
Attacking and defending
the McEliece cryptosystem

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. This paper presents several improvements to Stern’s attack
on the McEliece cryptosystem and achieves results considerably better
than Canteaut et al. This paper shows that the system with the origi-
nally proposed parameters can be broken in just 1400 days by a single
2.4GHz Core 2 Quad CPU, or 7 days by a cluster of 200 CPUs. This
attack has been implemented and is now in progress.

This paper proposes new parameters for the McEliece and Niederreiter
cryptosystems achieving standard levels of security against all known
attacks. The new parameters take account of the improved attack; the
recent introduction of list decoding for binary Goppa codes; and the pos-
sibility of choosing code lengths that are not a power of 2. The resulting
public-key sizes are considerably smaller than previous parameter choices
for the same level of security.

Keywords: McEliece cryptosystem, Stern attack, minimal weight code
word, list decoding binary Goppa codes, security analysis.

1 Introduction

The McEliece cryptosystem was proposed by McEliece in 1978 [10] and the
original version, using Goppa codes, remains unbroken. Quantum computers
do not seem to give any significant improvements in attacking code-based sys-
tems, beyond the generic improvements possible with Grover’s algorithm, and
so the McEliece encryption scheme is one of the interesting candidates for post-
quantum cryptography.

A drawback of the system is the comparably large key size — in order to
hide the well-structured and efficiently decodable Goppa code in the public key,
the full generator matrix of the scrambled code needs to be published. Various

* Permanent ID of this document: 7868533f20f51f8d769be2aa464647c9. Date of this
document: 2008.08.07. This work has been supported in part by the National Science
Foundation under grant ITR–0716498.



2 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

attempts to reduce the key size have used other codes, most notably codes over
larger fields instead of subfield codes; but breaks of variants of the McEliece
system have left essentially only the original system as the strongest candidate.

The fastest known attacks on the original system are based on information
set decoding as implemented by Canteaut and Chabaud [4] and analyzed in
greater detail by Canteaut and Sendrier [5].

In this paper we reconsider attacks on the McEliece cryptosystem and present
improvements to Stern’s attack [17] (which predates the Canteaut–Chabaud at-
tack) and demonstrate that our new attack outperforms any previous ones. The
result is that an attack on the originally proposed parameters of the McEliece
cryptosystem is feasible on a moderate computer cluster. Already Canteaut and
Sendrier had pointed out that the system does not hold up to current security
standards but no actual attack was done before. We have implemented our new
method and expect results soon.

On the defense side our paper proposes new parameters for the McEliece
cryptosystem, selected from a much wider range of parameters than have been
analyzed before. The codes we suggest are also suitable for the Niederreiter
cryptosystem [11], a variant of the McEliece cryptosystem. The new parameters
are designed to minimize public-key size while achieving 80-bit, 128-bit, or 256-
bit security against known attacks — and in particular our attack. (Of course, by
a similar computation, we can find parameters that minimize costs other than key
size.) These new parameters exploit the ability to choose code lengths that are
not powers of 2. They also exploit a recently introduced list-decoding algorithm
for binary Goppa codes — see [2]; list decoding allows senders to introduce more
errors into ciphertexts, leading to higher security with the same key size, or
alternatively the same security with lower key size.

2 Review of the McEliece cryptosystem

McEliece in [10] introduced a public-key cryptosystem based on error-correcting
codes. The public key is a hidden generator matrix of a binary linear code of
length n and dimension k with error-correcting capability t. McEliece suggested
using classical binary Goppa codes. We will briefly describe the main properties
of these codes before describing the set-up of the cryptosystem.

Linear codes. A binary [n, k] code is a binary linear code of length n and
dimension k, i.e., a k-dimensional subspace of Fn

2 . All codes considered in this
paper are binary.

The Hamming weight of an element c ∈ Fn
2 is the number of nonzero entries

of c. The minimum distance of an [n, k] code C with k > 0 is the smallest
Hamming weight of any nonzero element of C.

A generator matrix of an [n, k] code C is a k × n matrix G such that C ={
xG : x ∈ Fk

2

}
. A parity-check matrix of an [n, k] code C is an (n−k)×n matrix

H such that C =
{
c ∈ Fn

2 : HcT = 0
}

. Here cT means the transpose of c; we
view elements of Fn

2 as 1× n matrices, so cT is an n× 1 matrix.



Attacking and defending the McEliece cryptosystem 3

A systematic generator matrix of an [n, k] code C is a generator matrix of the
form (Ik|Q) where Ik is the k× k identity matrix and Q is a k× (n− k) matrix.
The matrix H = (QT |In−k) is then a parity-check matrix for C. There might
not exist a systematic generator matrix for C, but there exists a systematic
generator matrix for an equivalent code obtained by permuting columns of C.

The classical decoding problem is to find the closest codeword x ∈ C to
a given y ∈ Fn

2 , assuming that there is a unique closest codeword. Here close
means that the difference has small Hamming weight. Uniqueness is guaranteed
if there exists a codeword x whose distance from y is less than half the minimum
distance of C.

