
A Tweakable Enciphering Mode

Shai Halevi∗ Phillip Rogaway†

June 3, 2003

The proceedings version of this paper [15] appears in Advances in Cryptology — CRYPTO ’03, Lecture Notes in
Computer Science, vol. 2729, D. Boneh, ed., Springer-Verlag, 2003. This is the full version.

Abstract

We describe a block-cipher mode of operation, CMC, that turns an n-bit block cipher into
a tweakable enciphering scheme that acts on strings of mn bits, where m ≥ 2. When the
underlying block cipher is secure in the sense of a strong pseudorandom permutation (PRP),
our scheme is secure in the sense of tweakable, strong PRP. Such an object can be used to
encipher the sectors of a disk, in-place, offering security as good as can be obtained in this
setting. CMC makes a pass of CBC encryption, xors in a mask, and then makes a pass of CBC
decryption; no universal hashing, nor any other non-trivial operation beyond the block-cipher
calls, is employed. Besides proving the security of CMC we initiate a more general investigation
of tweakable enciphering schemes, considering issues like the non-malleability of these objects.

Key words: Block-cipher usage, cryptographic standards, disk encryption, modes of operation,
provable security, sector-level encryption, symmetric encryption.

∗IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, shaih@watson.ibm.com
http://www.research.ibm.com/people/s/shaih/

†Department of Computer Science, University of California, Davis, CA 95616, USA, and Department
of Computer Science, Faculty of Science, Chiang Mai University, 50200 Thailand, rogaway@cs.ucdavis.edu

http://www.cs.ucdavis.edu/~rogaway

Contents

1 Introduction 1

2 Preliminaries 2

3 Specification of CMC Mode 4

4 Discussion 4

5 Security of CMC 6

6 Transforming an Untweakable Enciphering Scheme to a Tweakable One 7

7 Indistinguishability and Nonmalleability of Tweakable Enciphering Schemes 7

Acknowledgments 9

References 9

A The Joux Attack 11

B A “natively tweakable” variant of CMC 12

C A Useful Lemma — ±p̃rp-security ⇔ ±r̃nd-security 12

D Proof of Theorem 1 — Security of CMC 14
D.1 The Game-Substitution Sequence . 14
D.2 Analysis of the Non-Interactive Game NON2 . 21

E Proof of Theorem 2 — Security of the E / E construction 26

F Proof of Theorem 3 — ±p̃rp-security ⇒ ±ĩnd-security 27

G Proof of Theorem 4 — ±ĩnd-security ⇒ ±p̃rp-security 30

H Proof of Theorem 5 — ±ĩnd-security ⇒ ±ñm-security 30

1 Introduction

Enciphering schemes. Suppose you want to encrypt the contents of a disk, but the encryption
is to be performed by a low-level device, such as a disk controller, that knows nothing of higher-
level concepts like files and directories. The disk is partitioned into fixed-length sectors and the
encrypting device is given one sector at a time, in arbitrary order, to encrypt or decrypt. The
device needs to operate on sectors as they arrive, independently of the rest. Each ciphertext must
have the same length as its plaintext, typically 512 bytes. When the plaintext disk sector P is put
to the disk media at location T what is stored on the media should be a ciphertext C = ET

K(P)
that depends not only on the plaintext P and the key K, but also on the location T , which we call
the tweak. Including the dependency on T allows that identical plaintext sectors stored at different
places on the disk will have computationally unrelated ciphertexts.

The envisioned attack-model is a chosen plaintext/ciphertext attack: the adversary can learn
the ciphertext C for any plaintext P and tweak T , and it can learn the plaintext P for any
ciphertext C and tweak T . Informally, we want a tweakable, strong, pseudorandom permutation
(PRP) that operates on a wide blocksize (like 512 bytes). We call such an object an enciphering
scheme. We want to construct the enciphering scheme from a standard block cipher, such as AES,
giving a mode of operation. The problem is one of current interest for standardization [16]. We
seek an algorithm that is simple, and is efficient in both hardware and software.

Naor-Reingold approach. Naor and Reingold give an elegant approach for making a strong
PRP on N bits from a block cipher on n < N bits [23, 24]. Their hash–encipher–hash paradigm
involves applying to the input an invertible blockwise-universal hash-function, enciphering the result
(say in ECB mode), and then applying yet another invertible blockwise-universal hash-function.
Their work stops short of fully specifying a mode of operation, but in [23] they come closer,
showing how to make the invertible blockwise-universal hash-function out of an xor-universal hash-
function. So the problem, one might imagine, is simply to instantiate the approach [23], selecting
an appropriate xor-universal hash function from the literature.1

It turns out not to be so simple. Despite many attempts to construct a desirable hash function
to use with the hash–encipher–hash approach, we could find no desirable realization. We wanted
a hash function that was simple and more efficient, per byte, across hardware and software, than
AES.2 The collision bound should be about 2−128 (degrading with the length of messages). Many
techniques were explored,3 but nothing with the desired constellation of characteristics was ever
found. We concluded that while making a wide-blocksize, strong PRP had “in principal” been
reduced to a layer of block-cipher calls plus two “cheap” layers of universal hashing, the story, in
practice, was that the “cheap” hashing layers would come to dominate the total cost in hardware,
software, or both.

