
On the Bounded Sum-of-digits Discrete
Logarithm Problem in Finite Fields?

Qi Cheng

School of Computer Science
The University of Oklahoma
Norman, OK 73019, USA

Email: qcheng@cs.ou.edu.

Abstract. In this paper, we study the bounded sum-of-digits discrete
logarithm problem in finite fields. Our results concern primarily with
fields Fqn where n|q− 1. The fields are called Kummer extensions of Fq.
It is known that we can efficiently construct an element g with order
greater than 2n in the fields. Let Sq(•) be the function from integers
to the sum of digits in their q-ary expansions. We first present an algo-
rithm that given ge (0 ≤ e < qn) finds e in random polynomial time,
provided that Sq(e) < n. We then show that the problem is solvable in
random polynomial time for most of the exponent e with Sq(e) < 1.32n,
by exploring an interesting connection between the discrete logarithm
problem and the problem of list decoding of Reed-Solomon codes, and
applying the Guruswami-Sudan algorithm. As a side result, we obtain a
sharper lower bound on the number of congruent polynomials generated
by linear factors than the one based on Stothers-Mason ABC-theorem.
We also prove that in the field Fqq−1 , the bounded sum-of-digits dis-
crete logarithm with respect to g can be computed in random time
O(f(w) log4(qq−1)), where f is a subexponential function and w is the
bound on the q-ary sum-of-digits of the exponent, hence the problem is
fixed parameter tractable. These results are shown to be generalized to
Artin-Schreier extension Fpp where p is a prime. Since every finite field
has an extension of reasonable degree which is a Kummer extension, our
result reveals an unexpected property of the discrete logarithm problem,
namely, the bounded sum-of-digits discrete logarithm problem in any
given finite field becomes polynomial time solvable in certain low degree
extensions.

1 Introduction and Motivations

Most of practical public key cryptosystems base their security on the hardness
of solving the integer factorization problem or the discrete logarithm problem
in finite fields. Both of the problems admit subexponential algorithms, thus we
have to use long parameters, which make the encryption/decryption costly if
the parameters are randomly chosen. Parameters of low Hamming weight, or

? This research is partially supported by NSF Career Award CCR-0237845.

more generally, of small sum-of-digits, offer some remedy. Using them speeds
up the system while seeming to keep the security intact. In particular, in the
cryptosystem based on the discrete logarithm problem in finite fields of small
characteristic, using small sum-of-digits exponents is very attractive, due to the
existence of normal bases [1]. It is proposed and implemented for smart cards and
mobile devices, where the computing power is severely limited. Although attacks
exploring the specialty were proposed [14], none of them have polynomial time
complexity.

Let Fqn be a finite field. For β ∈ Fqn , if β, βq, βq2
, · · · , βqn−1

form a linear
basis of Fqn over Fq, we call them a normal basis. It is known that a normal
basis exists for every pair of prime power q and a positive integer n [11, Page
29]. Every element α in Fqn can be represented as

α = a0β + a1β
q + · · ·+ an−1β

qn−1

where ai ∈ Fq for 0 ≤ i ≤ n− 1. The power of q is a linear operation, thus

αq = a0β
q + · · ·+ an−2β

qn−1
+ an−1β.

Hence to compute the q-th power, we only need to shift the digits, which can be
done very fast, possibly on the hardware level. Let e be an integer with q-ary
expansion

e = e0 + e1q + e2q
2 + · · ·+ en−1q

n−1 (0 ≤ ei < q for 0 ≤ i ≤ n− 1). (1)

The sum-of-digits of e in the q-ary expansion is defined as Sq(e) =
∑n−1

i=0 ei.
When q = 2, the sum-of-digits becomes the famous Hamming weight. To com-
pute αe, we only need to do shiftings and at most Sq(e) many of multiplications.
Furthermore, the exponentiation algorithm can be parallelized, which is a prop-
erty not enjoyed by the large characteristic fields. For details, see [16].