Classical Goppa codes. Fix a finite field F2d , a basis of F2d over F2, and
a set of n distinct elements α1, . . . , αn in F2d . Fix an irreducible polynomial
g ∈ F2d [x] of degree t, where 2 ≤ t ≤ (n − 1)/d. Note that, like [15, page 151]
and unlike [10], we do not require n to be as large as 2d.

The Goppa code Γ = Γ (α1, . . . , αn, g) consists of all elements c = (c1, . . . , cn)
in Fn

2 satisfying
n∑

i=1

ci
x− αi

= 0 in F2d [x]/g.

The dimension of Γ is at least n− td and typically is exactly n− td. For cryp-
tographic applications one assumes that the dimension is exactly n − td. The
td× n matrix

H =


1/g(α1) · · · 1/g(αn)
α1/g(α1) · · · αn/g(αn)

...
. . .

...
αt−1

1 /g(α1) · · · αt−1
n /g(αn)

 ,

where each element of F2d is viewed as a column of d elements of F2 in the
specified basis of F2d , is a parity-check matrix of Γ .

The minimum distance of Γ is at least 2t + 1. Patterson in [13] gave an
efficient algorithm to correct t errors.

The McEliece cryptosystem. The McEliece secret key consists of an n × n
permutation matrix P ; a nonsingular k × k matrix S; and a generator matrix
G for a Goppa code Γ (α1, . . . , αn, g) of dimension k = n − td. The sizes n, k, t
are public system parameters, but α1, . . . , αn, g, P, S are randomly generated
secrets. McEliece suggests in his original paper to choose a [1024, 524] classical
binary Goppa code Γ with irreducible polynomial g of degree t = 50.

The McEliece public key is the k × n matrix SGP .
McEliece encryption of a message m of length k: Compute mSGP and add

a random error vector e of weight t and length n. Send y = mSGP + e.
McEliece decryption: Compute yP−1 = mSG + eP−1. Note that mSG is

a codeword in Γ , and that the permuted error vector eP−1 has weight t. Use
Patterson’s algorithm to find mS and thereby m.

The Niederreiter cryptosystem. We also consider a variant of the McEliece
cryptosystem published by Niederreiter in [11]. Niederreiter’s system, with the



4 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

same Goppa codes used by McEliece, has the same security as McEliece’s system,
as shown in [9].

Niederreiter’s system differs from McEliece’s system in public-key structure,
encryption mechanism, and decryption mechanism. Beware that the specific sys-
tem in [11] also used different codes — Goppa codes were replaced by general-
ized Reed-Solomon codes — but generalized Reed-Solomon codes were broken by
Sidelnikov and Shestakov in 1992; see [16].

The Niederreiter secret key consists of an n × n permutation matrix P ; a
nonsingular (n−k)×(n−k) matrix S; and a parity-check matrix H for a Goppa
code Γ (α1, . . . , αn, g) of dimension k = n − td. As before, the sizes n, k, t are
public system parameters, but α1, . . . , αn, g, P, S are randomly generated secrets.

The Niederreiter public key is the (n− k)× n matrix SHP .
Niederreiter encryption of a message m of length n and weight t: Compute

and send y = SHPmT .
Niederreiter decryption: By linear algebra find z such that HzT = S−1y.

Then z − mPT is a codeword in Γ . Apply Patterson’s algorithm to find the
error vector mPT and thereby m.

CCA2-secure variants. McEliece’s system as described above does not resist
chosen-ciphertext attacks; i.e., it does not achieve “IND-CCA2 security.” For
instance, encryption of the same message twice produces two different ciphertexts
which can be compared to find out the original message since it is highly unlikely
that errors were added in the same positions.

There are several suggestions to make the system CCA2-secure. Overviews
can be found in [6, Chapters 5–6] and [12]. All techniques share the idea of scram-
bling the message inputs. The aim is to destroy any relations of two dependent
messages which an adversary might be able to exploit.

If we secure McEliece encryption against chosen-ciphertext attacks then we
can use a systematic generator matrix as a public key. This reduces the public-
key size from kn bits to k(n − k) bits: it is sufficient to store the k × (n − k)
matrix Q described above. Similarly for Niederreiter’s system it suffices to store
the non-trivial part of the parity check matrix, reducing the public-key size from
(n− k)n bits to k(n− k) bits.

3 Review of the Stern attack algorithm

The most effective attack known against the McEliece and Niederreiter cryp-
tosystems is “information-set decoding.” There are actually many variants of
this attack. A simple form of the attack was introduced by McEliece in [10, Sec-
tion III]. Subsequent variants were introduced by Leon in [8], by Lee and Brickell
in [7], by Stern in [17], by van Tilburg in [18], by Canteaut and Chabanne in [3],
by Canteaut and Chabaud in [4], and by Canteaut and Sendrier in [5].

The new attack presented in Section 4 of this paper is most easily understood
as a variant of Stern’s attack. This section reviews Stern’s attack.

How to break McEliece and Niederreiter. Stern actually states an attack
on a different problem, namely the problem of finding a low-weight codeword.



Attacking and defending the McEliece cryptosystem 5

However, as mentioned by Canteaut and Chabaud in [4, page 368], one can
decode a linear code — and thus break the McEliece system — by finding a low-
weight codeword in a slightly larger code.