Our contributions. Our main contribution is a simple, practical, completely-specified encipher-
ing mode. CMC starts with a block cipher E: K×{0, 1}n → {0, 1}n and turns it into an enciphering

1Adding in a tweak is not a problem; it can be done following the approach of [20]. See Section 6 as well.
2After all, one could always CBC MAC over AES to create a universal hash function—a possibility that we never

convincingly outdid for creating the hash function of hash-encipher-hash. And to “beat” the construction of this
paper one would want to hash at least twice as fast as AES (i.e., some 7–8 cycle/byte on a Pentium processor [2]).

3For example, software implementations of polynomial evaluation [10] in GF(2128) are slower and more complex
than one AES call, even when one multiplicand is a key-dependent constant. The Toeplitz construction of [19] is still
slower in software. Bernstein’s hash-127 [7] needs good hardware support for a fast implementation. Methods like
MMH [14] and NH [8] are building blocks (the range and collision probability is not as desired) that achieve good
performance only when well-supported by the hardware and when supplemented by complementary techniques.

1

scheme CMC[E]: K′ × T ×M →M where T = {0, 1}n and M contains strings with any number
(at least two) of n-bit blocks. See Figures 1 and 2 for a preview. CMC stands for CBC–Mask–CBC.

CMC uses 2m + 1 block-cipher calls. No “non-elementary” operations are used—in particular,
no form of universal hashing is employed. The mode is highly symmetric: deciphering is the same
as enciphering except that one uses the inverse block cipher E−1

K in place of EK . We prove that
CMC[E] is secure, in the sense of a tweakable, strong PRP. This assumes that E itself is secure as a
strong PRP. The actual results are quantitative, with the usual quadratic degradation in security.

Apart from the specific scheme, we investigate, more generally, the underlying goal. We show
that being secure as a tweakable, strong, PRP implies the appropriate versions of indistinguisha-
bility [3, 13] and non-malleability [4, 12] under a chosen-ciphertext attack. Following Liskov, Rivest
and Wagner [20], we show how tweaks can be cheaply added to the untweaked version of the
primitive.

Joux’s attack. In an earlier, unpublished, manuscript we described a different version of CMC
mode [25]. Although the algorithmic change between the old and new mode is small, its conse-
quences are not: the old mode was wrong, as recently shown by Antoine Joux [17]. His simple and
clever attack is described in Appendix A. In the same appendix we describe the bug in the proof
that corresponds to the attack. This paper fixes the mode and its proof.

Other prior work. Efforts to construct a block cipher with a large blocksize from one with a
smaller blocksize go back to Luby and Rackoff [21], whose work can be viewed as building a 2n-bit
block cipher from an n-bit one. They also put forward the notion of a PRP and a strong (“super”)
PRP. The concrete-security treatment of PRPs begins with Bellare, Kilian, and Rogaway [5]. The
notion of a tweakable block-cipher is due to Liskov, Rivest and Wagner [20]. Earlier work by
Schroeppel describes a block cipher that was already designed to incorporate a tweak [26]. The
first attempt to directly construct an nm-bit block cipher from an n-bit one is due to Zheng,
Matsumoto and Imai [27], who give a Feistel-type construction. Bellare and Rogaway [6] give
an enciphering mode that works on messages of varying lengths but is not a strong PRP. Another
enciphering scheme that is potentially a strong PRP appears in unpublished work of Bleichenbacher
and Desai [9]. Yet another suggestion we have seen [16] is forward-then-backwards PCBC mode [22].
The mode is easily broken in the sense of a strong PRP, but the possibility of a simple, two-layer,
CBC-like mode helped to motivate us. A different approach for disk-sector encipherment is to build
a wide-blocksize block cipher from scratch. Such attempts include BEAR, LION, and Mercy [1, 11].

Afterwards. Recent work by the authors has focused on providing a fully parallelizable enci-
phering scheme having serial efficiency comparable to that of CMC. We shall report on that work
elsewhere. The proceedings version of the current paper appears as [15].

