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ABSTRACT
Many polynomial factorization algorithms rely on Hensel
lifting and factor recombination. For bivariate polynomials
we show that lifting the factors up to a precision linear in
the total degree of the polynomial to be factored is sufficient
to deduce the recombination by linear algebra, using trace
recombination. Then, the total cost of the lifting and the
recombination stage is subquadratic in the size of the dense
representation of the input polynomial. Lifting is often the
practical bottleneck of this method: we propose an algo-
rithm based on a faster multi-moduli computation for uni-
variate polynomials and show that it saves a constant factor
compared to the classical multifactor lifting algorithm.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.4 [Mathematics of Comput-
ing]: Mathematical Software

General Terms
Algorithm, Theory

Keywords
Computer algebra, polynomial factorization, Hensel lifting,
multi-moduli, Tellegen, transposition principle

1. INTRODUCTION
Many multivariate factoring methods follow Zassenhaus’

approach [32, 33]. First, with a low probability of failure the
problem is reduced to a bivariate polynomial factorization,
by Bertini’s irreducibility theorem [34, Ch. 19]. Then, one of
the two remaining variables is specialized at random. The
resulting univariate polynomial is factored and its factors
are lifted up to a high enough precision. The final step lies
in recombining the lifted factors to get the factors of the
original polynomial. In this text we discuss the complexity
aspects of this approach.
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1.1 Notation
All along this text R denotes a commutative ring with

unity, K a field, K̄ its algebraic closure, R[x, y] the ring of
polynomials in two variables over R, R[x]m (resp. R[x, y]m)
the module of univariate (resp. bivariate) polynomials of
degree at most m. The power series ring over K is denoted
K[[x]] and its field of fractions K((x)). For any polynomial
G ∈ R[x, y], we denote deg(G) its total degree and its degree
with respect to the variable y is written degy(G). Often

K[x, y] is viewed as K[x][y], this is why we denote by G′ the
first derivative of G with respect to y, while we use Gx to
denote derivative with respect to x. The resultant of F and
G in K[x, y] with respect to y is denoted Resy(F, G).

We use Gantmacher’s notation w1:k to denote the k-tuple
(w1, . . . , wk). We also use the notation 〈w1, . . . , wk〉 = 〈w1:k〉
to denote the K-vector space generated by w1:k.

For our complexity analyses, we use the computation tree
model [6, Ch. 4]. In the case of multiplication of polynomi-
als, we restrict ourselves to straight-line programs perform-
ing only linear operations in the coefficients of the polynomi-
als (this is the case for the naive, Karatsuba and FFT multi-
plications). We denote by M(n) the complexity of multiply-
ing two polynomials of degree at most n in this model. As
in [9, §8.3] we assume that M is super-additive: M(n1+n2) ≥
M(n1)+M(n2) for any positive integers n1 and n2. For sim-
plicity we also assume that n log n ∈ O(M(n)). We use the

notation f(n) ∈ Õ(g(n)) to indicate f ∈ O(g(n)(log n)a) for
some a ≥ 0. The constant ω denotes the matrix multiplica-
tion exponent as in [9, Ch. 12], so that two n × n matrices
can be multiplied within O(nω) field operations (2 ≤ ω ≤ 3).

1.2 Hypotheses
The polynomial to be factored is always denoted by F ∈

K[x, y], d represents its total degree. In all this work, we
assume the following:

Hypothesis (H)

{
(i) degy(F ) = deg(F ) = d;

(ii) Resy(F ′, F )(0) 6= 0.

Hypothesis (H) is not really restrictive: if F is square-free,
it can be ensured by means of a generic linear change of
variables. Under Hypothesis (H), F is monic in y. The
monic (with respect to y) irreducible factors of F over K
(resp. over K[[x]]) are then denoted F1:r (resp. F1:s).

1.3 Overview of the Algorithm, Contributions
Suppose that K supports effective univariate polynomial

factorization. Then, under Hypothesis (H), we consider the
following bivariate factorization algorithm:



1. Fiber. Factor F (0, y), which gives F1:s mod x;

2. Lifting. By Hensel lifting, compute F1:s mod xσ;

3. Recombination. Compute a basis in reduced echelon form
of the vector space π(Lσ), where Lσ is the subspace of Ks×
K[x, y]d−1 of all the (`1:s, Q) satisfying

s∑
i=1

`i
F′i
Fi

F = Q +O(xσ), (1)

π(Lσ) denoting the canonical projection of Lσ to Ks.

Stages 1 and 2 are classical in approaches following Zassen-
haus; Stage 3 originates in Sasaki’s work [26, 24, 25], in a
different but equivalent form called trace recombination (this
equivalence is proved in §2.3). After [1], we call this third
stage the logarithmic derivative recombination method. The
idea is that for σ large enough, any (nonnecessarily irre-
ducible) factor of F corresponds to a solution of (1), as can
be seen by considering its logarithmic derivative.

In this text, we do not discuss Stage 1. If K has char-
acteristic zero or large enough, our first contribution is the
proof that if σ ≥ 3d − 2 then the factors F1:r can be read
off the basis in row echelon form of π(Lσ). A sharper linear
bound σ = d+1 was previously announced in [24]; however,
here is a counter-example to this claim:

Example 1. Let K = Q[α], with α2 + 14348907
2000000

= 0, and

F = y3+xy2+

(
−1− 4000

6561
αx + x2

)
y−1

3
x−32000

59049
αx2+x3,

satisfying F (0, y) = y(y−1)(y+1). At precision σ = d+1 =
4, one gets π(L4) = 〈(1, 0, 2), (0, 1,−1)〉 which is not suffi-
cient to read the factorization. Then, at precision d+2 = 5,
it appears that F is irreducible, since π(L5) = 〈(1, 1, 1)〉.