Specifically, if C is a length-n code over F2, and y ∈ Fn
2 has distance w from

a codeword c ∈ C, then y − c is a weight-w element of the code C + {0,y}.
Conversely, if C is a length-n code over F2 with minimum distance larger than
w, then a weight-w element e ∈ C + {0,y} cannot be in C, so it must be in
C + {y}; in other words, y − e is an element of C with distance w from y.

Recall that a McEliece ciphertext y ∈ Fn
2 is known to have distance t from

a unique closest codeword c in a code C that has minimum distance at least
2t + 1. The attacker knows the McEliece public key, a generator matrix for C,
and can simply append y to the list of generators to form a generator matrix for
C + {0,y}. The only weight-t codeword in C + {0,y} is y − c; by finding this
codeword the attacker finds c and easily solves for the plaintext.

Similar comments apply if the attacker is given a Niederreiter public key,
i.e., a parity-check matrix for C. By linear algebra the attacker quickly finds a
generator matrix for C; the attacker then proceeds as above. Similar comments
also apply if the attacker is given a Niederreiter ciphertext. By linear algebra the
attacker finds a word that, when multiplied by the parity-check matrix, produces
the specified ciphertext. The bottleneck in all of these attacks is finding the
weight-t codeword in C + {0,y}.

Beware that there is a slight inefficiency in the reduction from the decoding
problem to the problem of finding low-weight codewords: if C has dimension k
and y /∈ C then C+{0,y} has slightly larger dimension, namely k+1. The user of
the low-weight-codeword algorithm knows that the generator y will participate
in the solution, but does not pass this information to the algorithm. In this paper
we focus on the low-weight-codeword problem for simplicity.

How to find low-weight words. Stern’s attack has two inputs: first, an integer
w ≥ 0; second, an (n− k)× n parity-check matrix H for an [n, k] code over F2.
Other standard forms of an [n, k] code, such as a k × n generator matrix, are
easily converted to the parity-check form by linear algebra.

Stern randomly selects n−k out of the n columns of H. He selects a random
size-` subset Z of those n−k columns; here ` is an algorithm parameter optimized
later. He partitions the remaining k columns into two sets X and Y by having
each column decide independently and uniformly to join X or to join Y .

Stern then searches, in a way discussed below, for codewords that have exactly
p nonzero bits in X, exactly p nonzero bits in Y , 0 nonzero bits in Z, and exactly
w − 2p nonzero bits in the remaining columns. Here p is another algorithm
parameter optimized later. If there are no such codewords, Stern starts with a
new selection of columns.

The search has three steps. First, Stern applies elementary row operations
to H so that the selected n− k columns become the identity matrix. This fails,
forcing the algorithm to restart, if the original (n− k)× (n− k) submatrix of H
is not invertible. Stern guarantees an invertible submatrix, avoiding the cost of
a restart, by choosing each column adaptively as a result of pivots in previous



6 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

columns. (In theory this adaptive choice could bias the choice of (X,Y, Z), as
Stern points out, but the bias does not seem to have a noticeable effect on
performance.)

Second, now that this (n−k)×(n−k) submatrix of H is the identity matrix,
each of the selected n− k columns corresponds to a unique row, namely the row
where that column has a 1 in the submatrix. In particular, the set Z of ` columns
corresponds to a set of ` rows. For every size-p subset A of X, Stern computes
the sum (mod 2) of the columns in A for each of those ` rows, obtaining an `-bit
vector π(A). Similarly, Stern computes π(B) for every size-p subset B of Y .

Third, for each collision π(A) = π(B), Stern computes the sum of the 2p
columns in A ∪ B. This sum is an (n − k)-bit vector. If the sum has weight
w − 2p, Stern obtains 0 by adding the corresponding w − 2p columns in the
(n − k) × (n − k) submatrix. Those w − 2p columns, together with A and B,
form a codeword of weight w.

4 The new attack

This section presents our new attack as the culmination of a series of improve-
ments that we have made to Stern’s attack. The reader is assumed to be familiar
with Stern’s algorithm; see the previous section.

As a result of these improvements, our attack speeds are considerably better
than the attack speeds reported by Canteaut, Chabaud, and Sendrier in [4] and
[5]. See the next two sections for concrete results and comparisons.

Reusing existing pivots. Each iteration of Stern’s algorithm selects n − k
columns of the parity-check matrix H and applies row operations — Gaussian
elimination — to reduce those columns to the (n− k)× (n− k) identity matrix.

Any parity-check matrix for the same code will produce the same results here.
In particular, instead of starting from the originally supplied parity-check ma-
trix, we start from the parity-check matrix produced in the previous iteration —
which, by construction, already has an (n − k) × (n − k) identity submatrix.
About (n− k)2/n of the newly selected columns will match previously selected
columns, and are simply permuted into identity form with minimal effort, leaving
real work for only about n− k − (n− k)2/n = (k/n)(n− k) of the columns.

Stern says that reduction involves about (1/2)(n − k)3 + k(n − k)2 bit op-
erations; for example, (3/16)n3 bit operations for k = n/2. To understand this
formula, observe that the first column requires ≤ n− k reductions, each involv-
ing ≤ n− 1 additions (mod 2); the second column requires ≤ n− k reductions,
each involving ≤ n − 2 additions; and so on through the (n − k)th column,
which requires ≤ n − k reductions, each involving ≤ k additions; for a total of
(1/2)(n− k)3 + (k − 1/2)(n− k)2.