2 Preliminaries

Basics. A message space M is a set of strings M =
⋃

i∈I{0, 1}
i for some nonempty index set

I ⊆ N. A length-preserving permutation is a map π:M→M where M is a message space and π
is a permutation and |π(P)| = |P | for all P ∈ M. A tweakable enciphering scheme, or simply an
enciphering scheme, is a function E: K×T ×M→M where K (the key set) is a finite nonempty set
and T (the tweak set) is a nonempty set andM is a message space and for every K ∈ K and T ∈ T
we have that E(K, T, ·) = ET

K(·) is a length-preserving permutation. An untweakable enciphering
scheme is a function E: K×M→M where K is a finite nonempty set andM is message space and
E(K, ·) = EK(·) is a length-preserving permutation for every K ∈ K. A block cipher is a function
E: K × {0, 1}n → {0, 1}n where n ≥ 1 and K is a finite nonempty set and E(K, ·) = EK(·) is a

2

permutation for each K ∈ K. The number n is the blocksize. An untweakable enciphering scheme
can be regarded as a tweakable enciphering scheme with tweak set T = {ε} and a block cipher
can be regarded as a tweakable enciphering scheme with tweak set T = {ε} and message space
M = {0, 1}n. The inverse of an enciphering scheme E is the enciphering scheme D = E−1 where
X = DT

K(Y) if and only if ET
K(X) = Y . An adversary A is a (possibly probabilistic) algorithm with

access to some oracles. Oracles are written as superscripts. By convention, the running time of an
algorithm includes its description size. We let Timef (µ) be a function that bounds the worst-case

time to compute f on strings that total µ bits. We write Õ(f) for O(f(n) lg(f(n)). Constants
inside of O and Õ notations are absolute constants, depending only on details of the model of
computation. If X and Y are strings of possibly different lengths we let X ←⊕ Y be the string
one gets by xoring the shorter string into the beginning of the longer string, leaving the rest of the
longer string alone.

Security notions. The definitions here are adapted from [5, 20, 21]. WhenM is a message space
and T is a nonempty set we let Perm(M) denote the set of all functions π:M → M that are
length-preserving permutations, and we let PermT (M) denote the set of functions π: T ×M→M
for which π(T, ·) is a length-preserving permutation for all T ∈ T .

Let E: K × T ×M → M be an enciphering scheme and A be an adversary. We define the
advantage of A in distinguishing E from a random, tweakable, length-preserving permutation and
its inverse as

Adv±p̃rp
E

(A)
def
= Pr

[
K

$

←K : AEK(·,·) E
−1

K
(·,·) ⇒ 1

]
− Pr

[
π

$

← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1
]

The notation above shows, in the brackets, an experiment to the left of the colon and an event to
the right of the colon. We are looking at the probability of the indicated event after performing
the specified experiment. By A⇒ 1 we mean the event that A outputs the bit 1. Often we omit
writing the experiment, the oracle, or the placeholder-arguments of the oracle. The tilde above the
“prp” serves as a reminder that the prp is tweakable, while the ± symbol in front of the “prp” serves
as a reminder that this is the “strong” (i.e., chosen plaintext/ciphertext attack) notion of security.
Thus we omit the tilde for untweakable enciphering schemes and block ciphers, and we omit the ±
sign to mean that the adversary is given only the first oracle from each pair.

For each “advantage notion” Advxxx
Π we write Advxxx

Π (R) for the maximal value of Advxxx
Π (A)

over all adversaries A that use resources at most R. Resources of interest are the running time t,
the number of queries q, the total length of all queries µ (sometimes written as µ = nσ when µ is a
multiple of some number n), and the length of the adversary’s output ς. The name of an argument
(t, t′, q, etc.) will be enough to make clear what resource it refers to.

Pointless queries. There is no loss of generality in the definitions above to assume that regardless
of responses that adversary A might receive from an arbitrary pair of oracles, it never repeats a
query (T, P) to its left oracle, never repeats a query (T, C) to its right oracle, never asks its right
oracle a query (T, C) if it earlier received a response of C to a query (T, P) from its left oracle, and
never asks its left oracle a query (T, P) if it earlier received a response of P to a query (T, C) from
its right oracle. We call such queries pointless because the adversary “knows” the answer that it
should receive. A query is called valid if it is well-formed and not pointless. A sequence of queries
and their responses is valid if every query in the sequence is valid. We assume that adversaries ask
only valid queries.

The finite field GF (2n). We may think of an n-bit string L = Ln−1 . . . L1L0 ∈ {0, 1}
n in any

of the following ways: as an abstract point in the finite field GF(2n); as the number in [0..2n − 1]

3

whose n-bit binary representation is L; and as the polynomial L(x) = Ln−1x
n−1 + · · ·+ L1x + L0.

To add two points, A⊕B, take their bitwise xor. To multiply two points we must fix an irreducible
polynomial Pn(x) having binary coefficients and degree n: say the lexicographically first polynomial
among the irreducible degree-n polynomials having a minimum number of nonzero coefficients. For
n = 128, the indicated polynomial is P128(x) = x128 + x7 + x2 + x + 1. Now multiply A(x) and B(x)
by forming the degree 2n − 2 (or less) polynomial that is their product and taking the remainder
when this polynomial is divided by Pn(x).

