations in Fqm can be carried out
using nO(1) bit operations.

Fast multiplication. Multiplying two d-coefficient polynomials in Fqm [x]—
i.e., two polynomials of degree below d—costs d(lg d)1+o(1). See, e.g., my online
survey paper [8, Section 4] for algorithmic details and credits.

Fast multiplication of many inputs. Computing a product of d linear poly-
nomials costs d(lg d)2+o(1). See, e.g., [8, Section 12].

Fast evaluation. Computing Y (x1), Y (x2), . . . , Y (xd), given x1, . . . , xd ∈ Fqm
and a d-coefficient polynomial Y ∈ Fqm [x], costs d(lg d)2+o(1). See, e.g., [8,
Section 18].

Fast interpolation. For any distinct x1, . . . , xd ∈ Fqm and any y1, . . . , yd ∈ Fqm
there is a unique polynomial Y ∈ Fqm [x] of degree below d having Y (x1) = y1,
Y (x2) = y2, and so on through Y (xd) = yd. Computing this polynomial Y from
x1, . . . , xd, y1, . . . , yd costs d(lg d)2+o(1). See, e.g., [8, Section 23].

Fast lattice-basis reduction. If an `×` matrix over Fqm [x] has nonzero deter-
minant D then there is a nonzero linear combination Q of the matrix columns
such that degQ ≤ (degD)/`. Here degQ means the maximum degree of the
entries of Q.

If each of the matrix entries is a d-coefficient polynomial then computing
such a Q costs `Ωd(lg `d)O(1) by [30, Theorem 3.8]. Here Ω is any positive real
number such that ` × ` matrix multiplication costs O(`Ω). One can trivially
take Ω = 3, but state-of-the-art matrix-multiplication techniques have pushed
Ω below 2.5.

There is an error in the proof of [30, Theorem 3.8]: the authors assume,
without justification, that they can quickly find x0 ∈ Fqm such that D(x0) 6= 0.
Unfortunately, it is entirely possible that every x0 ∈ Fqm will have D(x0) = 0;
in such cases, the algorithm stated in [30, Section 3] will fail. The simplest
workaround is to replace Fqm by an extension having significantly more than
degD elements; extension degree (lg `d)O(1) always suffices, leaving the cost
bound `Ωd(lg `d)O(1) unaffected. (Extension degree 2 suffices for the matrix
shape used later in this paper, since D visibly splits into linear factors in Fqm [x].)

A closer look at the algorithm in [30] shows that the cost is d(lg d)2+o(1) if `
and the required extension degree are bounded by (lg d)o(1). The same complexity
also appeared later in [3]. As ` increases, the algorithm in [3] scales as `3+o(1)

rather than `Ω+o(1).

Fast root-finding. The traditional factorization method for a polynomial in
Q[y], introduced by Zassenhaus in [55] four decades ago, begins with a factor-
ization of the polynomial modulo a small prime number p, and then uses Newton
iteration (“Hensel’s lemma”) to lift the factorization to factorizations modulo p2,

Simplified high-speed high-distance list decoding for alternant codes 5

p4, etc. A few Newton steps produce enough p-adic precision to determine the
factorization in Q[y]; see, e.g., [29, Theorem 15.20]. This procedure relies on a
preliminary “squarefree factorization” of the polynomial, but that factorization
has essentially linear cost; see [29, Theorem 14.23].

In the case of linear factors (i.e., roots) the entire factorization procedure uses
`2+o(1)d(lg d)2+o(1) bit operations for `-coefficient polynomials with d-bit integer
coefficients; see [29, Theorem 15.21]. There has been a tremendous amount of
research on algorithms for the first step, factoring in (Z/p)[y], but rather naive
algorithms are adequate if ` is much smaller than d and if one allows random-
ization. There has also been a tremendous amount of research on algorithms to
handle higher-degree factors, but for this paper linear factors are adequate.

One can obtain essentially the same speed by computing approximate roots in
R with an analogous Newton iteration, but working with the p-adic numbers Qp

is simpler because it avoids roundoff error. There are still a few technical details
that require attention: one must avoid primes p that divide denominators of
the original coefficients; one must also avoid primes p that create new squared
factors. There are not many bad choices of p; see [29, Lemma 15.1].

Zassenhaus’s method is not limited to the rational number field Q. Replacing
Q by the rational function field Fqm(x), and replacing the small prime p of Z
by a small irreducible element p of Fqm [x], produces a factorization method
for Fqm(x)[y]; see, e.g., [29, Theorem 15.23]. Squarefree factorization becomes
slightly more complicated, as discussed in [29, page 447], but is still fast. The
cost for the initial factorization modulo p is `2+o(1)(lg qm)1+o(1) by [29, Theorem
14.14]. There are subquadratic factorization algorithms in the literature, but this
refinement is not necessary for this paper.

The root-finding conclusion that matters for this paper—the polynomial ana-
logue of [29, Theorem 15.21]—is the following. There is a standard algorithm
that, given a nonzero polynomial Q ∈ Fqm(x)[y], finds all y-roots of Q. If Q is an
`-coefficient polynomial (in y), each coefficient in turn being a d-coefficient poly-
nomial (in x), then the entire procedure costs `2+o(1)((lg qm)1+o(1)+d(lg d)2+o(1)).
Note that this cost bound is influenced by lg qm, the number of bits of the parent
field Fqm ; one needs to put limits on qm not merely to control the translation
from cost into bit operations, but also to control the cost of factorization.

3 Correcting nearly n −
√
n(n − t − 1) errors

This section states a simple high-speed list-decoding algorithm that corrects
errors up to the big-field Johnson bound. The algorithm in the next section is
more general and more powerful, correcting more errors; but the algorithm in
this section is slightly simpler, and the reader is encouraged to read it first.

Parameters. This algorithm has three parameters: a positive integer w ≤ n,
the number of errors to be corrected; an integer k ≥ 0; and an integer ` ≥ k.
The algorithm assumes that t+ 1 ≤ n and that these parameters satisfy

n
k(k + 1)

2
+ (n− t− 1)

`(`− 1)

2
< `k(n− w),

6 Daniel J. Bernstein

i.e., (1− (t+ 1)/n)(1− 1/`) < (1− w/n)2 − (1− w/n− k/`)2 − k/`2.
One can take ` in O(n2) for any w smaller than the big-field Johnson bound.