We improve the bit-operation count to k2(n − k)(n − k − 1)(3n − k)/4n2:
for example, (5/128)n2(n − 2) for k = n/2. Part of the improvement is from
eliminating the work for the first (n − k)2/n columns. The other part is the
standard observation that the number of reductions in a typical column is only
about (n− k − 1)/2.



Attacking and defending the McEliece cryptosystem 7

Forcing more existing pivots. More generally, one can artificially reuse ex-
actly n− k − c column selections, and select the remaining c new columns ran-
domly from among the other k columns, where c is a new algorithm parameter.
Then only c columns need to be newly pivoted. Reducing c below (k/n)(n− k)
saves time correspondingly.

Beware, however, that smaller values of c introduce a dependence between
iterations and require more iterations before the algorithm finds the desired
weight-w word. See Section 5 for a detailed discussion of this effect.

The extreme case c = 1 has appeared before: it was used by Canteaut et al. in
[3, Algorithm 2], [4, Section II.B], and [5, Section 3]. This extreme case minimizes
the time for Gaussian elimination but maximizes the number of iterations of the
entire algorithm.

Illustrative example from the literature: Canteaut and Sendrier report in [5,
Table 2] that they need 9.85 · 1011 iterations to handle n = 1024, k = 525,
w = 50 with their best parameters (p, `) = (2, 18). Stern’s algorithm, with the
same (p, `) = (2, 18), needs only 5.78 · 1011 iterations. Note that these are not
the best parameters for Stern’s algorithm; the parameters p = 3 and ` = 28 are
considerably better.

Another illustrative example: Canteaut and Chabaud recommend (p, `) =
(2, 20) for n = 2048, k = 1025, w = 112 in [4, Table 2]. These parameters use
5.067 · 1029 iterations, whereas Stern’s algorithm with the same parameters uses
3.754 · 1029 iterations.

Canteaut and Chabaud say that Gaussian elimination is the “most expensive
step” in previous attacks, justifying the switch to c = 1. We point out, however,
that this switch often loses speed compared to Stern’s original attack. For ex-
ample, Stern’s original attack (without reuse of existing pivots) uses only 2124.06

bit operations for n = 2048, k = 1025, w = 112 with (p, `) = (3, 31), beating the
algorithm by Canteaut et al.; in this case Gaussian elimination is only 22% of
the cost of each iteration.

Both c = 1, as used by Canteaut et al., and c = (k/n)(n − k), as used
(essentially) by Stern, are beaten by intermediate values of c. See Section 5 for
some examples of optimized choices of c.

Faster pivoting. Adding the first selected row to various other rows cancels
all remaining 1’s in the first selected column. Adding the second selected row to
various other rows then cancels all remaining 1’s in the second selected column.

It has frequently been observed — see, e.g., [1] — that there is an overlap of
work in these additions: about 25% of the rows will have both the first row and
the second row added. One can save half of the work in these rows by simply
precomputing the sum of the first row and the second row. The precomputation
involves at most one vector addition (and is free if the first selected column
originally began 1, 1).

More generally, suppose that we defer additions of r rows; here r is another
algorithm parameter. After precomputing all 2r−1 sums of nonempty subsets of
these rows, we can handle each remaining row with, on average, 1− 1/2r vector
additions, rather than r/2 vector additions. For example, after precomputing



8 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

15 sums of nonempty subsets of 4 rows, we can handle each remaining row
with, on average, 0.9375 vector additions, rather than 2 vector additions; the
precomputation in this case uses at most 11 vector additions. The optimal choice
of r is roughly lg(n− k)− lg lg(n− k) but interacts with the optimal choice of c.

See [14] for a much more thorough optimization of subset-sum computations.

Multiple choices of Z. Recall that Stern’s algorithm finds a particular weight-
w word if that word has exactly p, p, 0 errors in the column sets X,Y, Z respec-
tively. We generalize Stern’s algorithm to allow m disjoint sets Z1, Z2, . . . , Zm

with the same X,Y , each of Z1, Z2, . . . , Zm having cardinality `; here m ≥ 1 is
another algorithm parameter.

The cost of this generalization is an m-fold increase in the time spent in the
second and third steps of the algorithm — but the first step, the initial Gaussian
elimination, depends only on X,Y and is done only once. The benefit of this
generalization is that the chance of finding any particular weight-w word grows
by a factor of nearly m.

For example, if (n, k, w) = (1024, 525, 50) and (p, `) = (3, 29), then one set
Z1 works with probability approximately 6.336%, while two disjoint sets Z1, Z2

work with probability approximately 12.338%. Switching from one set to two
produces a 1.947× increase in effectiveness at the expense of replacing steps
1, 2, 3 by steps 1, 2, 3, 2, 3. This is worthwhile if step 1, Gaussian elimination, is
more than about 5% of the original computation.

Reusing additions of the `-bit vectors. The second step of Stern’s algorithm
considers all p-element subsets A of X and all p-element subsets B of Y , and
computes `-bit sums π(A), π(B). Stern says that this takes 2`p

(
k/2
p

)
bit opera-

tions for average-size X,Y . Similarly, Canteaut et al. say that there are
(
k/2
p

)
choices of A and

(
k/2
p

)
choices of B, each using p` bit operations.