1.1 Related Work

The discrete logarithm problem in finite field Fqn , is to compute an integer e such
that g′ = ge, given a generator g of a subgroup of F∗

qn and g′ in the subgroup.
The general purpose algorithms to solve the discrete logarithm problem are the
number field sieve and the function field sieve (for a survey see [13]). They have
time complexity

exp(c(log qn)1/3(log log qn)2/3)

for some constant c, when q is small, or n is small.
Suppose we want to compute the discrete logarithm of ge with respect to

base g in the finite field Fqn . If we know that the Hamming weight of e is equal
to w, there is an algorithm proposed by Coppersmith (described in [14]), which
works well if w is very small. It is a clever adaption of the baby-step giant-
step idea, and runs in random time O(

√
w

(blog qn/2c
bw/2c

)
). It is proved in [14] that

the average-case complexity achieves only a constant factor speed-up over the

worst case. It is not clear how his idea can be generalized when the exponent
has small sum-of-digits in the base q > 2. However, we can consider the very
special case where ei ∈ {0, 1} for 0 ≤ i ≤ n − 1 and

∑
0≤i≤n−1 ei = bn

2 c.
Recall that ei’s are the digits of e in the q-ary expansion. It can be verified
that Coppersmith’s algorithm can be applied in this case. The time complexity
becomes O(

√
n
(bn/2c
bn/4c

)
). If q < nO(1), it is much worse than the time complexity

of the function field sieve on a general exponent.
If the q-ary sum-of-digits of the exponent is bounded by w, is there an algo-

rithm which runs in time f(w) logc(qn) and solves the discrete logarithm problem
in Fqn , for some function f and a constant c? A similar problem has been raised
from the parametric point of view by Fellows and Koblitz [10], where they con-
sider the prime finite fields and the bounded Hamming weight exponents. Their
problem is listed among the most important open problems in the theory of
parameterized complexity [9]. From the above discussions, it is certainly more
relevant to cryptography to treat the finite fields with small characteristic and
exponents with bounded sum-of-digits.

Unlike the case of the integer factorization, where a lot of special purpose
algorithms exist, the discrete logarithm problem is considered more intractable
in general. As an example, one should not use a RSA modulus of about 1000 bits
with one prime factor of 160 bits. It would be vulnerable to the elliptic curve
factorization algorithm. However, in the Digital Signature Standard, adopted by
the U.S. government, the finite field has cardinality about 21024 or larger, while
the encryption/decryption is done in a subgroup of cardinality about 2160. As
another example, one should search for a secret prime as random as possible in
RSA, while in the case of the discrete logarithm problem, one may use a finite
field of small characteristic, hence the group of very special order. It is believed
that no trapdoor can be placed in the group order, as long as it has a large
prime factor (see the panel report on this issue in the Proceeding of Eurocrypt
1992). In order to have an efficient algorithm to solve the discrete logarithm,
we need that every prime factor of the group order is bounded by a polynomial
function on the logarithm of the cardinality of the field. Given the current state
of analytic number theory, it is very hard, if not impossible, to decide whether
there exists infinitely many finite fields of even (or constant) characteristic, where
the discrete logarithm can be solved in polynomial time.

In summary, there are several common perceptions about the discrete loga-
rithm problem in finite fields:

1. As long as the group order has a big prime factor, the discrete logarithm
problem is hard. We may use exponents with small sum-of-digits, since the
discrete logarithm problem in that case seems to be fixed parameter in-
tractable. We gain advantage in speed by using bounded sum-of-digits ex-
ponents, and at the same time keep the problem as infeasible as using the
general exponents.

2. If computing discrete logarithm is difficult, it should be difficult for any
generator of the group. The discrete logarithm problem with respect to one
generator can be reduced to the discrete logarithm problem with respect

to any generator. Even though in the small sum-of-digits case, a reduction
is not available, it is not known that changing the generator of the group
affects the hardness of the discrete logarithm problem.