Thus, to the best of our knowledge, ours is the first linear
bound to be proved. Theorem 15.18 in [9] then implies that
the Lifting stage requires O(M(d)2 log s) operations in K.

We study the cost of two Recombination algorithms: a
deterministic one requiring O(sM(d)2 + d2sω−1) operations
in K and a faster probabilistic one requiring O(d2 +sM(d)+
dsω−1 + sω log s) operations in K. Once the basis is com-
puted, from F1:s at precision at least O(xd+1), recovering
F1:r takes O(M(d)2 log s) operations in K [9, Lemma 10.4].

Roughly speaking, over finite fields of characteristic suf-
ficiently large, this yields a deterministic factorization algo-
rithm of complexity in Õ(dω+1) and a probabilistic Monte

Carlo algorithm of complexity in Õ(dω) (the dependence in
the cardinality of the base field is not taken into account).

These estimates are subquadratic with respect to the size
d2 of the input. This improves Lenstra’s O(d8) result [20],
those of von zur Gathen and Kaltofen [11] and Noro and

Yokoyama [23] with complexity O(d6) and Gao’s Õ(d4) re-
sult [7, Additional Remark 3]. Thus, our second contribu-
tion is an improvement upon the known polynomial time
algorithms for bivariate factorization.

Our last contribution is a new lifting scheme based on
a multi-moduli algorithm for univariate polynomials, that
generalizes the evaluation algorithm of [4]. Asymptotically,
we save a constant factor compared to Shoup’s multifactor
algorithm described in [9, Ch. 15]. Our C++ implementa-
tion on top of NTL [27] allows us to factor the 11th bivari-
ate Swinnerton-Dyer polynomial in Z/754974721Z within 30
minutes; the total degree is d = 2048 and s = 1024, r = 1.

1.4 Related Works
We refer to [9, 7, 17, 23, 34] and references therein for

details on existing algorithms and the history of polynomial
factorization. We only discuss the trace recombination tech-
nique and related methods.

The trace recombination method was introduced for alge-
braically closed fields by T. Sasaki et alii [26]. In [25], this
hypothesis is dropped and the general trace recombination
method first appears. Also, perspectives for factoring in Z[x]
are mentioned. In [22] non-monic polynomials are consid-
ered. van Hoeij [13] came up with the last missing ingredient
for Z[x]: after factoring modulo a prime number p and do-
ing p-adic lifting of the factors, the right recombination is
recovered by means of lattice reduction.

The fact that the logarithmic derivative corresponds to
the generating series of the traces is well known. But the
idea of using it inside the recombination stage is the key to
determining accurate bounds on σ. To our best knowledge,
this idea was first introduced in a recent work of Belabas, van
Hoeij, Klüners and Steel [1]: in the context of an arbitrary
global field, they prove that the Hensel and recombination
scheme has polynomial complexity. In the bivariate polyno-
mial case they reach the bound σ ≥ d(d− 1) + 1, whatever
the characteristic of the base field is. Their bound follows
from the Bézout bound on the degree a certain resultant (oc-
curing in formula (2) below), that turns effective and quan-
titative the classical argument in Galois theory used in [24,
Th. 3.2]. Our method for obtaining a linear bound relies on
this quadratic bound: we prove that the quadratic bound
implies the linear one if the characteristic of the base field
is at least d(d− 1)+1. Our original contribution consists in
differentiating the residues expressing the `i.

As for Hensel lifting, we use the dense model for polyno-
mial representation. Hensel lifting has actually been studied
in many other models: sparse polynomials [10, 15], arith-
metic circuits [16], black boxes [18], parallel circuits [2]. Sub-
sequent to [32], various algorithms for Hensel lifting in the
dense representation have been proposed [30, 21, 33, 29, 14,
8, 2]. The fastest known is the multifactor lifting described
in [9, Algorithm 15.17], which was first written in C++ by
Shoup for his library NTL [27] for factoring in Z[x]. The first
fast multi-moduli algorithm appeared in [31, Lemma 4.2], we
refer to [6, 9] for historical details.

2. ALGORITHMS AND COMPLEXITY
We consider the family µ1:r of vectors of {0, 1}s, defined

by Fi =
∏s

j=1 F
µi,j

j . The vectors µi can be ordered to form a
reduced echelon sequence. By uniqueness of reduced echelon
forms, as soon as π(Lσ) = 〈µ1:s〉 holds then the µi can be
read off from the reduced echelon basis of π(Lσ).

First, we discuss the required precision σ. Then we esti-
mate the complexity of the algorithm and of an enhanced
probabilistic version. Then we show the equivalence between
the logarithmic derivative and trace recombination methods.
Next, we discuss an optimization that often helps decrease
the required precision, and give experimental timings.

2.1 Precision of the Lifting
According to the above notation, 〈µ1:r〉 ⊆ π(Lσ) since:

F ′
i

Fi
F =

s∑
j=1

µi,j
F′j
Fj

F,



and
F ′

i
Fi

F ∈ K[x, y]d−1. This inclusion turns out to be an

equality as soon as σ ≥ 3d− 2:

Theorem 1. Under Hypothesis (H), if σ ≥ 3d− 2 and if
the characteristic of K is either zero or at least d(d− 1) + 1
then π(Lσ) = 〈µ1:r〉.

