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Abstract

For an error-correcting code and a distance bound, the
list decoding problemis to compute all the codewords
within a given distance to a received message. Thebounded
distance decodingproblem is to find one codeword if there
is at least one codeword within the given distance, or to out-
put the empty set if there is not. Obviously the bounded dis-
tance decoding problem is not as hard as the list decoding
problem. For a Reed-Solomon code[n, k]q, a simple count-
ing argument shows that for any integer0 < g < n, there
exists at least one Hamming ball of radiusn−g, which con-
tains at least

(
n
g

)
/qg−k many codewords. Let̂g(n, k, q) be

the smallest positive integerg such that
(
n
g

)
/qg−k < 1. One

knows that

k ≤ ĝ(n, k, q) ≤
√
nk ≤ n.

For the distance bound up ton−
√
nk, it is well known that

both the list and bounded distance decoding can be solved
efficiently. For the distance bound betweenn −

√
nk and

n − ĝ(n, k, q), we do not know whether the Reed-Solomon
code is list, or bounded distance decodable, nor do we know
whether there are polynomially many codewords in all balls
of the radius. It is generally believed that the answers to
both questions are no. There are public key cryptosystems
proposed recently, whose security is based on the assump-
tions.

In this paper, we prove: (1) List decoding can not be
done for radiusn − ĝ(n, k, q) or larger, otherwise the dis-
crete logarithm overFqĝ(n,k,q)−k is easy. (2) Leth andg be
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positive integers satisfyingq ≥ max(g2, (h − 1)2+ε) and
g ≥ ( 4

ε + 2)(h+ 1) for a constantε > 0. We show that the
discrete logarithm problem overFqh can be efficiently re-
duced by a randomized algorithm to the bounded distance
decoding problem of the Reed-Solomon code[q, g−h]q with
radiusq−g. These results show that the decoding problems
for the Reed-Solomon code are at least as hard as the dis-
crete logarithm problem over finite fields. The main tools to
obtain these results are an interesting connection between
the problem of list-decoding of Reed-Solomon code and the
problem of discrete logarithm over finite fields, and a gener-
alization of Katz’s theorem on representations of elements
in an extension finite field by products of distinct linear fac-
tors.

1. Introduction

An error-correcting codeC over a finite alphabetΣ is
an injective mapφ : Σk → Σn. When we need to trans-
mit a message ofk letters over a noisy channel, we apply
the map on the message first ( i.e. encode the message ) and
send its image (i.e. the codeword) ofn letters over the chan-
nel. The Hamming distance between two sequence of letters
of the same length is the number of positions where two se-
quences differ. A good error-correcting code should have a
largeminimum distanced, which is defined to be the min-
imum Hamming distance between any two codewords in
φ(Σk). A received message, possibly corrupted, but with no
more than(d − 1)/2 errors, corresponds to a unique code-
word, thus may be decoded into the original message de-
spite errors occur during the communication.

Error-correcting codes are widely used in practice. They
are mathematically interesting and intriguing. This sub-



ject has attracted the attention of theoretical computer sci-
ence community recently. Several major achievements of
theoretical computer science, notably the Probabilistically
Checkable Proofs and de-randomization techniques, rely
heavily on the techniques in error-correcting codes. We re-
fer to the survey [16] for details.

For the purpose of efficient encoding and decoding,Σ is
usually set to be the finite fieldFq of q elements, and the
mapφ is set to be linear. Numerous error correcting codes
have been proposed, among them, the Reed-Solomon codes
are particularly important. They are deployed to transmit
information from and to spaceships, and to store infor-
mation in optical media. LetS be a subset ofFq with
|S| = n. The Reed-Solomon code[n, k]q, is the map from
(a0, a1, · · · , ak−1) ∈ Fk

q to

(a0 + a1x+ · · ·+ ak−1x
k−1)x∈S ∈ Fn

q .

The choice ofS will not affect our results in this paper.
Since any two different polynomials with degreek − 1 can
share at mostk − 1 points, the minimum distance of the
Reed-Solomon code isn − k + 1. If the radius of a Ham-
ming ball is less than half of the minimum distance, there
should be at most one codeword in the Hamming ball. Find-
ing the codeword is calledunambiguous decoding. It can be
efficiently solved, see [2] for a simple algorithm.