My main interest is in the case ` ∈ (lg n)O(1), achievable when there is a notice-
able gap between w and the big-field Johnson bound. Further notes on param-
eter selection appear below. The total cost of the algorithm will turn out to be
bounded by

• n(lg n)O(1) if ` ∈ (lg n)O(1) and lg qm ∈ (lg n)O(1); and by
• nΩ+2+o(1) if ` ∈ O(n) and lg qm ∈ O(nΩ); and by
• n2Ω+3+o(1) if ` ∈ O(n2) and lg qm ∈ O(n2Ω−1); and by
• nO(1) if ` ∈ O(n2) and lg qm ∈ nO(1).

For example, Step 2 below costs `3n(lg `n)1+o(1), which is visibly within each of
these bounds. I will state the cost of each step as a function of `, n, and (when
relevant) qm.

Input and output. The algorithm input is a vector v ∈ Fnq . The algorithm
output is the set of c ∈ C of Hamming distance at most w from v.

Step 1: initial interpolation. Compute the polynomial A = (x − α1)(x −
α2) · · · (x − αn) ∈ Fqm [x]. Also compute the unique polynomial V ∈ Fqm [x]
with deg V < n satisfying V (α1) = v1/β1, V (α2) = v2/β2, and so on through
V (αn) = vn/βn. This costs n(lg n)2+o(1).

Step 2: lattice-basis construction. Define X = xn−t−1 and F = Xy − V ∈
Fqm [x, y]. Compute the ` polynomials

M0 = Ak;

M1 = Ak−1F = Ak−1Xy −Ak−1V ;

M2 = Ak−2F 2 = Ak−2X2y2 − 2Ak−2XV y +Ak−2V 2;

...

Mk−1 = AF k−1 = AXk−1yk−1 − · · · ;

Mk = F k = Xkyk − · · · ;

Mk+1 = F k+1 = Xk+1yk+1 − · · · ;

...

M`−1 = F `−1 = X`−1y`−1 − · · ·

in Fqm [x, y]. If ` = k then M`−1 is defined as AF k−1, not F `−1. (One can save
time by replacing F k, F k+1, . . . , F `−1 with F k, XyF k, . . . , (Xy)`−1−kF k, but the
speedup is not visible at the level of detail of the analysis below.)

The coefficients of powers of y here form an ` × ` triangular matrix. There
are several straightforward ways to compute all of the matrix entries with a total
of O(`2) multiplications in Fqm [x], each multiplication involving polynomials of
degree O(`n). The total cost is just `3n(lg `n)1+o(1).

Simplified high-speed high-distance list decoding for alternant codes 7

Step 3: lattice-basis reduction. The determinant of the aforementioned `× `
matrix of coefficients of M0, . . . ,M`−1 is the product of the diagonal entries
of the matrix (since the matrix is triangular), i.e., the product of the leading
coefficients of M0, . . . ,M`−1, namely

Ak ·Ak−1X ·Ak−2X2 · · ·Xk ·Xk+1 · · ·X`−1 = Ak(k+1)/2X`(`−1)/2,

of degree nk(k+ 1)/2 + (n− t− 1)`(`− 1)/2. Inside the lattice Fqm [x]M0 + · · ·+
Fqm [x]M`−1 ⊆ Fqm [x, y] find a nonzero polynomial Q having x-degree at most
(nk(k + 1)/2 + (n− t− 1)`(`− 1)/2)/`, and therefore x-degree below k(n−w).
This costs `Ωn`(lg `2n)O(1) = `Ω+1n(lg `n)O(1).

Step 4: factorization. Compute all f ∈ Fqm [x] such that Q(x, f/X) = 0; i.e.,
compute all factors of Q having the form y − f/X with f ∈ Fqm [x]. Note that
there are at most ` − 1 such factors, since Q has y-degree at most ` − 1. This
costs `2+o(1)((lg qm)1+o(1) + n`(lg `n)2+o(1)).

For each polynomial f ∈ Fqm [x] such that Q(x, f/X) = 0 and deg f < n− t:
Compute c = (β1f(α1), . . . , βnf(αn)) ∈ Fnqm . Output c if c ∈ Fnq and |c−v| ≤ w,

where |c− v| means the Hamming weight of c− v. This costs n(lg n)2+o(1).

Why the algorithm works. Each output c from the algorithm is checked, in
Step 4, to be an element of C with |c− v| ≤ w.

Conversely, consider any c ∈ C with |c − v| ≤ w. There is a polynomial
f ∈ Fqm [x] with deg f < n − t such that c = (β1f(α1), . . . , βnf(αn)). The goal
is to show that the algorithm outputs c; equivalently, that f is found in Step 4
of the algorithm.

The hypothesis |c− v| ≤ w means that there are at least n− w indices i for
which ci = vi; i.e., for which βif(αi) = βiV (αi); i.e., for which αi is a root of
f − V . In other words, gcd{A, f − V } has degree at least n− w.

Consider the map y 7→ f/X from Fqm [x,Xy] to Fqm [x]. The image of F =
Xy−V is f−V , so the images of M0,M1, . . . ,M`−1 are Ak, Ak−1(f−V), . . . , (f−
V)k, . . . , (f−V)`. Each of these polynomials is divisible by gcd{A, f − V }k. The

image of Q, namely Q(x, f/X), is therefore also divisible by gcd{A, f − V }k.
Write Q as Q0 +Q1y+ · · ·+Q`−1y

`−1. Then Q(x, f/X) = Q0 +Q1(f/X) +
· · ·+Q`−1(f/X)`−1. Each Qi has degree below k(n−w), and f/X has degree at
most 0, so Q(x, f/X) has degree below k(n− w); but Q(x, f/X) is divisible by

gcd{A, f − V }k, which has degree at least k(n−w). Consequently Q(x, f/X) = 0
as claimed.