Often there are simpler ways to multiply in GF(2n) than the definition above might seem to
suggest. In particular, given L it is easy to “double” L. We illustrate the procedure for n = 128,
in which case 2L = L<<1 if firstbit(L) = 0, and 2L = (L<<1)⊕ Const87 if firstbit(L) = 1, where
Const87 is 012010000111. Here firstbit(L) means Ln−1 and L<<1 means Ln−2Ln−3 · · ·L1L0 0.

3 Specification of CMC Mode

We construct from block cipher E: K × {0, 1}n → {0, 1}n a tweakable enciphering scheme that we
denote by CMC-E or CMC[E]. The enciphering scheme has key space K ×K. It has tweak space
T = {0, 1}n. The message space M =

⋃
m≥2{0, 1}

mn contains any string having any number m
of n-bit blocks, where m ≥ 2. We specify in Figure 1 both the forward direction of our construc-
tion, E = CMC-E, and its inverse D. An illustration of CMC mode is given in Figure 2. In the
figures, all capitalized variables except for K and K̃ are n-bit strings (keys K and K̃ are elements
of K). Variable names P , C, and M are meant to suggest plaintext, ciphertext, and mask. When we
write ET

K(P1 · · ·Pm) we mean that the incoming plaintext P = P1 · · ·Pm is silently partitioned into
n-bit strings P1, . . . , Pm (and similarly when we write DT

K(C1 · · ·Cm)). It is an error to provide E

(or D) with a plaintext (or ciphertext) that is not mn bits for some m ≥ 2.

4 Discussion

Basic observations. Deciphering C = ET

KK̃
(P) produces the same mask M as enciphering P

because CCC 1 ⊕ CCCm = (PPP1 ⊕M)⊕ (PPPm ⊕M) = PPP1 ⊕ PPPm. Also note that the
multiply by two in computing M cannot be dispensed with; if it were, CCC m would not depend
on PPP1 so the mode could not be a PRP.

The CMC core. Consider the untweakable enciphering scheme CMC one gets by ignoring T and
setting T to 0n in Figures 1 and 2. The CMC algorithm can then be viewed as taking CMC and
“adding in” a tweak according to the construction CMC T

KK̃
(P) = T ←⊕ CMCK(P ←⊕ T) where

T = E
K̃

(T). A similar approach to modifying an untweakable enciphering scheme to create a
tweakable one was used by Liskov, Rivest, and Wagner [20, Theorem 2]. See Section 6.

Symmetry. Encryption under CMC is the same as decryption under CMC except that EK is
swapped with E−1

K (apart from the computation of T). Pictorially, this high degree of symmetry
can be seen by observing that if the picture in Figure 2 is rotated 180 degrees it is unchanged,
apart from swapping letters P and C. Symmetry is a useful design heuristic in trying to achieve
strong PRP security, as the goal itself provides the adversary with capabilities that are invariant
with respect to replacing an enciphering scheme E by its inverse D.

Notice that output blocks in CMC mode are taken in reverse order from the input blocks (mean-
ing that CCC i = PPPm+1−i ⊕M instead of CCC i = PPP i ⊕M). This was done for purposes of
symmetry: if one had numbered output blocks in the “forward” direction then deciphering would
be quite different from enciphering. As an added benefit, the reverse-numbering may improve the

4

Algorithm ET

KK̃
(P1 · · ·Pm)

100 T← E
K̃

(T)
101 PPP0← T

102 for i← 1 to m do
103 PP i← Pi ⊕ PPP i−1

104 PPP i← EK(PP i)

110 M ← 2 (PPP1 ⊕ PPPm)
111 for i ∈ [1 .. m] do
112 CCC i← PPPm+1−i ⊕M

120 CCC 0← 0n

121 for i ∈ [1 .. m] do
122 CC i← EK(CCC i)
123 Ci← CC i ⊕ CCC i−1

130 C1← C1 ⊕ T

131 return C1 · · ·Cm

Algorithm DT

KK̃
(C1 · · ·Cm)

200 T← E
K̃

(T)
201 CCC 0← T

202 for i← 1 to m do
203 CC i← Ci ⊕ CCC i−1

204 CCC i← E−1
K

(CC i)

210 M ← 2 (CCC 1 ⊕ CCC m)
211 for i ∈ [1 .. m] do
212 PPP i← CCCm+1−i ⊕M

220 PPP0← 0n

221 for i ∈ [1 .. m] do
222 PP i← E−1

K
(PPP i)

223 Pi← PP i ⊕ PPP i−1

230 P1← P1 ⊕ T

231 return P1 · · ·Pm

Figure 1: Enciphering (left) and deciphering (right) under E = CMC[E], where E: K × {0, 1}n → {0, 1}n is a
block cipher. The tweak is T ∈ {0, 1}n and the plaintext is P = P1 · · ·Pm and the ciphertext is C = C1 · · ·Cm.