Proof. Let (`1:s, Q) ∈ Lσ. Let ϕj(x) denote any series
solution of Fj(x, ϕj(x)) = 0 in K̄((x)). The condition on
Resy(F ′, F )(0) implies that ϕj ∈ K̄[[x]]. Specializing (1) at
y = ϕj(x) yields

Q(x, ϕj) = `j
F′jF

Fj
(x, ϕj) +O(xσ) = `jF

′(x, ϕj) +O(xσ).

Let λj = Q(x, ϕj)/F ′(x, ϕj) ∈ K̄[[x]]. Then we have λj =
`j +O(xσ). We are going to show the stronger equality λj =

`j +O(xd(d−1)+1), or equivalently Q(x, ϕj) = `jF
′(x, ϕj) +

O(xd(d−1)+1) for all j. This is sufficient to conclude: Let
i be such that Fi(x, ϕj) = 0 and let j1:t be integers such
that Fi = Fj1 · · ·Fjt (in particular j belongs to j1:t). Using
a classical property of resultants (see [9, Exercise 6.12]), in
K̄((x))[y], B(x) = Resy(`jF

′ −Q, Fi) is given by

B(x) =

t∏
n=1

Resy(`jF
′ −Q, Fjn) = 0 +O(xd(d−1)+1). (2)

Since B is a polynomial of degree at most d(d − 1) it fol-
lows that B is identically zero, hence `jF

′ − Q ∈ K[x, y]
is a multiple of Fi and therefore `j = `j1 = · · · = `jt =
Q(x, ϕj)/F ′(x, ϕj). This property being established for any j
proves that `1:s ∈ 〈µ1:r〉.

In order to prove that λj = `j + O(xd(d−1)+1), we start
from dλj/dx ∈ O(xσ−1), j = 1, . . . , s. A straightforward

calculation gives dλj/dx = Nj/F ′2(x, ϕj) where

Nj = (Qx(x, ϕj) + Q′(x, ϕj)ϕ
′
j)F

′(x, ϕj)

− (F ′
x(x, ϕj) + F ′′(x, ϕj)ϕ

′
j)Q(x, ϕj) = 0 +O(xσ−1).

Using the fact that ϕ′j(x) = −Fx/F ′(x, ϕj), this rewrites

dλj/dx = A/F ′3(x, ϕj), with

A = (QxF ′ −Q′Fx)F ′ − (F ′
xF ′ − F ′′Fx)Q. (3)

We now prove that the polynomial A is a multiple of F . This
implies that dλj/dx = A(x, ϕj)/F ′3(x, ϕj) = 0 and there-

fore that λj = `j+O(xd(d−1)+1), according to the hypothesis
on the characteristic of K.

The polynomial A has total degree in x and y at most 3d−
4 and vanishes at the zeroes ϕj of Fj for all j, hence at
all the zeroes of F in K̄[[x]][y] up to precision O(xσ−1).
Therefore, so does the remainder R in the Euclidean division
of A by F with respect to the variable y. This polynomial
obeys deg(R) ≤ 3d − 4 and degy(R) ≤ d − 1. Letting R =

r0(x) + r1(x)y + · · ·+ rd−1(x)yd−1 we have

(R(x, φ1), . . . , R(x, φd)) = (r0, . . . , rd−1)V +O(xσ−1),

where φ1:d are the roots of F in K̄[[x]][y] and V is the
transposed d × d Vandermonde matrix of φ1, . . . , φd. Since
Resy(F ′, F )(0) = (det V )2(0) 6= 0, we have that V is invert-
ible over K[[x]] and it follows that r0:d−1 ∈ O(xσ−1). From
deg(rj) ≤ 3d− 4 ≤ σ− 2 we deduce that all the rj are zero.
Thus R = 0, which concludes the proof. �

2.2 Recombination
We now present two methods for the Recombination step

of the algorithm, leading to different numbers of equations.
We recall from [28, Lemma 3.3] that the computation of
a reduced echelon solution basis of a linear system with n
unknowns and m ≥ n equations costs O(mnω−1 +nω log n).

Deterministic Algorithm. In order to compute π(Lσ),
we use the following system with s unknowns and less than
σd equations (a similar idea is used in [26]):

π(Lσ) =
{

`1:s ∈ Ks |
s∑

i=1

`i coeff

(
F′i
Fi

F, xjyk

)
= 0,

k ≤ d− 1, d ≤ j + k, j ≤ σ − 1
}

, (4)

where coeff
(
G, xjyk

)
denotes the coefficient of xjyk in G ∈

K[[x]][[y]]. The algorithm therefore decomposes into two
parts: (i) Compute F′iF/Fi, for i = 1, . . . , s and extract the
system (4); (ii) find a reduced echelon basis of the solution.

Proposition 1. Under Hypothesis (H), for σ > 1, com-
puting the reduced echelon basis of π(Lσ) from F1:s(0, y) re-
quires O(sM(σ)M(d) + σdsω−1 + sω log s) operations in K.

Proof. For i ≤ s, we first compute F/Fi by Euclidean divi-
sion in K[[x]][y] at precision O(xσ) (recall that Fi is monic
in y), then multiply it by F′i to obtain F′iF/Fi. This requires
O(M(σ)M(d)) operations; summing up over i ≤ s this yields
O(sM(σ)M(d)). Extracting the system then has negligible
cost O(sσd). The final term comes from the echelon com-
putation. �

Theorem 1 and [9, Th. 15.18] (or Theorem 2 below) yield:

Corollary 1. Under Hypothesis (H), given F1:s(0, y),
computing F1:r takes O(sM(d)2 + d2sω−1) operations in K.