If we gradually increase the radius, there may be two or
more codewords lying in some Hamming balls. Can we effi-
ciently enumerate all the codewords in any Hamming ball of
certain radius? This is the so called list decoding problem.
The notion was first introduced by Elias [5]. There was vir-
tually no progress on this problem for radius slightly larger
than half of the minimum distance, until Sudan published
his influential paper [15]. His result was subsequently im-
proved, the best algorithm [9] solves the list decoding prob-
lem for radius as large asn −

√
nk. The work sheds new

light on the limitation of list decoding of Reed-Solomon
codes. To the other extreme, if the radius is greater than
or equal to the minimum distance, there are exponentially
many codewords in some Hamming balls.

The decoding problem of Reed-Solomon codes can be
reformulated into the problem ofcurve fittingor polyno-
mial reconstruction. In this problem, we are givenn points

(x1, y1), (x2, y2), · · · , (xn, yn)

in F2
q. The goal is to find polynomials of degreek − 1 that

pass at leastg points. In this paper, we only consider the
case when then given points have distinctx-coordinates. If
we allow multiple occurrences ofx-coordinates, the prob-
lem is NP-hard [6], and it is not relevant to the Reed-
Solomon decoding problem. Ifg ≥ (n + k)/2, it cor-
responds to the unambiguous decoding of Reed-Solomon
codes. Ifg >

√
nk, the radius is less thann −

√
nk, the

problem can be solved by the Guruswami-Sudan algorithm.

If g ≤ k, it is possible that there are exponentially many so-
lutions, but finding one is very easy.

In this paper, we study the following question: How large
can we increase the radius before the list decoding prob-
lem or the bounded distance decoding problem become in-
feasible? The question has been under intensive investiga-
tions for Reed-Solomon codes and other error-correcting
codes. The case of general non-linear codes has been solved
[6]. The case for linear codes is much harder. Some par-
tial results have been obtained in [8, 7]. However, none of
them applies to Reed-Solomon codes. No negative result is
known about the list decoding of Reed-Solomon codes, ex-
cept for a simple bound given by Justesen and Hoholdt [10],
which states that for any positive integerg < n, there exists
at least one Hamming ball of radiusn − g, which contains
at least

(
n
g

)
/qg−k many codewords. This bound matches the

intuition well, consider an imaginary algorithm as follows:
randomly selectg points from then input points, and use
polynomial interpolation to get a polynomial of degree at
mostg − 1 which passes theseg points. Then with proba-
bility 1/qg−k, the resulting polynomial has degreek − 1.
The sample space has size

(
n
g

)
. Thus heuristically, the num-

ber of codewords in Hamming balls of radiusn − g is at
least

(
n
g

)
/qg−k on the average. In the same paper, Juste-

sen and Hoholdt also gave an upper bound for the radius of
the Hamming balls containing a constant or less number of
codewords.

If we gradually increaseg, starting fromk and going
towardn, then

(
n
g

)
/qg−k will fall below 1 at some point.

However,g is still very far away from
√
nk. Let ĝ(n, k, q)

be the smallest positive integer such that
(
n
g

)
/qg−k is less

than1. The following lemma shows that there is a gap be-
tweenĝ(n, k, q) and

√
nk.

Lemma 1 1. For positive integersk < g < n, if g >√
nk, then qg−k ≥ ng−k >

(
n
g

)
. This implies that

ĝ(n, k, q) ≤
√
nk.

2. For any constant0 < c1 < 1/2 and fixedk/n, if
g = k + c1(n− k), then

(
n
g

)
/ng−k ≤ 2−c2n for some

positive constantc2.

In fact, for a fixed rate (k/n) andq = Θ(n), ĝ(n, k, q) =
k+Θ( n

log n ). How hard is it to do list decoding for the radius
n− ĝ(n, k, q)? We show this question is related to discrete
logarithm over finite fields. The discrete logarithm prob-
lem in finite fieldFqn , is to compute an integere such that
t = γe, given a generatorγ of a subgroup ofF∗qn andt in the
subgroup. The general purpose algorithms to solve the dis-
crete logarithm problem are the number field sieve and the
function field sieve (for a survey see [13]). They have time
complexity

exp(c(log qn)1/3(log log qn)2/3)



for some constantc, whenq is small, orn is small.
We prove that if the list decoding of the[n, k]q Reed-

Solomon code is feasible when radius isn − ĝ(n, k, q),
then the discrete logarithm overFqĝ(n,k,q)−k is easy. In other
words, we prove that the list decoding is not feasible for ra-
diusn− ĝ(n, k, q) or larger, assuming that the discrete log-
arithm overFqĝ(n,k,q)−k is hard. Note that it does not rule
out the possibility that there are only polynomially many
codewords in all Hamming balls of radiusn − ĝ(n, k, q),
even assuming the intractability of the discrete logarithm
overFqĝ(n,k,q)−k .