Notes on parameter selection. Suitable k, ` exist with ` ∈ O(nt) whenever
w is smaller than the big-field Johnson bound. For example, the integers k =
(n − w)(t + 1) ≥ 0 and ` = n(t + 1) > k have (1 − (t + 1)/n)(1 − 1/`) =
1− (t+ 1)/n− 1/`+ 1/n2 and (1−w/n− k/`)2 + k/`2 = (1−w/n)/` < 1/`; so
w, k, ` are in the parameter space if (1 − w/n)2 ≥ 1 − (t + 1)/n + 1/n2, i.e., if
(n−w)2 ≥ n(n− t− 1) + 1. Both (n−w)2 and n(n− t− 1) are integers, so this
condition is equivalent to (n− w)2 > n(n− t− 1), i.e., w < n−

√
n(n− t− 1).

This choice of ` is simpler and smaller than the choice made in [36, Lemma
7 and Proposition 9]. Here is an absurdly large numerical example to illustrate

8 Daniel J. Bernstein

the worst-case asymptotics: for n = 1000007 and t = 67774 and w = 34482, one
can take k = 65438456875 and ` = 67775474425, while [36, Lemma 7] chooses
k = 932238525625.

My main interest is in much smaller values of `. Choosing k as b(1− w/n)`c
guarantees 0 ≤ k < ` since w > 0, and guarantees (1 − w/n − k/`)2 + k/`2 <
1/`2 + 1/`, so w, k, ` are in the parameter space if (1 − w/n)2 ≥ (1 − (t +
1)/n)(1− 1/`) + 1/`2 + 1/`; i.e., (1−w/n)2 ≥ 1− (t+ 1)/n+ (t+ 1)/n`+ 1/`2;
i.e., (1−w/n)2− (1−J/n)2 ≥ (t+ 1)/n`+ 1/`2 where J is the big-field Johnson
bound; i.e., J − w ≥ ((t + 1)/` + n/`2)/(2 − w/n − J/n). One can achieve this
with ` ∈ (lg n)O(1) if J − w is at least n/(lg n)O(1).

There are limits to how far this idea can be pushed. For example, it is tempt-
ing to take k, ` as constants, so that cost factors such as `2 can be replaced by
O(1). The same replacement was used to justify, e.g., the statement “quadratic in
the blocklength n” in [4, Abstract]. Apparently it is not instantly obvious that—
at least for small q, such as the case q = 2 highlighted in [4]—this replacement
is fundamentally flawed!

The difficulty is the following. If q is constant, or more generally no(1), then
t ∈ o(n), so J − t/2 ∈ o(t). Choosing k, ` ∈ O(1) then forces w to be smaller
than bt/2c for all sufficiently large n: in other words, the algorithm cannot correct
more errors than Berlekamp’s algorithm once n is sufficiently large. For the same
reason, the “quadratic” claim in [4] is content-free: it might be true that taking
constants k, ` limits the algorithm in [4] to cost O(n2), but then the algorithm
cannot correct more errors than a trivial combination of brute-force list decoding
for small n and Berlekamp’s algorithm for large n, which also costs O(n2).

Of course, this criticism does not apply to bounds that treat ε, k, ` as vari-
ables, such as the bound O(n2/ε5) in [4, Corollary 5.7]. Furthermore, the “ratio-
nal” algorithms of [54] and [10] allow a better tradeoff between k, `, w and can
meaningfully take k, ` ∈ O(1).

History. H̊astad showed in 1988 that one could find all small roots of a poly-
nomial modulo a large integer N by applying the famous LLL lattice-basis re-
duction algorithm. The same result was found independently by Vallée, Girault,
and Toffin in 1989. See [37] and [53].

Coppersmith, in a famous 1996 paper, incorporated multiplicities into the
Vallée–Girault–Toffin algorithm, drastically increasing the range of roots that
could be found. Coppersmith also showed that similar lattices could be used to
find not merely polynomial values that are multiples of N but also polynomial
values that are divisors of N . See [24] and [25].

The next year Howgrave-Graham in [40] introduced a critical simplification
in Coppersmith’s algorithm. Coppersmith had identified the relevant lattice by
linear constraints; Howgrave-Graham directly wrote down generators for the
lattice. For example, for the problem of finding a divisor of N within X of
V , Howgrave-Graham chose parameters k, `, wrote down the lattice generated
by Nk, Nk−1(Xy+ V), . . . , (Xy+ V)k, . . . , (Xy+ V)k(Xy)`−k−1, found a short
vector Q in the lattice, and found small roots of Q. See [41, page 101] (with
“p0” for V , “u” for k, “h” for `, “b1” for Q, “N” for N , and “X” for X).

Simplified high-speed high-distance list decoding for alternant codes 9

The same algorithm finds any integer within X of V that has a sufficiently
large common divisor with N . One does not need the integer to be the divisor.
This generalized perspective did not appear in [24], [25], [40], or [41], but did
appear in papers a few years later, as discussed below.

For comparison, the problem of decoding Reed–Solomon codes is the problem
of finding a polynomial f no larger than X = xn−t−1 sharing many values
with a received polynomial V (interpolated from the received word); i.e., the
problem of finding a polynomial (namely V − f) that is within X of V and
that has a large common divisor with (x− α1) · · · (x− αn). Except for a trivial
replacement of integers with polynomials, this problem is a special case of the
problem stated in the previous paragraph, and the decoding algorithm displayed
in this section—correcting approximately n−

√
n(n− t− 1) errors—is a special

case of the Howgrave-Graham algorithm.

The first announcement of this decoding effectiveness was by Guruswami and
Sudan in [35] in 1998. With hindsight it is easy to see that [35] constructs the
same lattice as Howgrave-Graham, finds the same short vector Q in the lattice,
and finds the same roots of Q. Like Coppersmith, and unlike Howgrave-Graham,
[35] identifies the lattice through linear constraints. Unlike Coppersmith, [35]
states these constraints locally: the lattice is exactly the set of polynomials of
degree below ` that vanish to multiplicity at least k at various points. This local
perspective allowed Guruswami and Sudan to generalize, varying multiplicities
separately at each point; but this generalization is not necessary for any of the
decoding problems that I am considering, and it makes the algorithm very slow.
[35] uses linear algebra to solve a large two-dimensional interpolation problem,
finding a short vector Q in the specified lattice; it is much more efficient to first
solve a simpler one-dimensional interpolation problem (computing V), and then
write down basis vectors for the same lattice (namely Ak, Ak−1F , etc.).