Probabilistic Algorithm. Asymptotically, for s such that
(M(d)/d)2/(ω−2) = o(s), the most expensive part of the algo-
rithm above is the resolution of the linear system (4) using
generic linear algebra methods. A black box method can be
used (as in [7]) to obtain a faster (probabilistic) algorithm
exploiting the structure of this system.

We now detail a better probabilistic algorithm, by showing
that y may be replaced by ax, for a random a in K, with
a high probability of success. This leads to a linear system
with fewer equations than (4), reducing the cost of the linear
algebra stage. This construction is better than only taking
random linear combinations of the equations since it avoids
computing the whole system. Unfortunately, this requires
lifting to a higher precision, which will be denoted by τ
instead of σ.

To this end, we first introduce a new linear system that
behaves well under specialization of y:

Λτ =
{

`1:s ∈ Ks |
s∑

i=1

`i coeff

(
F′i
Fi

F, xjyk

)
= 0,

k ≤ d− 1, d ≤ j + k ≤ τ − 1
}

.

From (4), it follows that π(Lτ ) ⊆ Λτ ⊆ π(Lτ−d+1) and

Λτ =
{

`1:s ∈ Ks |
s∑

i=1

`i coeff

(
F′iF

Fi
(x, xz), xjzk

)
= 0,

k ≤ d− 1, d ≤ j ≤ τ − 1
}

.



Finally, for any a ∈ K we introduce:

Λa
τ =

{
`1:s ∈ Ks |

s∑
i=1

`i coeff

(
F′iF

Fi
(x, ax), xj

)
= 0,

d ≤ j ≤ τ − 1
}

.

Lemma 1. For any b ∈ K, there exists Pb ∈ K[z], such
that Pb 6= 0, deg(Pb) ≤ (dim(Λb

τ ) − dim(Λτ ))(d − 1) and if
Pb(a) 6= 0 then Λτ = Λa

τ ∩ Λb
τ .

Proof. Obviously we have Λτ ⊆ Λa
τ ∩ Λb

τ ⊆ Ks, for any a
and b. Let λ1:dim(Λb

τ ) be a basis of Λb
τ such that the dim(Λτ )

first vectors form a basis of Λτ . For any λk /∈ Λτ there exists
j ∈ {d, . . . , τ − 1} such that

pk(z) =

s∑
i=1

λk,i coeff

(
F′iF

Fi
(x, zx), xj

)
6= 0.

We take Pb as the product of all such pk. By construction
each pk has degree at most d− 1. �

The probabilistic algorithm now decomposes as: (i) pick
a random a and a random b in K; (ii) compute the series ex-
pansions F′iF (x, zx)/Fi(x, zx) for z ∈ {a, b} and i = 1, . . . , s;
(iii) compute the reduced echelon form of Λa

τ ∩ Λb
τ .

Proposition 2. Under Hypothesis (H), from F1:s at pre-
cision O(xτ ), the computation of the reduced echelon basis of
Λa

τ ∩Λb
τ requires O(dτ +sM(τ)+τsω−1 +sω log s) operations

in K, for any a, b in K and 2τ ≥ s.

Proof. Computing all series Fi(x, ax),F′i(x, ax),F (x, ax)
at precision O(xτ ) takes O(dτ) operations. Then, the series
F′iF/Fi(x, ax) are computed as F′i(x, ax)

∏
j 6=i Fj(x, ax). To

this effect, we compute the products Ai =
∏

j<i Fi(x, ax),

Bi =
∏

j>i Fi(x, ax), so that F′i(x, ax)
∏

j 6=i Fj(x, ax) equals

F′i(x, ax)AiBi. Proceeding incrementally, the total cost of
this computation is O(sM(τ)). The final system has s un-
knowns and less than 2τ equations. �

Combining the previous results and using τ = 4d− 3, we
have dim(Λτ ) = r and dim(Λb

τ ) ≤ s and deduce:

Corollary 2. Under Hypothesis (H), for any b in K
there exists Pb ∈ K[z] with Pb 6= 0, deg(Pb) ≤ (s− r)(d−1),
and satisfying: for any a ∈ K such that Pb(a) 6= 0, com-
puting F1:r from F1:s(0, y) with the above algorithm requires
O(M(d)2 log s + dsω−1 + sω log s) operations in K.

A bad choice of a and b will result in wrong factors and can
be detected by re-expansion. See also §2.4 below.

2.3 Relation to Trace Recombination
We now establish the correspondence between the trace

recombination method and the computation of π(Lσ). Let

P =
∏

F
`i
i be a factor of F , and Q a polynomial such

that (`1:s, Q) ∈ Lσ. We use the well known fact that the
logarithmic derivative of a polynomial is the generating se-
ries of the Newton sums of its roots: in K[[x]][[y−1]],

P ′

P
= y−1

∑
j≥0

y−j
s∑

i=1

`iTrj(Fi), (5)

where we denote by Trj(Fi) the trace of yj in the free K[[x]]-
module K[[x]][y]/(Fi).

In view of (1), we have Q/F = P ′/P + O(xσ). This
suggests to introduce the trace recombination vector space
defined for any integers n ≥ 1 and σ ≥ 0 by

Tn,σ = {(`1:s, p0, . . . , pn) ∈ Ks ×K[x]0 × · · · ×K[x]n,

p0 =
∑s

i=1 `iTr0(Fi) +O(xσ),
· · ·

pn =
∑s

i=1 `iTrn(Fi) +O(xσ)}.

We use the same notation π for the canonical projections
from Tn,σ or Lσ to Ks. We now establish that all these
projections coincide as soon as n ≥ d − 1, thereby showing
the equivalence of our approach and trace recombination.

Proposition 3. Under Hypothesis (H), for any integer
n ≥ d− 1 and any value of σ, π(Tn,σ) = π(Lσ).