Theorem 1 If there exists an algorithm solving the list
decoding problem of radiusn − ĝ(n, k, q) for the Reed-
Solomon code[n, k]q in timeqO(1), then discrete logarithm
over the finite fieldFqĝ(n,k,q)−k can be computed in random
timeqO(1).

Let us consider a numerical example. Setn = 1000,
k = 400, q = 1201. The unambiguous decoding algo-
rithm can correct up tob(n − k + 1)/2c = 300 errors.
The Guruswami-Sudan algorithm can correctbn−

√
nkc =

b1000−
√

1000 ∗ 400c = 368 errors. Can we list decode up
to n− ĝ(n, k, q) = 1000− 498 = 502 errors in reasonable
time? The theorem shows that if we can, then the discrete
logarithm overF120198 can be solved efficiently, which is
thought unlikely.

When the list decoding problem is hard for certain ra-
dius, or a Hamming ball contains too many codewords for
us to enumerate all of them, we can ask for an efficient
bounded distance decodingalgorithm, which only needs
to output one of the codewords in the ball, or output the
empty set in case that the ball does not contain any code-
word. However, we prove that the bounded distance decod-
ing is hard as well.

Theorem 2 Let q be a prime power andh be a positive
integer satisfyingq ≥ max(g2, (h − 1)2+ε) and g ≥
( 4

ε +2)(h+1) for a constantε > 0. If the bounded distance
decoding problem of radiusq − g for the Reed-Solomon
code[q, g − h]q can be solved in timeqO(1), the discrete
logarithm problem overFqh can be solved in random time
qO(1).

We state one of the implications of this theorem. Let
p be a prime. Takeε = 1/2.The theorem says that find-
ing a polynomial of degree at most9p2/5 + 19 but passes
at least10p2/5 + 20 many points in a given set of points
{(0, y0), (1, y1), · · · , (p − 1, yp−1)}, is at least as hard as
solving the discrete logarithm over fieldF

pbp2/5+1c .
We rely on the idea of index calculus to prove these two

theorems. Our application of index calculus however is dif-
ferent from its usual applications, in that we use it to prove
a hardness result (a computational lower bound), rather than
a computational upper bound. We naturally come across the

following question in the proofs: In a finite fieldFqh , for
any α such thatFqh = Fq[α], can Fq + α generate the
multiplicative group(Fqh)∗? This interesting problem has
a lot of applications in graph theory, and it has been stud-
ied by several number theorists. Chung [4] proved that if
q > (h−1)2, then(Fqh)∗ is generated byFq +α. Wan [18]
showed a negative result that ifqh − 1 has a divisord > 1
andh ≥ 2(q logq d+logq(q+1)), then(Fqh)∗ is not gener-
ated byFq +α for someα. Katz [11] applied the Lang-Weil
method, and showed that for everyh ≥ 2 there exists a con-
stantB(h) such that for any finite fieldFq with q ≥ B(h),
any element in(Fqh)∗ can be written as a product of exactly
n = h+ 2 distinct elements fromFq +α. ClearlyB(h) has
to be an exponential function. In this paper, we use Weil’s
character sum estimate and a simple sieving to prove that if
q ≥ max(g2, (h−1)2+ε) andg ≥ ( 4

ε +2)(h+1) for a con-
stantε > 0, then any element in(Fqh)∗ can be written as a
product of exactlyg distinct elements fromFq +α. In com-
parison to Katz’s theorem, we use a biggern and manage to
decreaseB(h) to a polynomial function inh andk.