CCC 4

T

T

MMMM

C4 C3 C2 C1

P4P3P1 P2

PP2 PP3 PP4PP1

PPP1 PPP2 PPP3 PPP4

CC 3 CC 2 CC 1CC 4

CCC 2 CCC 1CCC 3

Figure 2: Enciphering under CMC mode for a message of m = 4 blocks. The boxes represent EK . We set mask
M = 2 (PPP1 ⊕ PPPm). This value can also be computed as M = 2 (CCC 1 ⊕ CCC m). We set T = E

K̃
(T)

where T is the tweak.

5

cache-interaction characteristics of CMC by improving locality of reference. That said, an applica-
tion is always free to write its output according to whatever convention it wishes, and an application
with limited memory may prefer to write its output as Cm · · ·C1.

Re-orienting the bottom layer. It is tempting to orient the second block-cipher layer in the
opposite direction as the first, thinking that this improves symmetry. But if one were to use E−1

K

in the second layer then CMC would become an involution, and thus easily distinguishable from a
random permutation.

Limitations. CMC has the following limitations: (1) The mode is not parallelizable. (2) The
sector size must be a multiple of the blocksize. (3) In order to make due with 2m + 1 block-cipher
calls one needs Θ(nm) bits of extra memory. Alternatively, one can use Θ(n) bits of memory, but
then one needs 3m+1 block-cipher calls and one should output the blocks in reverse order. (4) The
key for CMC is longer than the key for the underlying block cipher; to keep things simple, we have
done nothing to “collapse keys” for this mode. (5) Both directions of the block cipher are used to
decipher, due to the one block-cipher call used for producing T from T .

All of the above limitations could potentially be addressed. In particular, in Appendix B we
show a variant of CMC that does not suffer from the last two limitations. Further limitations
are inherent characteristics of the type of object that is being constructed. Namely: (a) a good
PRP necessarily achieves less than semantic security: repetitions of plaintexts that share a tweak
are manifest in the ciphertexts. (b) A PRP must process the entire plaintext before emitting the
first bit of ciphertext (and it must process the entire ciphertext before emitting the first block of
plaintext). Depending on the context, these limitations can be significant.

5 Security of CMC

The concrete security of the CMC is summarized in the following theorem. The theorem relates
the advantage that an adversary has in attacking CMC-E to the advantage that an adversary can
get in attacking the underlying block cipher E.

Theorem 1 [CMC security] Fix n, t, q ≥ 1, m ≥ 2, and a block cipher E: K×{0, 1}n → {0, 1}n.
Let message space M = {0, 1}mn and let σ = mq. Let CMC and CMC be the modes with the
indicated message space. Then

Adv±prp
CMC[Perm(n)](nσ) ≤

5 σ2

2n
(1)

Adv±p̃rp
CMC[Perm(n)](nσ) ≤

7 σ2

2n
(2)

Adv±p̃rp
CMC[E](t, nσ) ≤

7 σ2

2n
+ 2 Adv±prp

E (t′, 2σ) (3)

where t′ = t + O(nσ). 2

Although we defined CMC and CMC to have message space
⋃

m≥2{0, 1}
mn the theorem restricts

messages to one particular length, mn bits for some m. In other words, proven security is for a
fixed-input-length (FIL) cipher and not a variable-input-length (VIL) one. We believe that, in fact,
security also holds in the sense of a VIL cipher, but we do not at this time provide a proof. All
other results in this paper are done for arbitrary (VIL) message spaces.

The heart of Theorem 1 is Equation (1), which is proven in Appendix D. Equation (2) follows
immediately using Theorem 2, as given below. Equation (3) embodies the standard way to pass
from the information-theoretic setting to the complexity-theoretic one.

6

Since the proof of Equation (1) is long, let us try to get across some basic intuition for it. Refer
to Figure 2 (but ignore the T, as we are only considering CMC). Suppose the adversary asks to
encipher some new four-block plaintext P . Plaintext P must be different from all previous plain-
texts, so it has some first block where it is different, say P3. This will usually result in PP3 being
new—some value not formerly acted on by the block cipher π. This, in turn, will result in PPP 3

being nearly uniform, and this will propagate to the right, so that PPP 4 will be nearly uniform
as well. The values PPP1 and PPP2 will usually have been different from each other, and they’ll
usually be different from the freshly chosen PPP 3 and PPP4 values. Now M = 2(PPP1 ⊕ PPP4)
and so M will be nearly uniform due to the presence of PPP 4. When we add M to the PPP i values
we will get a bunch of sums CCC i that are almost always new and distinct. This in turn will cause
the vector of CC i-values to be uniform, which will cause C to be uniform. The argument for a
decryption query is symmetric.