Proof. Let (`1:s, Q) ∈ Lσ. Extracting the coefficients of
y−1, . . . , y−n−1 in

Q = F

n∑
j=0

pjy
−(j+1) +O(y−n−2) (6)

defines a family (pi)i∈{0,...,n} with pi ∈ K[x]i. From (1),

n∑
j=0

pjy
−(j+1) =

n∑
j=0

y−(j+1)
s∑

i=1

`iTrj(Fi) +O(y−n−2, xσ),

which is equivalent to (`1:s, p0:n) ∈ Tn,σ. Now we consider
the converse inclusion: let (`1:s, p0:n) ∈ Tn,σ. Since n ≥ d−1
we define Q by extracting the coefficients of y−1, . . . , y−d

in (6) and check that Q ∈ K[x, y]d−1. Thus, Q rewrites

F
∑
j≥0

y−(j+1)
s∑

i=1

`iTrj(Fi) +O(xσ) =

s∑
i=1

`i
F′i
Fi

F +O(xσ),

that is (`1:s, Q) ∈ π(Lσ). �

2.4 Optimization
In most cases, working with precision σ = d + 1 yields

the right recombination; building counter-examples such as
Example 1 requires some effort. Indeed, by adapting [26,
Th. 5.3], we now show that if the reduced echelon form of
π(Lσ) has all its entries in {0, 1} for a σ ≥ d + 1, then it is
not necessary to lift the factors to a higher precision.

Proposition 4. Under Hypothesis (H), if the character-
istic of K is either 0 or at least d and if the reduced echelon
form of π(Lσ) has all its entries in {0, 1} for a σ ≥ d + 1,
then π(Lσ) = 〈µ1:r〉.

Proof. Since 〈µ1:r〉 ⊆ π(Lσ), it is sufficient to prove that
any vector of π(Lσ) with all coordinates in {0, 1} belongs
to 〈µ1:r〉, or in other words corresponds to a factor of F
over K. We consider such a vector `1:s ∈ {0, 1}s and let Q ∈
K[x, y]d−1 be such that (`1:s, Q) ∈ Lσ. Let A =

∏s
i=1 F

`i
i

denote the candidate factor. The proof consists in showing
that if m = degy(A), then A mod xσ ∈ K[x, y]m. Then,

since `1:s ∈ {0, 1}s, we define the cofactor B =
∏s

i=1 F
1−`i
i

and the same reasoning leads to B mod xσ ∈ K[x, y]d−m.
It follows from σ ≥ d + 1 that AB = F + O(xσ) implies
(A mod xσ)(B mod xσ) = F ∈ K[x, y], as was to be proved.

In order to compute the bound on the degree of A, let
ai denote the coefficient of yi in A and m = degy(A). By

construction we have A′F = QA + O(xσ). Extracting the



Table 1: Deterministic Algorithm in C++
n d new old eqs ech matrix

lift. lift. size
6 64 0.42 0.54 0.35 0.04 32× 2080
7 128 1.72 4.48 3.19 0.86 64× 8256
8 256 8.19 35.1 27.3 13.0 128× 32896
9 512 38.2 168 234 198 256× 131328
10 1024 177 786 2007 3108 512× 524800

Table 2: Probabilistic Algorithm in C++
n d fiber new eqs ech matrix

lift. size
6 64 0.03 0.65 0.02 0.01 32× 128
7 128 0.13 3.04 0.13 0.02 64× 256
8 256 0.37 15.4 0.57 0.18 128× 512
9 512 1.11 73.2 2.56 1.55 256× 1024
10 1024 3.68 348 11.4 12.1 512× 2048
11 2048 13.4 1700 52.2 95.2 1024× 4096

coefficients of yd−1, . . . , ym+d−1 gives a triangular system for
the aj ’s. The hypothesis on the characteristic of K shows
that this system defines each aj as a polynomial in K[x]m−j

up to precision O(xσ). Thus, A mod xσ belongs to K[x, y]m.
�

For the probabilistic strategy described in §2.2 the bound
d + 1 in this Proposition has to be replaced by 2d.

2.5 Experiments
We provide timings obtained with our C++ implemen-

tation for the Swinnerton-Dyer family (Sn)n≥0 of bivariate
polynomials [34, p. 340] over Z/754974721Z:

Sn(x, y) =
∏

(y ±
√

x + 1± · · · ±
√

x + n).

Sn has total degree d = 2n, it is monic and for our examples,
Hypothesis (H) is satisfied for x = 7. These polynomials
exhibit the worst possible case for our algorithm, since they
are irreducible but their specializations Sn(7, y) split into
factors of degree 2, hence s = 2n−1.

Proposition 4 always applies in all the given timings, hence
the precision is σ = d + 1 for the deterministic approach
and τ = 2d for the probabilistic one. In Table 1 we re-
port timings (in seconds, measured with a 2 GHz Athlon
platform) for the deterministic approach and in Table 2 for
the probabilistic method. We have implemented two lift-
ing algorithms: our new lifting algorithm presented in the
next section and multifactor lifting as described in [9, Algo-
rithm 15.17]. In Table 1, the columns successively indicate
timings for both versions of lifting, for constructing the lin-
ear system (eqs) and for the computation of the reduced ech-
elon form (ech). The last column gives the size of the matrix
to be reduced. In Table 2, we also indicate the time for the
factorization of F (0, y) (fiber), which does not depend on
the version of algorithm. This uses NTL’s factorization [27].