It is generally believed that the list decoding problem and
the bounded distance decoding for Reed-Solomon codes are
computationally hard if the number of errors is greater than
n−

√
nk and less thann−k. This problem is even used as a

hard problem to build public key cryptosystems and pseudo-
random generators [12]. A similar problem, noisy polyno-
mial interpolation [3], was proved to be vulnerable to the
attack of lattice reduction techniques, hence is easier than
originally thought. This raises concerns on the hardness of
polynomial reconstruction problem. Our results confirm the
belief that polynomial reconstruction problem is hard, un-
der a well-studied hardness assumption in number theory,
hence provide a firm foundation for many protocols based
on the problem.

This paper is organized as follows. In Section 2, we
prove Lemma 1. In Section 3, we sketch the proof of Theo-
rem 1 and Theorem 2. In Section 4, we show an interesting
duality between the size of a group generated by linear fac-
tors, and the list size in Hamming balls of Reed-Solomon
codes.

2. Proof of Lemma 1

In this section, we prove Lemma 1 by showing the fol-
lowing statement.

Theorem 3 There are no positive integral solutions for the
inequalities (

n

g

)
> nh, (1)

g >
√
n(g − h). (2)

We first obtain a finite range forh, g andn.



Lemma 2 If (n, g, h) is a positive integral solution, then
h < 88.

Proof: Denoteg/h by α and n/h by β. From g >√
n(g − h), we haveα >

√
β(α− 1). Henceα < β <

α+ 1 + 1
α−1 .

Recall that for any positive integeri,
√

2πi(i/e)i ≤ i! ≤√
2πi(i/e)i(1 + 1

12i−1 ).(
n
g

)
=

(
βh
αh

)
≤ ( ββ

αα(β−α)β−α )h.

Thus ββ

αα(β−α)β−α ≥ βh, which implies

h ≤ ββ−1

αα(β − α)β−α
.

Recall some facts:

1. Forx > 0, xx takes the minimum value0.6922.. at
x = e−1 = 0.36787944....

2. Forx > 0, 1 ≤ (1 + 1
x )x ≤ e = 2.7182818284...

If α ≥ 2, thenβ − α ≤ 1 + 1
α−1 ≤ 2. We have

h ≤ 1.45ββ−1

αα

≤
1.45(1 + α+ 1

α−1 )(α+ 1
α−1 )

αα

≤ 1.45(1 + α+
1

α− 1
)(

1
α−1 )(1 +

1
α

+
1

α(α− 1)
)α

≤ 1.45 ∗ 4 ∗ e ∗ 2 < 32.

If α < 2, h ≤ 1.45ββ−1

(β−α)β−α . There are two cases. Ifβ ≤ 3,
then

h ≤ 1.452 ∗ 9 < 19.

If β > 3, then

h ≤ 1.45(
β

β − α
)β−1(β − α)α−1

≤ 1.45(
β

β − 2
)β−1(1 +

1
α− 1

)α−1

≤ 1.45 ∗ e3 ∗ 3 < 88.

2

Corollary 1 α ≥ 88/87 andβ − α < 88.

Note that ifα < 89, thenβ < 178. If α ≥ 89, thenβ −
α ≤ 1 + 1/88, but n − g = (β − α)h is an integer, and
h ≤ 87, soβ − α ≤ 1. So ifn > 2h, (1) can not hold.

Proof: Now we can finish proving the main theo-
rem of this section, by exhaustively searching for the solu-
tions in the finite range thath < 88, n < 178 ∗ 88 = 15664
andh < g < n in a computer. 2

Similarly we can show that for any constantc, the in-
equalities (

n

g

)
≥ nh−c (3)

g >
√
n(g − h) (4)

have only finite number of positive integral solutions.
Denote n

g−h by γ and g
g−h by δ. To prove the second part

of the lemma, it suffices to see that
(
n
g

)
=

(
γ(g−h)
δ(g−h)

)
≤ cg−h

2

for some constantc2 depending only onγ andδ.

3. The decoding problem and the discrete log-
arithm

Let q be a prime power and letFq be the finite field with
q elements. LetS be a subset ofFq of n elements. For a pos-
itive integerg ≤ n, consider

Sg = {A|A ⊆ S, |A| = g}.

Clearly, the setSg has
(
n
g

)
elements. For anyA ∈ Sg, let

PA(x) =
∏
a∈A

(x− a).