We comment that, although computing π(A) means p− 1 additions of `-bit
vectors, usually p− 2 of those additions were carried out before. Simple caching
thus reduces the average cost of computing π(A) to only marginally more than
` bit operations for each A. This improvement becomes increasingly important
as p grows.

Faster additions after collisions. The third step of Stern’s algorithm, for the
pairs (A,B) with π(A) = π(B), adds all the columns in A ∪B.

We point out that, as above, many of these additions overlap. We further
point out that it is rarely necessary to compute all of the rows of the result.
After computing 2(w − 2p + 1) rows one already has, on average, w − 2p + 1
errors; in general, as soon as the number of errors exceeds w−2p, one can safely
abort this pair (A,B).

5 Attack optimization and comparison

Canteaut, Chabaud, and Sendrier announced ten years ago that the original pa-
rameters for McEliece’s cryptosystem were not acceptably secure: specifically, an
attacker can decode 50 errors in a [1024, 524] code over F2 in 264.1 bit operations.



Attacking and defending the McEliece cryptosystem 9

Choosing parameters p = 2, m = 2, ` = 20, c = 7, and r = 7 in our
new attack shows that the same computation can be done in only 260.55 bit
operations, almost a 12× improvement over Canteaut et al. The number of
iterations drops from 9.85 · 1011 to 4.21 · 1011, and the number of bit operations
per iteration drops from 20 · 106 to 4 · 106. As discussed in Section 6, we have
achieved even larger speedups in software.

The rest of this section explains how we computed the number of iterations
used by our attack, and then presents similar results for many more sizes [n, k].

Analysis of the number of iterations. Our parameter optimization relies on
being able to quickly and accurately compute the average number of iterations
required for our attack.

It is easy to understand the success chance of one iteration of the attack:

• The probability of a weight-w word having exactly w − 2p errors in a uni-
form random set of n − k columns is

(
w
2p

)(
n−w
k−2p

)
/
(
n
k

)
. The actual selection

of columns is adaptive and thus not exactly uniform, but as mentioned in
Section 3 this bias appears to be negligible; we have tried many attacks with
small w and found no significant deviation from uniformity.
• The conditional probability of the 2p errors splitting as p, p between X,Y

is
(
2p
p

)
/22p. Instead of having each column decide independently whether or

not to join X, we actually make a uniform random selection of exactly bk/2c
columns for X, replacing

(
2p
p

)
/22p with

(bk/2c
p

)(dk/2e
p

)
/
(

k
2p

)
, but this is only

a slight change.
• The conditional probability of the remaining w − 2p errors avoiding Z,

a uniform random selection of ` out of the remaining n − k columns, is(
n−k−(w−2p)

`

)
/
(
n−k

`

)
. As discussed in Section 4, we increase this chance by

allowing disjoint sets Z1, Z2, . . . , Zm; the conditional probability of w − 2p
errors avoiding at least one of Z1, Z2, . . . , Zm is

m

(
n−k−(w−2p)

`

)(
n−k

`

) −
(
m

2

)(n−k−(w−2p)
2`

)(
n−k
2`

) +
(
m

3

)(n−k−(w−2p)
3`

)(
n−k
3`

) − · · ·

by the inclusion-exclusion principle.

The product of these probabilities is the chance that the first iteration succeeds.
If iterations were independent, as in Stern’s original attack, then the average

number of iterations would be simply the reciprocal of the product of the prob-
abilities. But iterations are not, in fact, independent. The difficulty is that the
number of errors in the selected n− k columns is correlated with the number of
errors in the columns selected in the next iteration. This is most obvious in the
extreme case c = 1 considered by Canteaut et al.: swapping one selected column
for one deselected column is quite likely to preserve the number of errors in the
selected columns. The effect decreases in magnitude as c increases, but iterations
also become slower as c increases; optimal selection of c requires understanding
how c affects the number of iterations.



10 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

To analyze the impact of c we compute a Markov chain for the number of
errors, generalizing the analysis of Canteaut et al. from c = 1 to arbitrary c.
Here are the states of the chain:

• 0: There are 0 errors in the deselected k columns.
• 1: There is 1 error in the deselected k columns.
• . . .
• w: There are w errors in the deselected k columns.
• Done: The attack has succeeded.

An iteration of the attack moves between states as follows. Starting from state
u, the attack replaces c selected columns, moving to states u− c, . . . , u− 2, u−
1, u, u+ 1, u+ 2, . . . , u+ c with various probabilities discussed below. The attack
then checks for success, moving from state 2p to state Done with probability

β =

(bk/2c
p

)(dk/2e
p

)(
k
2p

) (
m

(
n−k−(w−2p)

`

)(
n−k

`

) −
(
m

2

)(n−k−(w−2p)
2`

)(
n−k
2`

) + · · ·
)

and otherwise staying in the same state.
For c = 1, the column-replacement transition probabilities are mentioned by

Canteaut et al.:

• state u moves to state u− 1 with probability u(n− k− (w− u))/(k(n− k));
• state u moves to state u+ 1 with probability (k − u)(w − u)/(k(n− k));
• state u stays in state u otherwise.