Our C++ experimental code shows that the theoretical
complexities can be observed for high degrees:
– The cost of linear algebra appears to be multiplied by
roughly 16 (resp. 8) in the deterministic (resp. probabilistic)
algorithm when d is doubled. This is in agreement with our
estimates, as we use an implementation where ω = 3.
– The cost of lifting is multiplied by slightly more than 4
when the degree is multiplied by 2. Again, this is in line with
the leading term of our complexity estimates and shows that

Table 3: Comparison of Implementations
n Maple 9 Magma 2.9-15 Asir our code
3 0.589 0.04 0.01 0.02
5 3049 4.36 2.36 0.75
7 > 150e3 92e3 > 150e3 17.7
9 Error > 400e3 Error 394

the polynomial multiplication we are using is quite good.
– In the deterministic approach, the cost of linear algebra
starts to dominate that of lifting as soon as n ≥ 7. The
advantage of the probabilistic approach then starts to be
perceptible. It gains clearly for n ≥ 8.
– The ratio between both liftings is close to 4.4, which differs
from the ratio of the theoretical constants given at the end
of the next section. One reason for this is that these analyses
give worst-case complexities, whereas the polynomial Sn has
all its factors Fi of the same degree: in this case, theoretical
estimates can be sharpened. A first analysis then leads to a
theoretical ratio asymptotic to 13.5/4.

In Table 3, we compare our code and several computer
algebra systems, on the same machine. The family of poly-
nomials for this test is Tn(x, y) = Sn(x2, y)Sn(y2, x) that we
factor over Z/754974721Z. For odd n, these polynomials are
monic, of degree 2n+1. These polynomials being symmetric,
the time to factor them does not depend on the choice of
variable in the specialization step.

On these examples, the best timings are provided by Asir
20031213 and Magma 2.9-15 (Magma 2.10-12 gives longer
computation times). Singular and Mathematica (both 4.0
and 5.0) could not be compared, as they returned error mes-
sages. Maple and Asir return error messages for n = 9.

3. HENSEL LIFTING
In actual practice, the lifting stage dominates the process,

while the linear algebra part is relatively fast. This moti-
vates a more precise study of the lifting stage, which is the
aim of this section. Given F in K[x, y], the question is to
lift a factorization of F (0, y) in K[y] to a factorization of F
in K[[x]][y]. Our solution improves the complexity of the
previous algorithms by a constant factor. A basic tool is
an improvement of simultaneous modular reduction, which
we present first. We recall that R is a commutative ring
with unity. We define the reversal endomorphism rev(d, .)
by rev(d, a) = yda(1/y) for all a ∈ R[y]d.

3.1 Simultaneous Modular Reduction
Let p0:s be monic polynomials in R[y], of positive degrees

d0:s; we write p = p0 · · · ps and d = deg(p). In what follows
we improve (by a constant factor) the complexity of the
known algorithms for the following problem:

Simultaneous modular reduction. Given q ∈ Rd−1[y],
compute the polynomials q mod pi, 0 ≤ i ≤ s.

In [4] the case where deg(pi) = 1 (that is, multipoint eval-
uation) was treated. The method consisted in designing an
algorithm for the transposed problem and then transposing
it. We now extend this approach to the general problem. For
our applications to Hensel lifting, we need an algorithm de-
rived from simultaneous modular reduction, called Inverse-
UpTree and discussed at the end of this section.

The Subproduct Tree. A common piece of our algorithms
is the precomputation of the subproduct tree T with leaves



p0:s [9, §10.1]. This tree is defined recursively, together with
the sequence of integers si, by

T0,j = pj , for j ∈ {0, . . . , s}, s0 = s + 1,

Ti,j = Ti−1,2jTi−1,2j+1, for j < ri = bsi/2c , i ≥ 1.

If si = 2ri + 1 we let Ti,ri = Ti−1,si−1 and si+1 = ri + 1,
otherwise we just let si+1 = ri. Let h(T ) be the smallest
integer h such that sh = 1 (the height of the tree). At the
top of the tree we get Th(T ),0 = p.

We denote by SubProductTree(p0, . . . , ps) the algorithm
performing these operations. By [9, Lemma 10.4], its com-
plexity is within M(d) log s +O(d log s) operations in R.

Linear Combination of Moduli. Let c0:s be in R[y], with
deg(cj) < dj . The following algorithm [9, Algorithm 10.9]
takes as input c = (c0, . . . , cs) and outputs the polynomial

b =

s∑
j=0

cj
p

pj
. (7)

UpTree(c)
b ← c;
for i ← 0 to h(T )− 1 do

for j ← 0 to ri − 1 do
bj ← Ti,2j+1b2j + Ti,2jb2j+1;

if si = 2ri + 1 then bri ← bsi−1;
return b0;

This algorithm computes a linear function from R[y]d0−1 ×
· · · ×R[y]ds−1 to R[y]d−1; in the sequel, we need algorithms
that compute either the transpose or the inverse of this map.

We discuss the transposed version first. We use the trans-
position techniques of [4], using transposed multiplication:
given a ∈ R[y] of degree j, we denote mult(i, a, .) : R[y]i+j →
R[y]i the transpose of the map mul(i, a, .) : R[y]i → R[y]i+j

defined by mul(i, a, b) = ab. The operation mult is detailed
in [12, 4]; its complexity is M(k) + O(k) operations in R,
with k = max(i, j). Using this operation, we deduce the
algorithm TUpTree.