This is a monic polynomial of degreeg which splits overFq

as a product of distinct linear factors.
Let h(x) be an irreducible monic polynomial overFq of

degreeh < g. Define a map

ψ : Sg → Fq[x]/(h(x))

by
ψ(A) = PA(x) (mod h(x)).

For anyf(x) in Fq[x]/(h(x)) with degree at mosth− 1 , if
ψ−1(f(x)) is not empty, then there exists at least one monic
polynomialt(x) ∈ Fq[x] of degreeg − h and oneA ∈ Sn

such that
f(x) + t(x)h(x) = PA(x).

For anya ∈ A, PA(a) = 0, t(a) = −f(a)/h(a). Hence
there are exactlyg elements inS which are the roots of
f(x) + t(x)h(x) = 0, and the curvey = t(x) passes at
leastg points in the following set ofn points:

{(a,−f(a)/h(a))|a ∈ S}.

According to the pigeonhole principle, there must exist a
polynomialf̂(x) such that

|ψ−1(f̂(x))| ≥ |Sg|/|Fq[x]/(h(x))| =
(
n
g

)
qh

.

For any polynomialf ∈ Fq[x] of degree at mosth − 1,
letTf(x) be the set of monic polynomialt(x) ∈ Fq[x] of de-
greeg − h such thatf(x) + t(x)h(x) = PA(x) for some



A ∈ Sg. LetCf(x) be the set of codewords with distance ex-
actlyn− g to the received word(−f(a)/h(a)− ag−h)a∈S

in Reed-Solomon code[n, g − h]q. It is then easy to prove

Lemma 3 There is a one-to-one correspondence between
Tf(x) andCf(x), by sending anyt(x) ∈ Tf(x) to (t(a) −
ag−h)a∈S .

Suppose that we knowf(x) andh(x), but notA, are we
still able to findt(x)? This is just a list decoding problem of
Reed-Solomon code[n, g−h]q. Once we have a list oft(x),
we can findA by factoringf(x) + t(x)h(x). This provides
a general framework for the following proofs.

3.1. The proof of Theorem 1

Given a Reed-Solomon code[n, k]q, leth = ĝ(n, k, q)−
k. Recall that̂g(n, k, q) is the smallest positive integer such
that

(
n
g

)
/qg−k is less than1, andh is the degree of an ir-

reducible polynomialh(x). We show that there is an effi-
cient algorithm to solve the discrete logarithm overFqh =
Fq[x]/(h(x)) if there is efficient list decoding algorithm for
the Reed-Solomon code[n, k]q with radiusn− ĝ(n, k, q) =
n − k − h. Let α = x (mod h(x)). Suppose that we are
given the baseb(α) and we need to find out the discrete
logarithm oft(α) with respect to the base, whereb andt are
polynomials overFq of degree at mosth − 1. That there is
an efficient list decoding algorithm implies:

1. There are only polynomially many codewords in any
Hamming ball of radiusn − ĝ(n, k, q), which in turn
implies that|ψ−1(f)| ≤ qc for anyf ∈ Fqh and a con-
stantc. Hence

|ψ(Sĝ(n,k,q))| ≥

(
n

ĝ(n,k,q)

)
qc

= Θ(qĝ(n,k,q)−k/qc)
= Θ(qh/qc).

2. And they can be found in polynomial time.

We use the index calculus algorithm withfactor bases
(α−a)a∈S . If we randomly select an integeri between0 and
qh − 2, then with probability bigger than1/qc, ψ−1(b(α)i)
is not empty. Applying the list decoding algorithm, we get
relations

b(α)i = f(α) =
∏

a∈A1

(α− a) = · · · =
∏

a∈Al

(α− a)

for someA1, A2, · · · , Al ∈ Sĝ(n,k,q), wherel is the list
size. From the relations, we get linear equations.

i =
∑

a∈A1

logb(α−a) = · · · =
∑
a∈Al

logb(α−a) (mod qh−1)

These equations are defined over a ring rather than a
field. We repeat the above procedure. Sincei is picked ran-
domly, andSg is the sample space, the probability that the
new equation is linear independent to the previous ones is
very high at the beginning of the algorithm. We getn inde-
pendent equations with probability more than1 − 1

2n after
we pick no more thanO(n log n) manyi’s. Solving the sys-
tem of equations gives uslogb(α − a) for all a ∈ Fq. See
[14] for a formal analysis.