Boneh in [14], motivated by the Guruswami–Sudan results, stated a CRT list-
decoding algorithm with quantitatively analogous error-correcting capabilities.
Boneh also stated an algorithm for the more general problem of finding any
polynomial value having a large gcd with N ; this obviously includes the multiple-
of-N problems and the divisor-of-N problems. The algorithm in [14] constructs
the same lattice as the Howgrave-Graham algorithm (in the same way), finds
the same Q, and finds the same roots; the only difference is that the Howgrave-
Graham algorithm throws away more of the outputs. The very large overlap
between the algorithms was not pointed out in [14].

In 2003 I posted the first draft of a survey paper [9] giving a unified algorithm
statement for univariate polynomials over Q. I showed that a unified parameter
optimization produced, as special cases, the quantitative results that had been
obtained by Coppersmith, Howgrave-Graham, Boneh, et al. for various applica-
tions. I took a slightly broader perspective, allowing a large gcd for polynomial
values on rational inputs, although at the time I did not see any way to use this
extra generality; subsequent applications include [54], [10], and [20].

I discussed CRT decoding in [9, Section 7], and said that replacing Q with a
rational function field in the same algorithm would decode Reed–Solomon codes

10 Daniel J. Bernstein

as effectively as the Guruswami–Sudan algorithm. I had not actually read the
Guruswami–Sudan paper at that point, and I did not realize that Guruswami and
Sudan were missing the Howgrave-Graham simplification. I also had no idea that
Koetter and Vardy had quantitatively improved the Guruswami–Sudan results,
moving from the big-field Johnson bound to the Fq Johnson bound; I learned this
much later when Augot kindly sent me a copy of [4]. I do not see any way to use
the algorithm stated in [9] to obtain the Koetter–Vardy results: an extra tweak
is required, and is the main content of Section 4 of this paper. The advantages
of this tweaked algorithm over the Koetter–Vardy algorithm are analogous to
the advantages of the Howgrave-Graham algorithm over the Guruswami–Sudan
algorithm: most importantly, the local specification of the lattice is eliminated
in favor of directly writing down lattice generators starting from V .

Cohn and Heninger in [23] presented an explicit function-field version of
the Howgrave-Graham algorithm, including a generalization from the rational
function field Fqm(x) to arbitrary function fields; this generalization includes list
decoding for algebraic-geometry codes. In the case of Reed–Solomon codes, [23,
Section 6] reaches the big-field Johnson bound with cost only n2Ω+3+o(1). Cost
bounds for other choices of ` can also be extracted straightforwardly from the
analysis in [23] and match the cost bounds shown in this section. However, this
generalization still does not cover the Koetter–Vardy results.

4 Correcting nearly n′ −
√
n′(n′ − t − 1) errors

This section states a simple high-speed list-decoding algorithm that corrects
errors up to the Fq Johnson bound.

Parameters. The algorithm has four parameters: a positive integer w ≤ n, the
number of errors to be corrected; an integer j ≥ 0; an integer k ≥ j; and an
integer ` ≥ (q − 1)j + k. The algorithm assumes that t + 1 ≤ n and that these
parameters satisfy

n
k(k + 1)

2
+ n(q − 1)

j(j + 1)

2
+ (n− t− 1)

`(`− 1)

2
< `(k(n− w) + jw),

i.e., (1− (t+ 1)/n)(1− 1/`) < (1−w/n)2 + (w/n)2/(q− 1)− (1−w/n− k/`)2−
(w/n− (q − 1)j/`)2/(q − 1)− k/`2 − (q − 1)j/`2.

Suitable j, k, ` exist whenever w is smaller than the Fq Johnson bound, as
discussed below. The special case j = 0 of this algorithm (with the computations
of B and E straightforwardly eliminated) is exactly the algorithm of the previous
section, and is usable only when w is smaller than the big-field Johnson bound.

The asymptotic cost bounds for this algorithm, as functions of n, `, qm, are
exactly as in the previous section: for example, the cost is bounded by n(lg n)O(1)

if ` ∈ (lg n)O(1) and lg qm ∈ (lg n)O(1), and is bounded by nΩ+2+o(1) if ` ∈ O(n)
and lg qm ∈ O(nΩ).

Input and output. The algorithm input is a vector v ∈ Fnq . The algorithm
output is the set of c ∈ C of Hamming distance at most w from v.

Simplified high-speed high-distance list decoding for alternant codes 11

Step 1: initial interpolation. Compute the polynomial A = (x − α1)(x −
α2) · · · (x − αn) ∈ Fqm [x]; the unique polynomial V ∈ Fqm [x] with deg V < n
satisfying V (α1) = v1/β1, V (α2) = v2/β2, and so on through V (αn) = vn/βn;
and the unique polynomial B ∈ Fqm [x] with degB < n satisfying B(α1) =

1/βq−11 , B(α2) = 1/βq−12 , and so on through B(αn) = 1/βq−1n .

Step 2: lattice-basis construction. Define X = xn−t−1; F = Xy − V ∈
Fqm [x, y]; and E = F q − FB. Compute the ` polynomials M0,M1, . . . ,M`−1 ∈
Fqm [x, y] shown in Figure 4.1. Observe that each of M0,M1, . . . ,M`−1 includes
A, E, and F to a total power of at least k; that each of M0,M1, . . . ,M`−1
includes A and E to a total power of at least j; and that Mi has y-degree i.