1.2 Our Results

In this paper, we show that those assumptions taken in combination are incor-
rect. We study the discrete logarithm problem in large multiplicative subgroups
of the Kummer and Artin-Schreier extensions with a prescribed base, and prove
that the bounded sum-of-digits discrete logarithm are easy in those groups. More
precisely we prove constructively:

Theorem 1. (Main) There exists a random algorithm to find the integer e given
g and ge in Fqn in time polynomial in log(qn) under the conditions:

1. n|q − 1;
2. 0 ≤ e < qn, and Sq(e) ≤ n;
3. g = α+ b where Fq(α) = Fqn , b ∈ F∗

q and αn ∈ Fq.

Moreover, there does not exist an integer e′ 6= e satisfying that 0 ≤ e′ < qn,
Sq(e′) ≤ n and ge′ = ge

The theorem leads directly to a parameterized complexity result concerning
the bounded sum-of-digits discrete logarithm, which answers an important open
question for special, yet non-negligibly many, cases.

Corollary 1. There exists an element g of order greater than 2q in F∗
qq−1 , such

that the discrete logarithm problem with respect to the generator g can be solved
in time f(w) log4(qq−1), where f is a subexponential function and w is the bound
of the sum-of-digits of the exponent in q-ary expansion.

A few comments are in order:

– For a finite field Fqn , if n|q − 1, then there exists g ∈ Fqn satisfying the
condition in the theorem, in the other words, there exists an irreducible
polynomial of form xn − a (a ∈ Fq) over Fq; if there exists α such that
Fq(α) = Fqn and αn ∈ Fq, then n|q − 1.

– As a comparison, Coppersmith’s algorithm runs in exponential time in the
case where ei ∈ {0, 1} for 0 ≤ i ≤ n − 1, Sq(e) = n

2 and q < nO(1), while
our algorithm runs in polynomial time in that case. On the other hand,
Coppersmith’s algorithm works for every finite field, while our algorithm
works in Kummer extensions. Our result has an indirect effect on an arbitrary
finite field though, since every finite field has extensions of degree close to
a given number, which are Kummer extensions. As an example, suppose
we want to find such an extension of Fq with degree about log2 q. We first
pick a random n close to log q such that (n, q) = 1. Let l be the order of q
in Z/nZ. The field F(ql)n is a Kummer extension of Fql , and an extension
of Fq. According to Theorem 1, there is a polynomial time algorithm which

computes the discrete logarithm to some element g in Fqln provided that the
sum-of-digits of the exponent in the ql-ary expansion is less than n. Hence
our result reveals an unexpected property of the discrete logarithm problem
in finite fields: the difficulty of bounded sum-of-digits discrete logarithm
problem drops dramatically if we move up to extensions and increase the
base of the exponent accordingly.

– Numerical evidences suggest that the order of g is often equal to the group
order qn − 1, and is close to the group order otherwise. However, it seems
hard to prove it. In fact, this is one of the main obstacles in improving the
efficiency of AKS-style primality testing algorithm [2]. We make the following
conjecture.

Conjecture 1. Suppose that a finite field Fqn and an element g in the field
satisfy the conditions in Theorem 1. In addition, n ≥ log q. The order of g
is greater than qn/c for an absolute constant c.

– Even though we can not prove that the largest prime factor of the order of g
is very big, it seems, as supported by numerical evidences, that the order of
g, which is a factor of qn − 1 bigger than 2n, is rarely smooth. For instance,
in the F2889 = F128127 , any g generates the whole group F∗

2889 . The order
2889−1 contains a prime factor of 749 bits. One should not attempt to apply
the Silver-Pohlig-Hellman algorithm here.

A natural question arises: can the restriction on the sum-of-digits in Theo-
rem 1 be relaxed? Clearly if we can solve the problem under condition Sq(e) ≤
(q − 1)n in polynomial time, then the discrete logarithm problem in subgroup
generated by g is broken. If g is a generator of F∗

qn , then the discrete logarithm
problem in Fqn and any of its subfields to any base are broken. We find a sur-
prising relationship between the relaxed problem and the list decoding problem
of Reed-Solomon codes. We are able to prove:

Theorem 2. Suppose e is chosen randomly from the set

{0 ≤ e < qn − 1|Sq(e) < 1.32n}.