For c > 1, there are at least three different interpretations of “select c new
columns”:

• “Type 1”: Choose a selected column; choose a non-selected column; swap.
Continue in this way for a total of c swaps.

• “Type 2”: Choose c distinct selected columns. Swap the first of these with a
random non-selected column. Swap the second with a random non-selected
column. Etc.

• “Type 3”: Choose c distinct selected columns and c distinct non-selected
columns. Swap the first selected column with the first non-selected column.
Swap the second with the second. Etc.

Type 1 is the closest to Canteaut et al.: its transition matrix among states
0, 1, . . . , w is simply the cth power of the matrix for c = 1. On the other hand,
type 1 has the highest chance of re-selecting a column and thus ending up with
fewer than c new columns; this effectively decreases c. Type 2 reduces this chance,
and type 3 eliminates this chance.

The type-3 transition matrix has a simple description: state u moves to state
u+ d with probability∑

i

(
w − u
i

)(
n− k − w + u

c− i

)(
u

d+ i

)(
k − u

c− d− i

)/(
n− k
c

)(
k

c

)
.



Attacking and defending the McEliece cryptosystem 11

For c = 1 this matrix matches the Canteaut-et-al. matrix.
We have implemented the type-1 Markov analysis and the type-3 Markov

analysis. To save time we use floating-point computations with a few hundred
bits of precision rather than exact rational computations. We use the MPFI
library (on top of the MPFR library on top of GMP) to compute intervals
around each floating-point number, guaranteeing that rounding errors do not
affect our final results.

As a check we have also performed millions of type-1, type-2, and type-3
simulations and millions of real experiments decoding small numbers of errors.
The simulation results are consistent with the experimental results. The type-
1 and type-3 simulation results are consistent with the predictions from our
Markov-chain software. Type 1 is slightly slower than type 3, and type 2 is
intermediate. Our graphs below use type 3. Our current attack software uses
type 2 but we intend to change it to type 3.

0.50 0.55 0.60 0.65 0.70 0.75 0.80
55

56

57

58

59

60

61

62

63

0.50 0.55 0.60 0.65 0.70 0.75 0.80
94

96

98

100

102

104

106

108

0.50 0.55 0.60 0.65 0.70 0.75 0.80
165

170

175

180

185

190

0.50 0.55 0.60 0.65 0.70 0.75 0.80
290

300

310

320

330

340

350

Fig. 1. Attack cost for n = 1024, n = 2048, n = 4096, n = 8192. Horizontal axis is the
code rate (n− t dlg ne)/n. Vertical axis is lg(bit operations).



12 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

Results. For each (n, t) in a wide range, we have explored parameters for our
new attack and set new records for the number of bit operations needed to
decode t errors in an [n, n− t dlg ne] code. Figure 1 shows our new records. Note
that the optimal attack parameters (p,m, `, c, r) depend on n, and depend on t
for fixed n.

6 A successful attack on the original McEliece parameters

We have implemented, and are carrying out, an attack against the cryptosys-
tem parameters originally proposed by McEliece. Our attack software extracts a
plaintext from a ciphertext by decoding 50 errors in a [1024, 524] code over F2.

If we were running our attack software on a single computer with a 2.4GHz In-
tel Core 2 Quad Q6600 CPU then we would need, on average, approximately 1400
days (258 CPU cycles) to complete the attack. We are actually running our attack
software on more machines. Running the software on 200 such computers — a
moderate-size cluster costing under $200000 — would reduce the average time to
one week. Note that no communication is needed between the computers.

These attack speeds are much faster than the best speeds reported in the
previous literature. Specifically, Canteaut, Chabaud, and Sendrier in [4] and [5]
report implementation results for a 433MHz DEC Alpha CPU and conclude that
one such computer would need approximately 7400000 days (268 CPU cycles):
“decrypting one message out of 10,000 requires 2 months and 14 days with 10
such computers.”

Of course, the dramatic reduction from 7400000 days to 1400 days can be
partially explained by hardware improvements — the Intel Core 2 Quad runs at
5.54× the clock speed of the Alpha 21164, has four parallel cores (compared
to one), and can perform three arithmetic instructions per cycle in each core
(compared to two). But these hardware improvements alone would only reduce
7400000 days to 220000 days.

The remaining speedup factor of 150, allowing us to carry out the first suc-
cessful attack on the original McEliece parameters, comes from our improvements
of the attack itself. This section discusses the software performance of our at-
tack in detail. Beware that optimizing CPU cycles is different from, and more
difficult than, optimizing the simplified notion of “bit operations” considered in
Section 4.