Though it is ultimately the above intuition that the proof formalizes, one must be careful,
as the experience with the Joux-attack drives home [17]. One must be sure that an adversary
cannot, by cutting and pasting parts of plaintexts and ciphertexts, force any nontrivial repetitions
in intermediate values.

6 Transforming an Untweakable Enciphering Scheme to a Tweakable One

Let E: K̃ × {0, 1}n → {0, 1}n be a block cipher and let E: K × M → M be an untweakable
enciphering scheme where the message space M contains no string of length less than n bits. We
construct a tweakable enciphering scheme E = E / E where E: (K × K̃)× {0, 1}n ×M→M. The
construction is ET

KK̃
(M) = T ←⊕ EK(M ←⊕ T) where T = E

K̃
(T). (Recall that ←⊕ just means

to xor in the shorter string at the beginning.) Notice that the cost of adding in the tweak is one
block-cipher call and two n-bit xors, regardless of the length of the sector being enciphered or
deciphered. Also notice that CMC = CMC / E.

The specified construction is similar to that of Liskov, Rivest and Wagner [20, Theorem 2] but,
instead of a PRP E, those authors used an xor-universal hash function. One can view a secure
block cipher as being “computationally” xor-universal, and try to conclude the security of the
construction in that way. But we have also broadened the context to include enciphering schemes
whose input is not a string of some fixed length, and so it seems better to prove the result from
scratch. We show that E = E / E is secure (as a tweakable, strong, enciphering scheme) as long
as E is secure (as an untweakable, strong enciphering scheme) and E is secure (as a PRP). The
proof is given in Appendix E.

Theorem 2 [Adding in a tweak] Let E: K̃ × {0, 1}n → {0, 1}n be a block cipher and let
E: K ×M → M be an untweakable enciphering scheme whose message space M has a shortest
string of N ≥ n bits. Then

Adv±p̃rp
E/E (t, q, µ) ≤

q2

2n
+

q2

2N
+ Adv±prp

E
(t′, q, µ) + Advprp

E (t′, q) (4)

where t′ = t + Õ(µ + qTimeE + TimeE(µ)). 2

7 Indistinguishability and Nonmalleability of Tweakable Enciphering Schemes

The definition we have given for the security of an enciphering scheme is simple and natural, but
it is also quite far removed from any natural way to say that an encryption scheme does what it
should do. In this section we explore two notions of security that speak more directly about the

7

When query gets an answer of then these queries are no longer allowed:

E(T0, P0; T1, P1) C D(T0, C, ·, ·) D(·, ·, T1, C)
E(T0, P0, ·, ·) E(·, ·, T1, P1)

D(T0, C0, T1, C1) P E(T0, P, ·, ·) E(·, ·, T1, P)
D(T0, C0, ·, ·) D(·, ·, T1, C1)

Table 1: Disallowed queries. The dot refers to an arbitrary argument—all are disallowed.

privacy and integrity of an enciphering scheme. First we give a definition of indistinguishability
and then we give a definition for the nonmalleability. We show that, as one would expect, security
in the sense of a tweakable PRP implies both of these notions, and by tight reductions.

Indistinguishability. To define the indistinguishability of a tweakable enciphering scheme E: K×
T ×M → M we adapt the left-or-right notion from [3]. We imagine the following game. At the
onset of the game we select at random a key K from K and a bit b. The adversary is then given
access to two oracles, E = E b

K and D = Db
K . The attacker can query the E-oracle with any 4-tuple

(T0, P0, T1, P1) where T0, T1 ∈ T and P0 and P1 are equal-length strings inM. The oracle returns
EK(Tb, Pb). Alternatively, the adversary can query the D oracle with a 4-tuple (T0, C0, T1, C1)
where T0, T1 ∈ T and C0 and C1 are equal-length strings in M. The oracle returns DK(Tb, Cb)
where D is the inverse of E. The adversary wants to identify the bit b. We must disallow the
adversary from asking queries that will allow it to win trivially. The disallowed queries are given
in Table 1.

The advantage of the adversary in guessing the bit b is defined by

Adv±ĩnd
E

(A)
def
= Pr[K

$

←K : AE1
K

D1
K ⇒ 1] − Pr[K

$

←K : AE0
K

D0
K ⇒ 1]

We now show a tight equivalence between the PRP-security of a tweakable enciphering scheme and
its indistinguishability. In Theorem 3 we show that PRP-security implies indistinguishability, and
in Theorem 4 we show the converse. The proofs are in Appendices F and G, respectively.