There exists an algorithm given g and ge in Fqn , to find e in time polynomial in
log(qn), with probability greater than 1 − c−n for some constant c greater than
1, under the conditions:

1. n|q − 1;
2. g = α+ b where Fq(α) = Fqn , b ∈ F∗

q and αn ∈ Fq.

Given a polynomial ring Fq[x]/(h(x)), it is an important problem to deter-
mine the size of multiplicative subgroup generated by x− s1, x− s2, · · · , x− sn

where (s1, s2, · · · , sn) = S is a list of distinct elements in Fq, and for all i,
h(si) 6= 0. The lower bound of the order directly affects the time complex-
ity of AKS-style primality proving algorithm. In that context, we usually have
deg h(x)|n. Assume that deg h(x) = n. For a list of integers E = (e1, e2, · · · , en),
we denote

(x− s1)e1(x− s2)e2 · · · (x− sn)en

by (x − S)E . One can estimate the number of distinct congruent polynomi-
als of form (x − S)E modulo h(x) for E in certain set. It is obvious that if
E ∈ {(e1, e2, · · · , en)|

∑
ei < n − 1, ei ≥ 0}, then all the polynomials are in

different congruent classes. This gives a lower bound of 4n. Through a clever
use of Stothers-Mason ABC-theorem, Voloch [15] and Berstein [5] proved that
if

∑
ei < 1.1n, then at most 4 such polynomials can fall in the same congruent

class, hence obtained a lower bound of 4.27689n. We improve their result and
obtain a lower bound of 5.17736n.

Theorem 3. Use the above notations. Let C be

{(e1, e2, · · · , en)|ei ≥ 0 for 1 ≤ i ≤ n,
n∑

i=1

ei < 1.5501n, |{i|ei 6= 0}| = b0.7416nc}.

If there exist pairwise different element E1, E2, · · · , Em ∈ C such that

(x− S)E1 ≡ (x− S)E2 ≡ · · · ≡ (x− S)Em (mod h(x)),

then m = O(n2). Note that |C| = 5.17736nnΘ(1)

By allowing negative exponents, Voloch [15] obtained a bound of 5.828n. Our
bound is smaller than his. However, starting from |S| = 2deg h(x), our method
gives better bounds. Details are left in the full paper. A distinct feature of our
bound is that it relates to the list decoding algorithm of Reed-Solomon codes.
If a better list decoding algorithm is found, then our bound can be improved
accordingly.

1.3 Organization of the Paper

The paper is organized as follows. In Section 2, we list some results of counting
numbers with small sum-of-digits. In Section 3, we present the basic idea and
the algorithm, and prove Theorem 1 and Corollary 1. In Section 4, we prove
Theorem 2 and Theorem 3. In Section 5, we extend the results to Artin-Schreier
extensions. We conclude our paper with discussions of open problems.

2 Numbers with Small Sum-of-digits

Suppose that the q-ary expansion of a positive integer e is

e = e0 + e1q + e2q
2 + · · ·+ en−1q

n−1,

where 0 ≤ ei ≤ q− 1 for all 0 ≤ i ≤ n− 1. How many nonnegative integers e less
than qn satisfy Sq(e) = w? Denote the number by N(w, n, q). Then N(w, n, q)
equals the number of nonnegative integral solutions of

n−1∑
i=0

ei = w

under the conditions that 0 ≤ ei ≤ q − 1 for all 0 ≤ i ≤ n − 1. The generating
function for N(w, n, q) is

(1 + x+ · · ·+ xq−1)n =
∑

i

N(i, n, q)xi.