We gratefully acknowledge contributions of CPU time from several sources.
At the time of this writing we are carrying out about 3.26 · 109 attack iterations
each day:

• about 1.25·109 iterations/day from 38 cores of the Coding and Cryptography
Computer Cluster (C4) at Technische Universiteit Eindhoven (TU/e);
• about 0.99 ·109 iterations/day from 32 cores in the Department of Electrical

Engineering at National Taiwan University;
• about 0.50·109 iterations/day from 22 cores in the Courbes, Algèbre, Calculs,

Arithmétique des Ordinateurs (CACAO) cluster at Laboratoire Lorrain de
Recherche en Informatique et ses Applications (LORIA);



Attacking and defending the McEliece cryptosystem 13

• about 0.26 ·109 iterations/day from 16 cores of the System Architecture and
Networking Distributed and Parallel Integrated Terminal (sandpit) at TU/e;

• about 0.13 · 109 iterations/day from 8 cores of the Argo cluster at the Aca-
demic Computing and Communications Center at the University of Illinois
at Chicago (UIC);

• about 0.13 · 109 iterations/day from 6 cores at the Center for Research and
Instruction in Technologies for Electronic Security (RITES) at UIC; and

• about 0.13 · 109 iterations/day from 4 cores owned by D. J. Bernstein and
Tanja Lange.

We plan to publish our attack software to allow public verification of our speed
results and to allow easy reuse of the same techniques in other decoding prob-
lems.

Number of iterations. Recall that the Canteaut-et-al. attack uses 9.85 · 1011

iterations on average, with (in our notation) p = 2, ` = 18, m = 1, and c = 1.
To avoid excessive time spent handling collisions in the main loop, we in-

creased ` from 18 to 20. This increased the number of iterations to 11.14 · 1011.
We then increased m from 1 to 5: for each selection of column sets X,Y we

try five sets Z1, Z2, Z3, Z4, Z5. We further increased c from 1 to 32: each iteration
replaces 32 columns from the previous iteration. These choices increased various
parts of the per-iteration time by factors of 5 and (almost) 32 respectively; but
the choices also combined to reduce the number of iterations by a factor of more
than 6, down to 1.85 · 1011.

Further adjustment of the parameters will clearly produce additional im-
provements, but having reached feasibility we decided to proceed with our at-
tack.

Time for each iteration. Our attack software carries out an attack iteration
in 6.38 million CPU cycles on one core of a busy Core 2 Quad. “Busy” means
that the other three cores of the Core 2 Quad are also working on the attack; the
cycle counts drop slightly, presumably reflecting reduced L2-cache contention, if
only one core of the Core 2 Quad is active.

About 6.20 of these 6.38 million CPU cycles are accounted for by the following
major components:

• 0.68 million CPU cycles to select new column sets X and Y and to perform
Gaussian elimination. We use 32 new columns in each iteration, as mentioned
above. Each new column is handled by an independent pivot, modifying a few
hundred thousand bits of the matrix; we use standard techniques to combine
64 bit modifications into a small number of CPU instructions, reducing the
cost of the pivot to about 20000 CPU cycles. Further improvements are
clearly possible with further tuning.
• 0.35 million CPU cycles to precompute π(L) for each single column L. There

are m = 5 choices of π, and k = 525 columns L for each π. We handle each
π(L) computation in a naive way, costing more than 100 CPU cycles; this
could be improved but is not a large part of the overall computation.



14 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

• 0.36 million CPU cycles to clear hash tables. There are two hash tables, each
with 2` = 220 bits, and clearing both tables costs about 0.07 million CPU
cycles; this is repeated m = 5 times, accounting for the 0.36 million CPU
cycles.

• 1.13 million CPU cycles to mark, for each size-p set A, the bit at position
π(A) in the first hash table. We use p = 2, so there are 262 · 261/2 = 34191
choices of A, and m = 5 choices of π, for a total of 0.17 million marks,
each costing about 6.6 CPU cycles. Probably the 6.6 could be reduced with
further CPU tuning.

• 1.30 million CPU cycles to check, for each set B, whether the bit at position
π(B) is set in the first hash table, and if so to mark the bit at position π(B)
in the second hash table while appending B to a list of colliding B’s.

• 1.35 million CPU cycles to check, for each set A, whether the bit at position
π(A) is set in the second hash table, and if so to append A to a list of
colliding A’s.

• 0.49 million CPU cycles to sort the list of colliding sets A by π(A) and to
sort the list of colliding sets B by π(B). We use a straightforward radix sort.

• 0.54 million CPU cycles to skim through each collision π(A) = π(B), check-
ing the weight of the sum of the columns in A ∪ B. There are on average
about 5 · 34453 · 34191/220 ≈ 5617 collisions. Without early aborts this step
would cost 1.10 million CPU cycles.

For comparison, Canteaut et al. use 260 million cycles on an Alpha 21164
for each of their iterations (“1000 iterations of the optimized algorithm are per-
formed in 10 minutes . . . at 433 MHz”).

7 Defending the McEliece cryptosystem

This section proposes new parameters for the McEliece cryptosystem.

Increasing n. The most obvious way to defend McEliece’s cryptosystem is to
increase n, the length of the code used in the cryptosystem. We comment that
allowing values of n between powers of 2 allows considerably better optimization
of (e.g.) the McEliece/Niederreiter public-key size. See below for examples. Aside
from a mild growth in decoding time, there is no obstacle to the key generator
using a Goppa code defined via a field F2d of size much larger than n.

Using list decoding to increase w. The very recent paper [2] has introduced
a list-decoding algorithm for classical irreducible binary Goppa codes, exactly
the codes used in McEliece’s cryptosystem. This algorithm allows the receiver to
efficiently decode approximately n−

√
n(n− 2t− 2) ≥ t+ 1 errors instead of t

errors. The sender, knowing this, can introduce correspondingly more errors; the
attacker is then faced with a more difficult problem of decoding the additional
errors.