Theorem 3 [±p̃rp-security ⇒ ±ĩnd-security] Let E: K × T ×M → M be an enciphering
scheme whose message space M consists of strings of length at least n bits. Then for any t, q, µ,

Adv±ĩnd
E

(t, q, 2µ) ≤ 2Adv±p̃rp
E

(t′, q, µ) +
2q2

2n − q

where t′ = t + O(µ). 2

Theorem 4 [±ĩnd-security ⇒ ±p̃rp-security] Let E: K × T ×M → M be an enciphering

scheme. Then for any t, q, µ, we have Adv±p̃rp
E

(t, q, µ) ≤ Adv±ĩnd
E

(t′, q, 2µ), where t′ = t+ Õ(µ). 2

Nonmalleability. Nonmalleability is an important cryptographic goal that was first identified
and investigated by Dolev, Dwork, and Naor [12]. Informally, an encryption scheme is nonmalleable
if an adversary cannot modify a ciphertext C to create a ciphertext C∗ where the plaintext P ∗

of C∗ is related to the plaintext P of C. In this section we define the nonmalleability of a tweakable
enciphering scheme with respect to a chosen-ciphertext attack and we show that ±p̃rp-security
implies nonmalleability. The result mirrors the well-known result that indistinguishability of a

8

probabilistic encryption scheme under a chosen-ciphertext attack implies its nonmalleability under
the same kind of attack [4, 12].

Fix an enciphering scheme E: K×T ×M→M and an adversary A. Consider running A with
two oracles: an enciphering oracle EK(·, ·) and a deciphering oracle DK(·, ·), where D = E−1 and K
is chosen randomly from K. After A has made all of its oracle queries and halted, we define a
number of sets:

Known plaintexts. For every T ∈ T we define the PT as the set of all P such that A asked EK

to encipher (T, P) or A asked DK to decipher some (T, C) and A got back an answer of P .
Thus PT is the set of all plaintexts P associated to T that the adversary already “knows”.

Known ciphertexts. For every T ∈ T we define CT as the set of all C such A asked DK

to decipher (T, C) or A asked EK to encipher some (T, P) and A got back an answer of C.
Thus CT is the set of all ciphertexts C associated to T that the adversary already “knows”.

Plausible plaintexts. For every T ∈ T and C ∈ M we define PT (C) as the singleton set
{DT

K(C)} if C ∈ CT and as {0, 1}|C| \ PT otherwise. Thus PT (C) is the set of all plaintexts P
for which the adversary should regard it as plausible that C = ET

K(P).

With enciphering scheme E: K×T ×M→M and adversary A still fixed, we consider the following
two games, which we call games Real and Ideal. Both games begin by choosing a random key

K
$

←K and letting the adversary A interact with oracles EK and DK where D = E−1. Just before
termination, after the adversary has asked all the queries that it will ask, it outputs a three-
tuple (T, C, f) where T ∈ T and C ∈ M and f is the encoding of a predicate f :M→ {0, 1} (we
do not distinguish between the predicate and its encoding). Now for game Real we set P ←DT

K(C)

and for game Ideal we set P
$

← PT (C). Finally, we look at the event that f(P) = 1. Formally,
we define the advantage of A, in the sense of nonmalleability under a chosen-ciphertext attack, as
follows:

Adv±ñm
E

(A) = Pr[K
$

←K; (T, C, f)
$

←AEK(·,·) DK(·,·); P ←D
T
K(C) : f(P) = 1]−

Pr[K
$

←K; (T, C, f)
$

←AEK(·,·) DK(·,·); P
$

← P
T (C) : f(P) = 1]

We emphasize that in game Ideal (the second experiment) the set PT (C) depends on the oracle
queries asked by A and the answers returned to it (even though this is not reflected in the notation).
For the resource-bounded version of Adv±ñm

E
we let the running time t include the running time

to compute f(P). We have the following result, the proof of which appears in Appendix H.

Theorem 5 [±p̃rp-security ⇒ ±ñm-security] Let E: K × T ×M → M be an enciphering
scheme. Then for any t, q, µ, ς

Adv±ñm
E

(t, q, µ, ς) ≤ 2 Adv±p̃rp
E

(t′, q + 1, µ + ς)

where t′ = t + Õ(µ + ς).
2

Acknowledgments

The authors thank Jim Hughes for posing this problem to each of us and motivating our work
on it. Shai thanks Hugo Krawczyk and Charanjit Jutla for discussions regarding candidates for
implementing the Naor-Reingold approach and regarding the security proof for CMC. Phil thanks
John Black for useful conversations on this problem, and Mihir Bellare, who promptly broke his first
two-layer attempts. Phil received support from NSF grant CCR-0085961 and a gift from CISCO
Systems. This work was carried out while Phil was at Chiang Mai University, Thailand.