If w ≤ q − 1, then the conditions ei ≤ q − 1 can be removed, we have that
N(w, n, q) =

(
w+n−1

n−1

)
. It is easy to see that if q = 2, we have that N(w, n, 2) =(

n
w

)
. In the later section, we will need to estimate N(w, n, q), where w is n times

a small constant less than 2. Since

(1 + x+ · · ·+ xq−1)n

= (
1− xq

1− x
)n

= (1− xq)n
∞∑

i=0

(
i+ n− 1
n− 1

)
xi

≡ (1− nxq)
2q−1∑
i=0

(
i+ n− 1
n− 1

)
xi (mod x2q)

≡
q−1∑
i=0

(
i+ n− 1
n− 1

)
xi +

2q−1∑
i=q

(
(
i+ n− 1
n− 1

)
− n

(
i− q + n− 1

n− 1

)
)xi (mod x2q)

Hence N(w, n, q) =
(
w+n−1

n−1

)
− n

(
w−q+n−1

n−1

)
if q ≤ w < 2q.

3 The Basic Ideas and the Algorithm

The basic idea of our algorithm is adopted from the index calculus algorithm. Let
Fqn be a Kummer extension of Fq, namely, n|q − 1. Assume that q = pd where
p is the characteristic. The field Fqn is usually given as Fp[x]/(u(x)) where u(x)
is an irreducible polynomial of degree dn over Fp. If g satisfies the condition in
Theorem 1, then xn − αn must be an irreducible polynomial over Fq. Denote
αn by a. To implement our algorithm, it is necessary that we work in another
model of Fqn , namely, Fq[x]/(xn − a). Fortunately the isomorphism

ψ : Fp[y]/(u(y)) → Fqn = Fq[x]/(xn − a)

can be efficiently computed. To compute ψ(v(y)), where v(y) is a polynomial
of degree at most dn − 1 over Fp, all we have to do is to factor u(y) over
Fq[x]/(xn − a), and to evaluate v(y) at one of the roots. Factoring polynomials
over finite fields is a well-studied problem in computational number theory, we
refer to [3] for a complete survey of results. The random algorithm runs in
expected time O(dn(dn + log qn)(dn log qn)2), and the deterministic algorithm
runs in time O(dn(dn + q)(dn log qn)2). From now on we assume the model
Fq[x]/(xn − a).

Consider the subgroup generated by g = α + b in (Fq[x]/(xn − a))∗, recall
that b ∈ F∗

q and α = x (mod xn − a). The generator g has order greater than
2n [8], and has a very nice property as follows. Denote a

q−1
n by h, we have

gq = (α+ b)q = αq + b = a
q−1

n α+ b = hα+ b,

and more generally
(α+ b)qi

= αqi

+ b = hiα+ b.

In other words, we obtain a set of relations: logα+b(hiα + b) = qi for 0 ≤
i ≤ n − 1. This corresponds to the precomputation stage of the index calculus.
The difference is that, in our case, the stage finishes in polynomial time, while
generally it requires subexponential time. For a general exponent e,

(α+ b)e = (α+ b)e0+e1q+···+en−1qn−1

= (α+ b)e0(hα+ b)e1 · · · (hiα+ b)ei · · · (hn−1α+ b)en−1 .

If f(α) is an element in Fqn , where f ∈ Fq[x] is a polynomial of degree less
than n, and f(α) = (α + b)e and Sq(e) < n, then due to unique factorization
in Fq[x], f(x) can be completely split into the product of linear factors over Fq.
We can read the discrete logarithm from the factorizations, after the coefficients
are normalized. The algorithm is described as follows.

Algorithm 1 Input: g, ge in Fqn = Fq[x]/(xn − a) satisfying the conditions in
Theorem 1.

Output: e.

1. Define an order in Fq (for example, use the lexicographic order). Compute
and sort the list (1, h, h2, h3, · · · , hn−1).

2. Suppose that ge is represented by f(α), where f ∈ Fq[x] has degree less
than n. Factoring f(x) over Fq, let f(x) = c(x + d1)e1 · · · (x + dk)ek where
c, d1, · · · , dk are in Fq.