TUpTree(b)
c0 ← b;
for i ← h(T )− 1 downto 0 do

if si = 2ri + 1 then csi−1 ← cri ;
for j ← ri − 1 downto 0 do

n2j ← deg(Ti,2j+1)− 1;
n2j+1 ← deg(Ti,2j)− 1;
c2j+1 ← mult(n2j , Ti,2j , cj);
c2j ← mult(n2j+1, Ti,2j+1, cj);

return c;

Such transposition techniques preserve complexity (see [4]
and references therein). Thus, once T is computed, using [9,
Th. 10.21], it is seen that both UpTree and TUpTree algo-
rithms require 2M(d) log s +O(d log s) operations in R.

Simultaneous Modular Reduction. We first consider
the problem obtained by transposing simultaneous modular
reduction, viewed as a linear function of q. Given s + 1
polynomials cj , with deg(cj) < dj , this computes the first d
coefficients of the Taylor expansion of

s∑
j=0

ej

rev(dj , pj)
=

1

rev(d, p)

s∑
j=0

ejrev(d, p)

rev(dj , pj)
,

where ej = cjrev(dj , pj) mod ydj . For j ≤ s, let fj =
rev(dj−1, ej); then the right-most sum can be computed as
rev(d− 1, UpTree(f0, . . . , fs)).

To prove this assertion, we view the simultaneous modu-
lar reduction map as the direct product π of the canonical
projections πj : R[y]/(p)→ R[y]/(pj). Therefore, the trans-
pose of π is the sum of the transposes of πj . Now, any
element `j of the dual of R[y]/(pj) identifies with its gen-
erating series

∑
i≥0 `j(y

i)yi, which is rational and equals

(`jrev(dj , pj) mod ydj )/rev(dj , pj), see [5, Prop. 1].
We deduce the following transposed modular reduction.

TSimulMod(c)
α ← 1/rev(d, p) mod yd;
for j ← 0 to s do

ej ← (cjrev(dj , pj) mod ydj );
fj ← rev(dj − 1, ej);

u ← UpTree(f0, . . . , fs);
t ← rev(d− 1, u);

return mul(d− 1, α, t) mod yd;

To analyse the complexity of this algorithm, we suppose
that the subproduct tree T is already known. Using the
super-additivity of M, we get that the for loop requires at
most M(d) +O(d) operations in R. The complexity of com-
puting α is in O(M(d)) as well, hence the complexity of our
algorithm is in 2M(d) log s +O(M(d)) operations in R.

Transposing backwards, we obtain the following algorithm
for simultaneous modular reduction. Note that for a ∈ R[y]
and k ≥ 0, the linear maps R[y]k−1 → R[y]k−1 defined by
b 7→ rev(k − 1, ab mod yk) and b 7→ (arev(k − 1, b)) mod yk

are self-adjoint; this explains that some parts are left un-
changed by transposition.

SimulMod(q)
α ← 1/rev(d, p) mod yd;
t ← rev(d− 1, q);
u ← mul(d− 1, α, t) mod yd;
f ← TUpTree(u);
for j ← 0 to s do

ej ← (fjrev(dj , pj) mod ydj );
cj ← rev(dj − 1, ej);

return (c0, . . . , cs);

Again, the complexity equals 2M(d) log s+O(M(d)), if T is
already known. Taking the cost of computing T into account
yields a cost of 3M(d) log s+O(M(d)) operations in R. This
is to be compared with the complexity of [9, Cor. 10.17],
which was in 11M(d) log s +O(M(d)).

Inverse UpTree. We conclude this subsection by giving an
algorithm to invert the UpTree map. The input is a poly-
nomial b ∈ R[y]d−1 and the output is a vector (c0, . . . , cs) ∈
R[y]d0−1×· · ·×R[y]ds−1 such that (7) holds. For the output
to be uniquely defined, we make the additional assumption
(satisfied in what follows) that p′ is invertible modulo p. In
this case, it is then noted in [3, § 23] that the coefficients cj

are given by the interpolation formula

b =

s∑
j=0

cj
p

pj
=

s∑
j=0

(
b
p′j
p′

mod pj

)
p

pj
.

This leads to the following algorithm:



InverseUpTree(b)
r ← b/p′ mod p;
(u0, . . . , us) ← SimulMod(r);
for j ← 0 to s do

cj ← ujp
′
j mod pj ;

return (c0, . . . , cs);

To state the complexity of this algorithm, we denote by
Inv(d) the complexity of computing 1/p′ mod p. If the Ex-
tended Euclidean Algorithm can be applied in R, by [9,
Th. 11.7], Inv(d) = O(M(d) log d); in our application to
Hensel lifting, other techniques will be used.

The cost for simultaneous reduction was given above. To
conclude the analysis, we note that each polynomial cj can
be computed in 6M(dj)+O(dj) operations in R [9, Cor. 9.7],
so using the super-additivity of M, the total cost of the for
loop is within O(M(d)) operations in R. Assuming that T
is precomputed, the number of operations in R used by the
algorithm InverseUpTree is Inv(d) + 2M(d) log s +O(M(d)).

3.2 Lifting Algorithm
We now address the main issue of this section, Hensel

lifting. Let F ∈ K[x, y] satisfy hypothesis (H) and let F1:s

be its irreducible factors in K[[x]][y]. Given Fi mod x, our
goal is to compute the polynomials Fi mod xσ.

Hensel lifting proceeds by computing these polynomials at
successive precisions 1, 2, . . . , 2s, . . .; the basic ingredient is
thus an algorithm to perform a single lifting step. Let then κ
be in N, and write fi = Fi mod xκ and f∗i = Fi mod x2κ.

For i ≤ s, we write f∗i = fi + xκδi, where δi has degree
less than κ in x; recall that F and the Fi’s are monic, so
degy(δi) is less than degy(Fi). The problem is now reduced
to the computation of these polynomials δi. To do so, we
expand the product F (x, y) as

F (x, y)−
∏
i≤s

fi = xκ
∑
i≤s

δi

∏
j 6=i

fj mod x2κ.