In the last step, for a randomi, we computeb(α)it(α).
If ψ−1(b(α)it(α)) is not empty, we can solvelogb t imme-
diately. This finishes the proof of Theorem 1.

3.2. The proof of Theorem 2

We first prove the following number theoretic result.

Theorem 4 Let q be a prime power and leth be a positive
integer. Ifq ≥ max(g2, (h − 1)2+ε) andg ≥ ( 4

ε + 2)(h +
1) for a constantε > 0, then every element inF∗qh can be
written as a product of exactlyg distinct factors from{α +
a|a ∈ Fq}, for anyα such thatFq(α) = Fqh .

Proof: We follow the method used in [18]. Fix anα such
thatFq(α) = Fqh . Forβ ∈ F∗qh , letNg(β) denote the num-
ber of solutions of the equation

β =
g∏

i=1

(α+ ai), ai ∈ Fq,

where theai’s are distinct. We need to show that the num-
berNg(β) is always positive ifq ≥ max(g2, (h − 1)2+ε)
andg ≥ ( 4

ε + 2)(h+ 1).
LetG be the character group of the multiplicative group

F∗qh , which is a cyclic group of orderqh − 1. Now,∑
χ∈G

χ(
g∏

i=1

(α+ ai)/β) =

{
qh − 1, if β =

∏
i(α+ ai),

0, otherwise.

Thus,

Ng(β) =
1

qh − 1

∑
ai∈Fq, ai distinct

∑
χ∈G

χ−1(β)χ(
g∏

i=1

(α+ai)).

Since the second summand is always non-negative, a sim-
ple inclusion-exclusion sieving implies that

Ng(β) ≥ 1
qh − 1

(
∑

ai∈Fq,1≤i≤g

−
∑

1≤i1<i2≤g

∑
ai∈Fq,ai1=ai2

)

∑
χ∈G

χ−1(β)χ(
g∏

i=1

(α+ ai)).

For non-trivial characterχ, one has the well-known Weil es-
timate [18]

|
∑

a∈Fq

χ(α+ a)| ≤ (h− 1)
√
q.



Separating the trivial character, we deduce that

Ng(β) ≥
qg −

(
g
2

)
qg−1

qh − 1
− (1 +

(
g

2

)
)(h− 1)gqg/2.

In order forNg(β) > 0, it suffices to have the inequality

(q −
(
g

2

)
)qg/2−1−h > (1 +

(
g

2

)
)(h− 1)g.

This inequality is clearly satisfied if bothq > 2
(
g
2

)
+ 1 =

g(g− 1) + 1 andqg/2−1−h > (h− 1)g. These two inequal-
ities are satisfied if we takeq ≥ max(g2, (h − 1)2+ε) and
g ≥ ( 4

ε + 2)(h+ 1). The theorem is proved.
Remark. Asymptotically, the conditionq ≥ g2 is still

quadratic. It would be very interesting to obtain positive re-
sults with only linear conditionq ≥ cg for some positive
constantc.

2

Now we are ready to prove Theorem 2
Proof: Let h(x) be an irreducible polynomial overFq of

degreeh. Letq ≥ max(g2, (h−1)2+ε) andg ≥ ( 4
ε +2)(h+

1). ThenFqh = Fq[x]/(h(x)). Denotex (mod h(x)) byα.
We need to solve the discrete logarithm oft(α) with base
b(α) in Fqh , whereb and t are polynomials of degree at
mosth− 1. We letS = Fq.

(Fq)g = {A|A ⊆ Fq, |A| = g}.

First we randomly select an integersi between0 andqh−
2. Computeb(α)i, and letf(α) be the result wheref(x) is
a polynomial of degree at mosth−1. Now run the bounded
distance decoding algorithm on the Reed-Solomon code
[q, g−h]q with the point set{(a,−f(a)/h(a)− ag−h)|a ∈
Fq} and the distance boundq − g. Then according to The-
orem 4, the answer is not the empty set. Let the answer be
t(x) − xg−h. The polynomialt(x) has degreeg − h, and
agrees with{(x,−f(x)/h(x))|x ∈ Fq} atg distinct points.
The polynomialf(x) + t(x)h(x) has degree at mostg, but
has at leastg distinct zeros, thus it splits as a product of lin-
ear factors. Letf(x) + t(x)h(x) =

∏
a∈A(x+ a) for some

A ∈ (Fq)g. Write it in another way,

bi =
∏
a∈A

(α+ a).