3. (Normalization) Normalize the coefficients and reorder the factors of f(x)
such that their constant coefficients are b and f(x) = (x+ b)e1 · · · (hn−1x+
b)en−1 , where hi = hi;

4. Output e0 + e1q + · · ·+ en−1q
n−1;

The step 1 takes time O(n log2 q log n+n log n log q) = O(n log n log2 q). The
most time-consuming part is to factor a polynomial over Fq with degree at most
n. The random algorithm runs in expected time O(n(n + log q)(n log q)2) and
the deterministic algorithm runs in time O(n(n + q)(n log q)2) = O(n3q log2 q).
Normalization and reordering can be done in time O(n log n log q), since we have
a sorted list of (1, h, h2, h3, · · · , hn−1). Thus the algorithm can be finished in
random time O(n(n + log q)(n log q)2) and in deterministic time O(n3q log2 q).
This concludes the proof of the main theorem.

Now we are ready to prove Corollary 1. Any f(x) where f(α) = (α+ b)e ∈<
α + b >⊆ Fqq−1 is congruent to a product of at most w = Sq(e) linear factors
modulo xq−1−a. If w < q−1, we have an algorithm running in time O(q4 log2 q),
according to Theorem 1. So we only need to consider the case when w ≥ q − 1.
The general purpose algorithm will run in random time f(log qq−1), where f
is a subexponential function. Theorem 1 follows from the fact that log qq−1 ≤
w logw.

4 The Application of the List Decoding Algorithm of
Reed-Solomon Codes

A natural question arises: can we relax the bound on the sum-of-digits and
still get a polynomial time algorithm? Solving the problem under the condition
Sq(e) ≤ (q − 1)n basically renders the discrete logarithm problems in Fqn and
any of its subfields easy. Suppose that ge = f(α) where f(x) ∈ Fq[x] has degree
less than n. Using the same notations as in the previous section, we have

f(α) = (α+ b)e0(hα+ b)e2 · · · (hn−1α+ b)en−1 .

Hence there exists a polynomial t(x) with degree
∑n−1

i=0 ei − n such that

f(x) + (xn − a)t(x) = (x+ b)e0(hx+ b)e1 · · · (hn−1x+ b)en−1 .

If the cardinality of {i|ei 6= 0} is greater than k then the curve y = t(x) will pass
at least k points in the set

{(i,− f(i)
iq−1 − a

)|i ∈ {−b,− b

h
, · · · ,− b

hn−1
}}.

To find all the polynomials of degree d =
∑n−1

i=0 ei − n, which pass at least k
points in a given set of n points, is an instance of the list decoding problem of
Reed-Solomon codes. It turns out that there are only a few of such polynomials,
and they can be found efficiently as long as k ≥

√
nd.

Proposition 1. (Guruswami-Sudan [12]) Given n distinct elements x0, x1, · · · ,
xn−1 ∈ Fq, n values y0, y1, · · · , yn−1 ∈ Fq and a natural number d, there are
at most O(

√
n3d) many univariate polynomials t(x) ∈ Fq[x] of degree at most d

such that yi = t(xi) for at least
√
nd many points. Moreover, these polynomials

can be found in random polynomial time.

For each t(x), we use the Cantor-Zassenhaus algorithm to factor f(x)+(xn−
a)t(x). There must exist a t(x) such that the polynomial f(x)+(xn−a)∗t(x) can
be completely factored into a product of linear factors in {hix+b|0 ≤ i ≤ n−1},
and e is computed as a consequence.

4.1 The Proof of Theorem 2

In this section, we consider the case when Sq(e) ≤ 1.32n. If there are at least
0.5657n ≥

√
0.32n · n number of nonzero ei’s, then we can apply the Guruswami-

Sudan algorithm to find all the t(x). In order to prove Theorem 2, it remains to
show:

Lemma 1. Define An,q as

{(e1, e2, · · · , en) | e1+e2+· · ·+en ≤ 1.32n, ei ∈ Z and 0 ≤ ei ≤ q−1 for 1 ≤ i ≤ n.}

and Bn as
{(e1, e2, · · · , en) | |{i|ei 6= 0}| < 0.5657n}.