The simplest strategy is to begin by computing E,E2, . . . , Ej ; A,A2, . . . , Ak;
and F, F 2, . . . , Fmax{k−j+q−1,`−qj−1}. Each Mi is then a product of three known
polynomials. Overall this procedure uses O(`) polynomial products in Fqm [x, y],
each of product degree ≤ ` − 1 in y and O(`n) in x. Kronecker substitution
x 7→ y` reduces these products to O(`2n)-coefficient products in Fqm [y], each of
which costs `2n(lg `2n)1+o(1), for a total cost of `3n(lg `n)1+o(1).

Step 3: lattice-basis reduction. The matrix of coefficients of M0, . . . ,M`−1
has determinant

A(k−j)(k+j+1)/2+qj(j+1)/2X`(`−1)/2 = Ak(k+1)/2+(q−1)j(j+1)/2X`(`−1)/2

of degree nk(k+1)/2+n(q−1)j(j+1)/2+(n−t−1)`(`−1)/2. Inside the lattice
Fqm [x]M0 + · · ·+ Fqm [x]M`−1 ⊆ Fqm [x, y] find a nonzero polynomial Q having
x-degree at most (nk(k + 1)/2 + n(q − 1)j(j + 1)/2 + (n − t − 1)`(` − 1)/2)/`,
and therefore x-degree below k(n− w) + jw.

Step 4: factorization. Compute all f ∈ Fqm [x] such that Q(x, f/X) = 0; i.e.,
compute all factors of Q having the form y − f/X with f ∈ Fqm [x]. For each
polynomial f ∈ Fqm [x] such that Q(x, f/X) = 0 and deg f < n − t: Compute
c = (β1f(α1), . . . , βnf(αn)) ∈ Fnqm . Output c if c ∈ Fnq and |c− v| ≤ w.

Why the algorithm works. Consider any c ∈ C with |c− v| ≤ w. There is a
polynomial f ∈ Fqm [x] with deg f < n−t such that c = (β1f(α1), . . . , βnf(αn)).
The goal, as in the previous section, is to show that the algorithm finds f in
Step 4.

As before consider the map y 7→ f/X from Fqm [x,Xy] to Fqm [x]. This map
takes A,F,E to A, f − V, (f − V)q − (f − V)B respectively.

There are exactly n−|c−v| indices i for which ci = vi, i.e., for which f(αi) =
V (αi). Each of these indices has x−αi dividing f−V , A, and (f−V)q−(f−V)B,
so (x− αi)k divides the images of M0,M1, . . . ,M`−1.

There are also exactly |c − v| indices i for which ci 6= vi, i.e., for which
βif(αi) 6= βiV (αi). Both βif(αi) and βiV (αi) are in Fq, so the difference

βif(αi)− βiV (αi) is a nonzero element of Fq; i.e., βq−1i (f(αi)− V (αi))
q−1 = 1;

i.e., (f(αi)− V (αi))
q−1 = B(αi). Each of these indices has x−αi dividing both

(f−V)q−(f−V)B and A, so (x−αi)j divides the images of M0,M1, . . . ,M`−1.
The image of Q is thus divisible by

∏
i:ci=vi

(x−αi)k ·
∏
i:ci 6=vi(x−αi)

j , which
has degree k(n − |c − v|) + j|c − v| = kn − (k − j)|c − v| ≥ kn − (k − j)w =

12 Daniel J. Bernstein

M0 = AkF 0; (start of initial batch)

M1 = Ak−1F 1;

...

Mk−j−1 = Aj+1F k−j−1;

Mk−j = AjF k−j ; (start of intermediate batch 0)

Mk−j+1 = AjF k−j+1;

...

Mk−j+q−1 = AjF k−j+q−1;

Mk−j+q = Aj−1EF k−j ; (start of intermediate batch 1)

Mk−j+q+1 = Aj−1EF k−j+1;

...

Mk−j+2q−1 = Aj−1EF k−j+q−1;

...
...

Mk−j+(j−1)q = AEj−1F k−j ; (start of intermediate batch j − 1)

Mk−j+(j−1)q+1 = AEj−1F k−j+1;

...

Mk−j+jq−1 = AEj−1F k−j+q−1;

Mk−j+jq = EjF k−j ; (start of final batch)

Mk−j+jq+1 = EjF k−j+1;

...

M`−1 = EjF `−qj−1

Fig. 4.1. Polynomials constructed in the new algorithm. There is an initial batch of
length k − j; j intermediate batches, each of length q; and a final batch of length
`−(q−1)j−k. If ` = (q−1)j+k and j > 0 then the last polynomial is AEj−1F k−j+q−1;
if ` = (q − 1)j + k and j = 0 then the last polynomial is AF k−1.

k(n− w) + jw; but the image of Q has degree below k(n− w) + jw, so it must
be 0 as desired.

Notes on parameter selection. Assume that t+1 ≤ n′ where n′ = n(q−1)/q.
As before write J ′ = n′ −

√
n′(n′ − t− 1).

Suitable j, k, ` exist with ` ∈ O(qnt) for each positive integer w < J ′. For
example, the integers j = 2w(t + 1), k = 2(q − 1)(n − w)(t + 1), and ` =
2(q−1)n(t+ 1) have (1− (t+ 1)/n)(1−1/`) = 1− (t+ 1)/n−1/`+ 1/2(q−1)n2

Simplified high-speed high-distance list decoding for alternant codes 13

and (1−w/n− k/`)2 + (w/n− (q − 1)j/`)2/(q − 1) + k/`2 + (q − 1)j/`2 = 1/`;
so w, j, k, ` are in the parameter space if 1 − (t + 1)/n + 1/2(q − 1)n2 < (1 −
w/n)2 + (w/n)2/(q − 1), i.e., (q − 1)n(n− t− 1) + 1/2 < (q − 1)(n− w)2 + w2.
Both (q− 1)n(n− t− 1) and (q− 1)(n−w)2 +w2 are integers, so this inequality
holds if and only if (q−1)n(n− t−1) < (q−1)(n−w)2 +w2, which is equivalent
to (n′ − w)2 > n′(n′ − t− 1), i.e., w < n′ −

√
n′(n′ − t− 1).