The left-hand side has valuation xκ, since f1:s forms a fac-
torization of F modulo xκ. Dividing out xκ, we obtain

∆ =
∑
i≤s

δi

∏
j 6=i

fj mod xκ, (8)

where ∆ is F (x, y)−
∏

i≤s fi, taken modulo x2κ, and divided

by xκ. Thus, degx(∆) < κ and degy(∆) < d. Note that the
polynomial ∆ is also considered in [29, 14, 8, 2].

To obtain ∆, we compute the subproduct tree T associ-
ated to f1, . . . , fs, with coefficients taken modulo x2κ; this
gives

∏
i≤s fi modulo x2κ, from which ∆ is deduced. The

polynomials δi are then obtained by applying algorithm In-
verseUpTree to ∆ with coefficients taken modulo xκ (the
required invertibility assumption is satisfied). The subprod-
uct tree necessary to apply InverseUpTree is obtained by
truncating T modulo xκ. The algorithm is described below:

HenselStep(f1, . . . , fs)
T ← SubProductTree(f1, . . . , fs) mod x2κ;
∆ ← (F − Td,0 mod x2κ)/xκ;
(δ1, . . . , δs) ← InverseUpTree(∆);
return (f1 + xκδ1, . . . , fs + xκδs);

To analyze the complexity of this algorithm, recall that
the computation of T is performed with coefficients mod-
ulo x2κ. From the results of the previous subsection, this
requires M(2κ)M(d) log s+O(M(2κ)d log s) operations in K.

Then, all computations in InverseUpTree are performed
modulo xκ. Recall that this algorithm requires to compute
1/F ′ mod F . If κ = 1, this is done using the Extended Eu-
clidean Algorithm, whose cost is O(M(d) log d) operations
in K, so the total cost of HenselStep fits in O(M(d) log d)
operations in K. If κ > 1, we assume that 1/F ′ mod F

has already been computed modulo xκ/2 and use a Newton
iteration to lift this inverse modulo xκ. From [9, Th. 9.2],
this uses 2 multiplications and 2 additions in K[x, y]/(F, xκ),
hence the cost of the inverse computation is in O(M(κ)M(d))
operations in K. By the results of the previous subsec-
tion, we conclude that HenselStep uses 2 M(2κ)M(d) log s +
O(M(κ)M(d)) operations in K. Summing up these contri-
butions for κ = 1, 2, . . . yields the complexity result.

Theorem 2. Let σ ∈ N and ` = dlog2 σe. Given the
polynomials F1:s mod x, one can compute F1:s mod xσ in

4M(2`)M(d) log s +O
(
M(d)(M(2`) + log d)

)
operations in K.

We conclude this section by comparing our algorithm to the
multifactor lifting algorithm [9, Algorithm 15.17]. We first
recall the basics of that algorithm; it is enough to describe
the inductive step, lifting from precision κ to precision 2κ.

The multifactor lifting algorithm relies on both the sub-
product tree T associated to F1, . . . , Fs and a tree of cofac-
tors T . As a tree, the structure of T is the same as that of
T , its content being defined by:

T i,2j =
1

Ti,2j+1
mod Ti,2j , T i,2j+1 =

1

Ti,2j
mod Ti,2j+1

with j < ri and i < h(T ), with the notation of the previous
subsection. The lifting step then goes as follows: suppose
that T is known at precision κ and T at precision κ/2; then
lift T to precision κ and use it to lift T to precision 2κ.

Both this algorithm and the one we propose share the
same tree structure; their overall complexities are in the
same asymptotic class, but the constants in the O( ) esti-
mates differ. Theorem 2 gives the complexity of our algo-
rithm; the following refines that of [9, Th. 15.8].

Theorem 3. Let σ in N and ` = dlog2 σe. Given
F1:s mod x, the cost of [9, Algorithm 15.17] to F1:s mod xσ

is (in terms of operations in K):

13.5 M(2`)M(d) log s +O
(
M(d)(M(2`) + log d)

)
The detailed proof of the above theorem is omitted here;
we only underline the main differences between the two ap-
proaches. We also mention that a more precise study of the
steps in the multifactor algorithm shows that some of them
can be shared; the best we could do decreases the leading
term of the complexity to 9M(2`)M(d) log s.

Lifting T to precision κ amounts to lifting all correspond-
ing Bézout identities to this precision. By contrast, our
algorithm does not require to handle a whole tree of cofac-
tors; only the inverse of F ′ mod F is required, whose lifting
is cheaper by a factor log s. Next, lifting T to precision κ
using [9, Algorithm 15.10] amounts to applying the classical
bivariate Hensel lifting algorithm to all internal nodes of T ,
and thus involves Euclidean divisions at each node. Our
algorithm only performs Euclidean divisions at the leaves
of T ; the only operations that are done at internal nodes
are transposed multiplications, which are cheaper.



4. CONCLUSION
Requiring the input polynomial to be monic is not re-

strictive in theory; however, in future work, we expect to
generalize the present results in order to avoid changing the
coordinates, possibly using Newton polygons as in [22].

Most Chinese remaindering algorithms use simultaneous
modular reduction [6, 9, 3]. We also plan to explore this
question, using the algorithms of §3.

Finally, our interest in factorization came from the prob-
lem of decomposing algebraic varieties in irreducible compo-
nents. For most base fields met in practice, the results of this
paper imply that this operation has the same complexity as
the equidimensional decomposition algorithm of [19].
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