We have
|An,q ∩Bn|
|An,q|

< c−n

for some constant c > 1 when n is sufficiently large.

Proof. The cardinality of An,q is
∑b1.32nc

i=0 N(i, n, q) >
(
2.32n

n

)
> 4.883987...n.

The cardinality of An,q∩Bn is less than
∑n

v=d0.5657ne
(
n
v

)(
1.32n

n−v−1

)
. The summands

maximize at v = 0.5657n if v ≥ 0.5657n. Hence we have
n∑

v=d0.5657ne

(
n

v

)(
b1.32nc
n− v − 1

)

< 0.4343n
(

n

d0.5657ne

)(
b1.32nc
b0.4343nc

)
< 4.883799...n

This proves the lemma with c = 4.883987.../4.883799... > 1.

4.2 The Proof of Theorem 3

Proof. Let τ be a positive real number less than 1. Define

Cn,q,τ = {(e1, e2, · · · , en) |
e1 + e2 + · · ·+ en = b(1 + τ)nc, ei ∈ Z
and 0 ≤ ei ≤ q − 1 for 1 ≤ i ≤ n
and |{i|ei 6= 0}| = b

√
τnc

}

Given f(x) ∈ Fq[x], if there exists E ∈ Cn,q,τ , such that (x − S)E ≡ f(x)
(mod h(x)), there must exist a polynomial t(x) such that (x−S)E = t(x)h(x)+
f(x), and t(x) is a solution for the list decoding problem with input {(s,− f(s)

h(s))|s ∈
S}. According to Propostion 1, there are at most O(n2) solutions. Thus the num-
ber of congruent classes modulo h(x) that {(x− S)E |E ∈ Cn,q,τ} has is greater
than Ω(|Cn,q,τ |/n2). We have

|Cn,q,τ | =
(

n√
τn

)(
(1 + τ)n√

τn

)
= nΘ(1)(

(1 + τ)1+τ

τ
√

τ (1−
√
τ)1−

√
τ (1 + τ −

√
τ)1+τ−

√
τ
)n.

It takes the maximum value 5.17736...n at τ = 0.5501.

5 Artin-Schreier Extensions

Let p be a prime. The Artin-Schreier extension of a finite field Fp is Fpp . It is
easy to show that xp − x − a = 0 is an irreducible polynomial in Fp for any
a ∈ F∗

p. So we may take Fpp = Fp[x]/(xp − x− a). Let α = x (mod xp − x− a).
For any b ∈ Fp, we have

(α+ b)p = αp + b = α+ b+ a,

and similarly
(α+ b)pi

= αpi

+ b = α+ b+ ia.

Hence the results for Kummer extensions can be adopted to Artin-Schreier ex-
tensions. For the subgroup generated by α+ b, we have a polynomial algorithm
to solve the discrete logarithm if the exponent has p-ary sum-of-digits less than
p. Note that b may be 0 in this case.

Theorem 4. There exists an algorithm to find the integer e given g and ge in
Fpp in time polynomial in log pp under the conditions:

1. 0 ≤ e < pp, and Sq(e) ≤ p− 1;
2. g = α+ b where Fp(α) = Fpp , b ∈ Fp and αp + α ∈ F∗

p.

Moreover, there does not exist an integer e′ 6= e satisfying that 0 ≤ e′ < pp,
Sq(e′) ≤ n and ge′ = ge.

Theorem 5. There exists an element g of order greater than 2p in F∗
pp , such

that the discrete logarithm problem with respect to g can be solved in time
O(f(w)(log pp)4), where f is a subexponential function and w is the bound of
the sum-of-digits of the exponent in the p-ary expansion.