These parameters have ` ∈ O(n2) if q ∈ O(1); and ` ≤ n2(lg n)O(1) if q ∈
(lg n)O(1); and ` ∈ nO(1) if q ∈ nO(1). If q grows superpolynomially with n then
this algorithm obviously cannot run in polynomial time, except in the special
case j = 0 covered in the previous section. Such a large q would also force the
Fq Johnson bound to be extremely close to the big-field Johnson bound; if there
is an integer w between the two bounds then correcting w errors in polynomial
time is, as far as I know, an open problem.

My main interest is in small q and, as in the previous section, small `. It seems
reasonable, although not always exactly optimal, to choose k as b(1− w/n)`c
and j as b(w/n)`/(q − 1)c. Then 0 ≤ j ≤ k since (w/n)/(q − 1) ≤ 1−w/n, and
` ≥ (q − 1)j + k. These choices also guarantee that (1 − w/n − k/`)2 < 1/`2,
that k/`2 ≤ (1−w/n)/`, that (w/n− (q−1)j/`)2/(q−1) < (q−1)/`2, and that
(q−1)j/`2 ≤ (w/n)/`, so w, j, k, ` are in the parameter space if (1−(t+1)/n)(1−
1/`) ≤ (1−w/n)2 + (w/n)2/(q−1)−1/`− q/`2; i.e., 1− (t+ 1)/n+ (t+ 1)/n` ≤
(1 − w/n)2 + (w/n)2/(q − 1) − q/`2; i.e., (1 − J ′/n)2 + (J ′/n)2/(q − 1) + (t +
1)/n`+ q/`2 ≤ (1− w/n)2 + (w/n)2/(q − 1); i.e.,

J ′ − w ≥ (t+ 1)/`+ qn/`2

2− (w + J ′)/n′
.

Assume from now on that q ∈ (lg n)O(1). Then t ≤ n/m ≤ (n lg q)/ lg n ∈
O((n lg lg n)/ lg n), so w and J ′ are both bounded by O((n lg lg n)/ lg n), so 2−
(w + J ′)/n′ is bounded below by 1 for all sufficiently large n. If the gap J ′ − w
is at least 1 then one can push (t+ 1)/`+ qn/`2 below J ′−w by taking ` larger
than both 2(t+ 1) and

√
2qn; this is achievable with ` ∈ O(n). If the gap J ′−w

is at least n/(lg n)O(1) then one can take ` ∈ (lg n)O(1).

5 Correcting more errors

One can trivially build a w-error-correcting algorithm from a (w − 1)-error-
correcting algorithm as follows: guess an error position (probability w/n); guess
the error value (probability 1/(q−1)); correct the error; apply the (w−1)-error-
correcting algorithm. If the guess does not find the desired c ∈ C, try again.

This procedure takes (q − 1)n/w repetitions on average. With more repeti-
tions one can confidently list all c ∈ C at distance w; but I will focus on the
effort required to find a particular c ∈ C at distance w. Note that in the pre-
vious sections there was no reason to distinguish between these problems: the
algorithms in the previous sections find all answers at almost exactly the same
cost as finding the first answer.

14 Daniel J. Bernstein

A consequence of this reduction is that, for small q, there is no point in
pushing the algorithms of the previous sections very close to their limits: instead
of correcting J ′ − 0.001 errors one can much more cheaply correct J ′ − 1.001
errors and guess the remaining error.

More generally, one can build a w-error-correcting algorithm as follows: guess
e distinct error positions (probability w(w − 1) · · · (w − e+ 1)/n(n− 1) · · · (n−
e+ 1)); guess the error values (probability 1/(q − 1)e); correct the errors; apply
a (w − e)-error-correcting algorithm. This takes (q − 1)en(n − 1) · · · (n − e +
1)/w(w − 1) · · · (w − e+ 1) repetitions on average.

Assume that q ∈ (lg n)O(1), that n/t ∈ (lg n)O(1), and that w−e ≥ bt/2c. The
average number of repetitions is then bounded by (2(q − 1)n/t)e ∈ (lg n)O(e);
i.e., by nO(1) if e ∈ O((lg n)/ lg lg n), and by no(1) if e ∈ o((lg n)/ lg lg n). In
particular, this algorithm corrects J ′+o((lg n)/ lg lg n) errors using nΩ+2+o(1) bit
operations, and corrects J ′ +O((lg n)/ lg lg n) errors using nO(1) bit operations.

6 Application to classical Goppa codes

The code C is called a classical Goppa code if there is a monic degree-t
polynomial g ∈ Fqm [x] such that each βi can be expressed as g(αi)/A

′(αi). Here
A =

∏
i(x − αi) ∈ Fqm [x] as in Sections 3 and 4. In this case C is denoted

Γq(α1, . . . , αn, g).
Sugiyama, Kasahara, Hirasawa, and Namekawa showed in [51] that

Γq(α1, . . . , αn,
∏
i

geii) = Γq(α1, . . . , αn,
∏
i

g
ei+[ei mod q=q−1]
i)

when the gi’s are distinct monic irreducible polynomials. Here [ei mod q = q −
1] means 1 if ei ∈ {q − 1, 2q − 1, . . .}, otherwise 0. For example, Γ2(. . . , g) =
Γ2(. . . , g2) if g is squarefree; this had been proven earlier by Goppa in [31] using
a different technique.

Write g =
∏
i g
ei
i and g =

∏
i g
ei+[ei mod q=q−1]
i . The Sugiyama–Kasahara–

Hirasawa–Namekawa identity Γq(. . . , g) = Γq(. . . , g) implies that one can correct
w errors in Γq(. . . , g) by using any w-error-correcting algorithm for Γq(. . . , g).
If some ei mod q = q − 1 then g has larger degree than g, making all of these
error-correcting algorithms more effective for g than for g.

In particular, combining the SKHN identity with Berlekamp’s algorithm cor-
rects bqt/2c errors in “wild Goppa codes” Γq(. . . , g

q−1) with squarefree g. Com-
bining the SKHN identity with the Guruswami–Sudan algorithm corrects nearly
n−

√
n(n− qt− 1) errors in the same codes in polynomial time, as discussed in

[12, Section 5]. Combining the SKHN identity with the Koetter–Vardy algorithm
corrects nearly n′ −

√
n′(n′ − qt− 1) errors in polynomial time, as pointed out

in [4]. Combining the SKHN identity with the algorithm in this paper corrects
even more errors in polynomial time.