List decoding can, and occasionally does, return more than one codeword
within the specified distance. In CCA2-secure variants of McEliece’s system there
is no difficulty in identifying which codeword is a valid message. Our attack can,



Attacking and defending the McEliece cryptosystem 15

in exactly the same way, easily discard codewords that do not correspond to
valid messages.

Analysis and optimization of parameters. We now propose concrete pa-
rameters [n, k] for various security levels in CCA2-secure variants of the McEliece
cryptosystem. Recall that public keys in these variants are systematic generator
matrices occupying k(n− k) bits.

For (just barely!) 80-bit security against our attack we propose [1632, 1269]
Goppa codes (degree t = 33), with 34 errors added by the sender. The public-key
size here is 1269(1632− 1269) = 460647 bits.

Without list decoding, and with the traditional restriction n = 2d, the best
possibility is [2048, 1751] Goppa codes (t = 27). The public key here is consid-
erably larger, namely 520047 bits.

For 128-bit security we propose [2960, 2288] Goppa codes (t = 56), with 57
errors added by the sender. The public-key size here is 1537536 bits.

For 256-bit security we propose [6624, 5129] Goppa codes (t = 115), with 117
errors added by the sender. The public-key size here is 7667855 bits.

For keys limited to 216, 217, 218, 219, 220 bytes, we propose Goppa codes of
lengths 1744, 2480, 3408, 4624, 6960 and degrees 35, 45, 67, 95, 119 respectively,
with 36, 46, 68, 97, 121 errors added by the sender. These codes achieve security
levels 84.88, 107.41, 147.94, 191.18, 266.94 against our attack. In general, for any
particular limit on public-key size, codes of rate approximately 0.75 appear to
maximize the difficulty of our attack.

References

1. Gregory V. Bard. Accelerating cryptanalysis with the Method of Four Rus-
sians. Cryptology ePrint Archive: Report 2006/251, 2006. URL: http://

eprint.iacr.org/2006/251.

2. Daniel J. Bernstein. List decoding for binary Goppa codes, 2008. URL:
http://cr.yp.to/papers.html#goppalist.

3. Anne Canteaut and Hervé Chabanne. A further improvement of the work fac-
tor in an attempt at breaking McEliece’s cryptosystem. In P. Charpin, editor,
EUROCODE 94, 1994. URL: http://www.inria.fr/rrrt/rr-2227.html.

4. Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

5. Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece
cryptosystem. In Kazuo Ohta and Dingyi Pei, editors, Advances in cryptology—
ASIACRYPT’98, volume 1514 of Lecture Notes in Computer Science, pages 187–
199. Springer, Berlin, 1998.

6. Daniela Engelbert, Raphael Overbeck, and Arthur Schmidt. A summary of
McEliece-type cryptosystems and their security. Cryptology ePrint Archive: Re-
port 2006/162, 2006. URL: http://eprint.iacr.org/2006/162.

7. Pil Joong Lee and Ernest F. Brickell. An observation on the security of
McEliece’s public-key cryptosystem. In Christoph G. Günther, editor, Advances in



16 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

cryptology—EUROCRYPT ’88, volume 330 of Lecture Notes in Computer Science,
pages 275–280. Springer, Berlin, 1988.

8. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988.

9. Yuan Xing Li, Robert H. Deng, and Xin Mei Wang. On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions on
Information Theory, 40(1):271–273, 1994.

10. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory,
1978. Jet Propulsion Laboratory DSN Progress Report 42–44. URL: http://

ipnpr.jpl.nasa.gov/progress report2/42-44/44N.PDF.
11. Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.

Problems of Control and Information Theory. Problemy Upravlenija i Teorii In-
formacii, 15(2):159–166, 1986.

12. Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Introduction to post-
quantum cryptography. Springer, Berlin, to appear.

13. Nicholas J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions
on Information Theory, IT-21:203–207, 1975.

14. Nicholas Pippenger. The minimum number of edges in graphs with prescribed
paths. Mathematical Systems Theory, 12:325–346, 1979. URL: http://cr.yp.to/
bib/entries.html#1979/pippenger.

15. Nicolas Sendrier. On the security of the McEliece public-key cryptosystem. In
Mario Blaum, Patrick G. Farrell, and Henk C. A. van Tilborg, editors, Information,
coding and mathematics, volume 687 of Kluwer International Series in Engineering
and Computer Science, pages 141–163. Kluwer, 2002.

16. Vladimir M. Sidelnikov and Sergey O. Shestakov. On insecurity of cryptosystems
based on generalized Reed-Solomon codes. Discrete Mathematics and Applications,
2:439–444, 1992.

17. Jacques Stern. A method for finding codewords of small weight. In Gérard D.
Cohen and Jacques Wolfmann, editors, Coding theory and applications, volume
388 of Lecture Notes in Computer Science, pages 106–113. Springer, New York,
1989.

18. Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, Advances in cryptology—CRYPTO ’88, volume 403 of Lecture Notes in
Computer Science, pages 119–131, Berlin, 1990. Springer.