We get

i =
∑
a∈A

logb(α+ a) (mod qh − 1).

We repeat the step several times and obtain a collec-
tion of relations. It may not be possible to solve the lin-
ear system, because the system may not have the full
rank. This is the case, for instance, when all theAi’s

come from a subset ofFq. Informally, after we de-
tect that, we start to computet(α)b(α)x, and find its
representation as a product of linear factors. The for-
mal analysis of this method appeared in [14]. We only
need to tryO(n log n) many i’s before we solve the dis-
crete logarithm oft(α) with base b(α) with probabil-
ity 1− 1

2n . 2

A easy consequence of the theorem is as follows.

Corollary 2 Letq be a prime power andh be a positive in-
teger satisfyingq > (h − 1)4. If the bounded distance de-
coding problem of radiusq − 4h− 4 for the Reed-Solomon
code[q, 3h + 4]q can be solved in timeqO(1), the discrete
logarithm problem overFqh can be solved in random time
qO(1).

4. Group size and list size

Let q be a prime power, andS be a subset ofFq of n ele-
ments, wheren is very small compared toq. Letα be an el-
ement inFqh such thatFq[α] = Fqh . What is the order of
the subgroup generated byα + S for someS ⊆ Fq ? This
question has an important application in analyzing the per-
formance of the AKS primality testing algorithm [1]. Ex-
perimental data suggests that the order is greater thanqh/c

for some absolute constantc for |S| ≥ h log q. If we can
prove it, the space complexity of the AKS algorithm can be
cut by a factor oflog p (p is the input prime whose primal-
ity certificate is sought), which will make (the random vari-
ants of ) the algorithm comparable to the primality proving
algorithm used in practice. However, the best known lower
bound is(c|S|/h)h for some absolute constantc [17]. We
discover an interesting duality between the group size and
the list size in Hamming balls of certain radius.

Theorem 5 Let k, n be positive integers andq be a prime
power. One of the following statements must be true.

1. For any constantc1, there exists a Reed-Solomon code
[n, k]q (n/3 < k < n/2), and a Hamming ball of ra-
diusn− ĝ(n, k, q) containing more thanc11.9n code-
words.

2. Lets = log q, the group generated byα+ S, has car-
dinality at leastqh/c2 for some absolute constantc2,
whereS ⊆ Fq and|S| = s log q.

To prove the first statement would solve an important
open problem in the Reed-Solomon codes. To prove the sec-
ond statement would give us a primality proving algorithm
much more efficient in term of space complexity than the
original AKS and its random variants, hence make the AKS
algorithm not only theoretical interesting, but also practi-
cal important. However, at this stage we cannot figure out
which one is true. What we can prove, however, is that one



of them must be true. Note that it is also possible that both
statements are true.

Proof: Let s = log q, k = sh/2 − h and n = sh.
So the ratek/n is very close to1/2 as s gets large, and
ĝ(n, k, q) = sh/2. Assume the first statement is false,
this means that there exists a constantc3 such that for
any Reed-Solomon code[n, k]q with n/3 < k < n/2,
the number of codewords in any Hamming ball of radius
n− ĝ(n, k, q) is less thanc31.9n. The number of balls con-
taining at least one codeword with that radius and center
point at(−f(a)/h(a) − ak)a∈S∈Fq

, wheref ∈ Fq[x] has
degree less thanh is greater than

qh/(c31.9n) = qh−n log 1.9/ log q/c3 ≥ qh/c,

which is a low bound of the size of the group gener-
ated byα+ S. 2

5. Concluding remarks

This is a gap betweenn−
√
nk andn− ĝ(n, k, q). Clos-

ing the gap is a very important open problem. Other interest-
ing open questions include whether the list or bounded dis-
tance decoding problem of Reed-Solomon code for the pa-
rameters studied in the paper is equivalent to or harder than
the discrete logarithm over finite fields, and whether there
exists a polynomial time quantum algorithm to solve these
decoding problems.

AcknowledgmentsWe thank Chaohua Jia for helpful dis-
cussion on the proof of Theorem 4.
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