See also [5] for a different approach that decodes more errors in some cases,
particularly for q = 3.

Simplified high-speed high-distance list decoding for alternant codes 15

References

[1] — (no editor), 39th annual symposium on foundations of computer science, FOCS
’98, November 8–11, 1998, Palo Alto, California, USA, IEEE Computer Society,
1998. See [35].

[2] — (no editor), Proceedings of the 32nd annual ACM symposium on theory of
computing, Association for Computing Machinery, New York, 2000. See [14].

[3] Michael Alekhnovich, Linear diophantine equations over polynomials and soft
decoding of Reed-Solomon codes, IEEE Transactions on Information Theory 51
(2005), 2257–2265. Cited from §1, §2, §2.

[4] Daniel Augot, Morgan Barbier, Alain Couvreur, List-decoding of binary Goppa
codes up to the binary Johnson bound (2010). Cited from §1, §1, §3, §3, §3, §3, §3,
§3, §6.

[5] Paulo S. L. M. Barreto, Richard Lindner, Rafael Misoczki, Decoding square-free
Goppa codes over Fp (2010). Cited from §6.

[6] Peter Beelen, Kristian Brander, Key equations for list decoding of Reed–Solomon
codes and how to solve them, Journal of Symbolic Computation 45 (2010), 773–
786. Cited from §1.

[7] Elwyn R. Berlekamp, Algebraic coding theory, McGraw-Hill, New York, 1968.
Cited from §1.

[8] Daniel J. Bernstein, Fast multiplication and its applications, in [19] (2008), 325–
384. Cited from §2, §2, §2, §2.

[9] Daniel J. Bernstein, Reducing lattice bases to find small-height values of univariate
polynomials, in [19] (2008), 421–446. Cited from §1, §3, §3, §3.

[10] Daniel J. Bernstein, List decoding for binary Goppa codes, in IWCC 2011 [21]
(2011), 62–80. Cited from §3, §3.

[11] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the
McEliece cryptosystem, in PQCrypto 2008 [17] (2008), 31–46. Cited from §1.

[12] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Wild McEliece, in SAC 2010
[13] (2011), 143–158. Cited from §6.

[13] Alex Biryukov, Guang Gong, Douglas R. Stinson (editors), Selected areas
in cryptography—17th international workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12–13, 2010, revised selected papers, Lecture Notes in Computer
Science, 6544, Springer, 2011. See [12].

[14] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, in
STOC 2000 [2] (2000), 265–272; see also newer version [15]. Cited from §3, §3,
§3.

[15] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, Jour-
nal of Computer and System Sciences 64 (2002), 768–784; see also older version
[14].

[16] Raj C. Bose, Dijen K. Ray-Chaudhuri, On a class of error correcting binary group
codes, Information and Control 3 (1960), 68–79. Cited from §1.

[17] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second
international workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17-19,
2008, proceedings, Lecture Notes in Computer Science, 5299, Springer, 2008. See
[11].

[18] Peter Bürgisser, Michael Clausen, Mohammed Amin Shokrollahi, Algebraic com-
plexity theory, Springer-Verlag, Berlin, 1997. Cited from §2.

[19] Joe P. Buhler, Peter Stevenhagen (editors), Surveys in algorithmic number theory,
Mathematical Sciences Research Institute Publications, 44, Cambridge University
Press, New York, 2008. See [8], [9].

http://www.math.ias.edu/~misha/papers/diophant.ps
http://www.math.ias.edu/~misha/papers/diophant.ps
http://arxiv.org/abs/1012.3439
http://arxiv.org/abs/1012.3439
http://eprint.iacr.org/2010/372
http://eprint.iacr.org/2010/372
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#smallheight
http://cr.yp.to/papers.html#smallheight
http://cr.yp.to/papers.html#goppalist
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2010/410
http://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html

16 Daniel J. Bernstein

[20] Guilhem Castagnos, Antoine Joux, Fabien Laguillaumie, Phong Q. Nguyen, Fac-
toring pq2 with quadratic forms: nice cryptanalyses, in Asiacrypt 2009 [43] (2009),
469–486. Cited from §3.

[21] Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huax-
iong Wang, Chaoping Xing (editors), Coding and cryptology—third international
workshop, IWCC 2011, Qingdao, China, May 30–June 3, 2011, proceedings, Lec-
ture Notes in Computer Science, 6639, Springer, 2011. See [10].

[22] Robert T. Chien, David M. Choy, Algebraic generalization of BCH-Goppa-Helgert
codes, IEEE Transactions on Information Theory 21, 70–79. Cited from §1.

[23] Henry Cohn, Nadia Heninger, Ideal forms of Coppersmith’s theorem and
Guruswami-Sudan list decoding (2010). Cited from §3, §3, §3.

[24] Don Coppersmith, Finding a small root of a univariate modular equation, in Eu-
rocrypt 1996 [44] (1996), 155–165; see also newer version [26]. Cited from §3,
§3.

[25] Don Coppersmith, Finding a small root of a bivariate integer equation; factoring
with high bits known, in Eurocrypt 1996 [44] (1996), 178–189; see also newer
version [26]. Cited from §3, §3.

[26] Don Coppersmith, Small solutions to polynomial equations, and low exponent
RSA vulnerabilities, Journal of Cryptology 10 (1997), 233–260; see also older
version [24] and [25].

[27] Michael Darnell (editor), Cryptography and coding: proceedings of the 6th IMA
International Conference held at the Royal Agricultural College, Cirencester, De-
cember 17–19, 1997, Lecture Notes in Computer Science, 1355, Springer-Verlag,
1997. See [40].

[28] Philippe Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE
Transactions on Information Theory 21 (1975), 575–576. Cited from §1.

[29] Joachim von zur Gathen, Jürgen Gerhard, Modern computer algebra, second edi-
tion, Cambridge University Press, Cambridge, 2003. Cited from §2, §2, §2, §2, §2,
§2, §2, §2.