Theorem 6. Suppose that g = α+ b, where Fp(α) = Fpp , b ∈ Fp and αp +α ∈
F∗

p. Suppose e is chosen in random from the set

{0 ≤ e < qn − 1|Sq(e) < 1.32n}.

There exists an algorithm given g and ge in Fpp , to find e in time polynomial in
log(pp), with probability greater than 1− c−n for some constant c greater than 1.

6 Concluding Remarks

A novel idea in the celebrated AKS primality testing algorithm, is to construct a
subgroup of large cardinality through linear elements in finite fields. The subse-
quent improvements [6, 7, 4] rely on constructing a single element of large order.
It is speculated that these ideas will be useful in attacking the integer factor-
ization problem. In this paper, we show that they do affect the discrete loga-
rithm problem in finite fields. We give an efficient algorithm which computes
the bounded sum-of-digits discrete logarithm with respect to prescribed bases

in Kummer extensions. We believe that this is more than a result which deals
with only special cases, as every finite field has extensions of reasonable degrees
which are Kummer extensions. For instance, if we need to compute the discrete
logarithm of s in Fq base g, we can construct a suitable Kummer extention Fqn ,
and try to solve the discrete logarithms of a and g with respect to a selected base
in the extension. This approach is worth studying. Another interesting problem
is to further relax the restriction on the sum-of-digits of the exponent. It is also
important to prove or disprove Conjecture 1. If that conjecture is true, the AKS-
style primality proving can be made compatible or even better than ECPP or
the cyclotomic testing in practice.

Acknowledgments We thank Professor Pedro Berrizbeitia for very helpful dis-
cussions.

References

1. G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. An implemen-
tation for a fast public-key cryptosystem. Journal of Cryptology, 3:63–79, 1991.

2. M. Agrawal, N. Kayal, and N. Saxena. Primes is in P.
http://www.cse.iitk.ac.in/news/primality.pdf, 2002.

3. Eric Bach and Jeffrey Shallit. Algorithmic Number theory, volume I. The MIT
Press, 1996.

4. D. J. Bernstein. Proving primality in essentially quartic random time.
http://cr.yp.to/papers/quartic.pdf, 2003.

5. D. J. Bernstein. Sharper ABC-based bounds for congruent polynomials.
http://cr.yp.to/, 2003.

6. Pedro Berrizbeitia. Sharpening “primes is in p” for a large family of numbers.
http://lanl.arxiv.org/abs/math.NT/0211334, 2002.

7. Qi Cheng. Primality proving via one round in ECPP and one iteration in AKS. In
Dan Boneh, editor, Proc. of the 23rd Annual International Cryptology Conference
(CRYPTO), volume 2729 of Lecture Notes in Computer Science, Santa Barbara,
2003. Springer-Verlag.

8. Qi Cheng. Constructing finite field extensions with large order elements. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2004.

9. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

10. M. Fellows and N. Koblitz. Fixed-parameter complexity and cryptography. In
Proceedings of the Tenth International Symposium on Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes (AAECC’93), volume 673 of Lecture Notes
in Computer Science. Springer-Verlag, 1993.

11. Shuhong Gao. Normal Bases over Finite Fields. PhD thesis, The University of
Waterloo, 1993.

12. Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon
and algebraic-geometry codes. IEEE Transactions on Information Theory,
45(6):1757–1767, 1999.

13. A. M. Odlyzko. Discrete logarithms: The past and the future. Designs, Codes, and
Cryptography, 19:129–145, 2000.

14. D. R. Stinson. Some baby-step giant-step algorithms for the low Hamming weight
discrete logarithm problem. Math. Comp., 71:379–391, 2002.

15. J. F. Voloch. On some subgroups of the multiplicative group of finite rings.
http://www.ma.utexas.edu/users/voloch/preprint.html, 2003.

16. Joachim von zur Gathen. Efficient exponentiation in finite fields. In Proc. 32nd
IEEE Symp. on Foundations of Comp. Science, 1991.