[30] Pascal Giorgi, Claude-Pierre Jeannerod, Gilles Villard, On the complexity of poly-
nomial matrix computations, in ISSAC 2003 [49] (2003), 135–142. Cited from §2,
§2, §2, §2.

[31] Valery D. Goppa, A new class of linear error correcting codes, Problemy Peredachi
Informatsii 6 (1970), 24–30. Cited from §1, §6.

[32] Valery D. Goppa, Rational representation of codes and (L, g)-codes, Problemy
Peredachi Informatsii 7 (1971), 41–49. Cited from §1.

[33] Daniel Gorenstein, Neal Zierler, A class of error-correcting codes in pm symbols,
Journal of the Society for Industrial and Applied Mathematics 9 (1961), 207–214.
Cited from §1.

[34] Venkatesan Guruswami, List decoding of error-correcting codes, Ph.D. thesis,
Massachusetts Institute of Technology, 2001. Cited from §1.

[35] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometry codes, in FOCS 1998 [1] (1998), 28–39; see also newer version
[36]. Cited from §1, §1, §3, §3, §3, §3, §3.

[36] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometry codes, IEEE Transactions on Information Theory 45 (1999),
1757–1767; see also older version [36]. Cited from §3, §3.

[37] Johan H̊astad, Solving simultaneous modular equations of low degree, SIAM Jour-
nal on Computing 17 (1988), 336–341. Cited from §3.

[38] Hermann J. Helgert, Alternant codes, Information and Control 26 (1974), 369–
380. Cited from §1.

http://arxiv.org/abs/1008.1284
http://arxiv.org/abs/1008.1284
http://perso.ens-lyon.fr/claude-pierre.jeannerod/papers/issac03.pdf
http://perso.ens-lyon.fr/claude-pierre.jeannerod/papers/issac03.pdf
http://theory.lcs.mit.edu/~madhu/bib.html
http://theory.lcs.mit.edu/~madhu/bib.html
http://theory.lcs.mit.edu/~madhu/bib.html
http://theory.lcs.mit.edu/~madhu/bib.html
http://www.nada.kth.se/~johanh/papers.html

Simplified high-speed high-distance list decoding for alternant codes 17

[39] Alexis Hocquenghem, Codes correcteurs d’erreurs, Chiffres 2 (1959), 147–156.
Cited from §1.

[40] Nicholas Howgrave-Graham, Finding small roots of univariate modular equations
revisited, in Cirencester 1997 [27] (1997), 131–142. Cited from §3, §3.

[41] Nicholas Howgrave-Graham, Computational mathematics inspired by RSA, Ph.D.
thesis, 1998. Cited from §3, §3.

[42] Jorn Justesen, On the complexity of decoding Reed–Solomon codes, IEEE Trans-
actions on Information Theory 22 (1976), 237–238. Cited from §1.

[43] Mitsuru Matsui (editor), Advances in cryptology—ASIACRYPT 2009, 15th inter-
national conference on the theory and application of cryptology and information
security, Tokyo, Japan, December 6–10, 2009, proceedings, Lecture Notes in Com-
puter Science, 5912, Springer, 2009. See [20].

[44] Ueli M. Maurer (editor), Advances in cryptology—EUROCRYPT ’96: proceed-
ings of the fifteenth international conference on the theory and application of
cryptographic techniques held in Saragossa, May 12–16, 1996, Lecture Notes in
Computer Science, 1070, Springer-Verlag, Berlin, 1996. See [24], [25].

[45] Teo Mora (editor), Applied algebra, algebraic algorithms and error-correcting
codes: proceedings of the sixth international conference (AAECC-6) held in Rome,
July 4–8, 1988, Lecture Notes in Computer Science, 357, Springer-Verlag, Berlin,
1989. See [53].

[46] W. Wesley Peterson, Encoding and error-correction procedures for the Bose-
Chaudhuri codes, Transactions of the Institute of Radio Engineers 6 (1960), 459–
470. Cited from §1.

[47] Irving S. Reed, Gustave Solomon, Polynomial codes over certain finite fields,
Journal of the Society for Industrial and Applied Mathematics 8 (1960), 300–
304. Cited from §1.

[48] Dilip V. Sarwate, On the complexity of decoding Goppa codes, IEEE Transactions
on Information Theory 23 (1977), 515–516. Cited from §1.

[49] J. Rafael Sendra (editor), Symbolic and algebraic computation, international sym-
posium ISSAC 2003, Drexel University, Philadelphia, Pennsylvania, USA, August
3–6, 2003, proceedings, Association for Computing Machinery, 2003. See [30].

[50] Madhu Sudan, Decoding of Reed Solomon codes beyond the error-correction bound,
Journal of Complexity 13 (1997), 180–193. Cited from §1.

[51] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, Toshihiko Namekawa,
Further results on Goppa codes and their applications to constructing efficient bi-
nary codes, IEEE Transactions on Information Theory 22 (1976), 518–526. Cited
from §6.

[52] Peter Trifonov, Efficient interpolation in the Guruswami–Sudan algorithm, IEEE
Transactions on Information Theory 56 (2010), 4341–4349. Cited from §1.

[53] Brigitte Vallée, Marc Girault, Philippe Toffin, How to guess `th roots modulo n
by reducing lattice bases, in AAECC 1989 [45] (1989), 427–442. Cited from §3.

[54] Yingquan Wu, New list decoding algorithms for Reed–Solomon and BCH codes,
IEEE Transactions On Information Theory 54 (2008). Cited from §3, §3.

[55] Hans Zassenhaus, On Hensel factorization. I, Journal of Number Theory 1 (1969),
291–311. Cited from §2.

http://cr.yp.to/bib/entries.html#1998/howgrave-graham
http://theory.lcs.mit.edu/~madhu/bib.html
http://dcn.infos.ru/~petert/papers/genEuclid_final.pdf
http://cr.yp.to/bib/entries.html#1989/vallee
http://cr.yp.to/bib/entries.html#1989/vallee
http://arxiv.org/abs/cs/0703105