9

References

[1] R. Anderson and E. Biham. Two practical and provably secure block ciphers: BEAR and
LION. In Fast Software Encryption, Third International Workshop, volume 1039 of Lecture
Notes in Computer Science, pages 113–120, 1996. www.cs.technion.ac.il/∼biham/.

[2] K. Aoki and H. Lipmaa. Fast implementations of AES candidates. In Third AES Candidate
Conference, 2000. See www.tcs.hut.fi/∼helger for the latest data.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption: Analysis of the DES modes of operation. In Proceedings of 38th Annual Symposium
on Foundations of Computer Science (FOCS 97), 1997.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of secu-
rity for public-key encryption schemes. In H. Krawczyk, editor, Advances in Cryptology –
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 232–249. Springer-
Verlag, 1998.

[5] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining mes-
sage authentication code. Journal of Computer and System Sciences, 61(3):362–399, 2000.
www.cs.ucdavis.edu/∼rogaway.

[6] M. Bellare and P. Rogaway. On the construction of variable-input-length ciphers. In Fast
Software Encryption—6th International Workshop—FSE ’99, volume 1635 of Lecture Notes
in Computer Science, pages 231–244. Springer-Verlag, 1999. www.cs.ucdavis.edu/∼rogaway.

[7] D. Bernstein. Floating point arithmetic and message authentication. Available at
http://cr.yp.to/hash127.html, 2000.

[8] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure
message authentication. In M. Wiener, editor, Advances in Cryptology– CRYPTO ’99, volume
1666 of Lecture Notes in Computer Science, pages 216–233. Springer, 1999.

[9] D. Bleichenbacher and A. Desai. A construction of a super-pseudorandom cipher. Manuscript,
February 1999.

[10] L. Carter and M. Wegman. Universal hash functions. J. of Computer and System Sciences,
18(2):143–154, 1979.

[11] P. Crowley. Mercy: A fast large block cipher for disk sector encryption. In B. Schneier,
editor, Fast Software Encryption: 7th International Workshop, volume 1978 of Lecture
Notes in Computer Science, pages 49–63, New York, USA, Apr. 2000. Springer-Verlag.
www.ciphergoth.org/crypto/mercy.

[12] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal on Computing,
30(2):391–437, 2000. Earlier version in STOC 91.

[13] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, Apr. 1984.

[14] S. Halevi and H. Krawczyk. MMH: Software message authentication in the Gbit/second rates.
In E. Biham, editor, Fast Software Encryption (FSE ’97), volume 1267 of Lecture Notes in
Computer Science, pages 172–189. Springer, 1997.

10

[15] S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor, Advances
in Cryptology – CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science. Springer-
Verlag, 2003. Proceedings version of this paper.

[16] J. Hughes. Chair of the IEEE Security in Storage Working Group. Working
group homepage at www.siswg.org. Call for algorithms can be found at www.mail-
archive.com/cryptography@wasabisystems.com/msg02102.html, May 2002.

[17] A. Joux. Cryptanalysis of the EMD mode of operation. In Advances in Cryptology – EURO-
CRYPT ’03, volume 2656 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[18] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. Journal of
Cryptology, 14(1):17–35, 2001. Earlier version in CRYPTO ’96. www.cs.ucdavis.edu/∼rogaway.

[19] H. Krawczyk. LFSR-based hashing and authentication. In Advances in Cryptology – CRYPTO
’94, volume 839 of Lecture Notes in Computer Science, pages 129–139. Springer-Verlag, 1994.

[20] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in
Cryptology – CRYPTO ’02, Lecture Notes in Computer Science. Springer-Verlag, 2002.
www.cs.berkeley.edu/∼daw/.

[21] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. of Computation, 17(2), April 1988.

[22] C. Meyer and S. Matyas. Cryptography: A new dimension in computer security. John Wiley
and Sons, 1982.

[23] M. Naor and O. Reingold. A pseudo-random encryption mode. Manuscript, available from
www.wisdom.weizmann.ac.il/∼naor/.

[24] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff
revisited. Journal of Cryptology, 12(1):29–66, 1999. (Earlier version in STOC ’97.) Available
from www.wisdom.weizmann.ac.il/∼naor/.

[25] P. Rogaway. The EMD mode of operation (a tweaked, wide-blocksize, strong PRP). Cryptology
ePrint Archive, Report 2002/148, Oct. 2002. Early (buggy) version of the CMC algorithm.
http://eprint.iacr.org/.

[26] R. Schroeppel. The hasty pudding cipher. AES candidate submitted to NIST.
www.cs.arizona.edu/∼rcs/hpc, 1999.

[27] Y. Zheng, T. Matsumoto, and H. Imai. On the construction of block ciphers provably secure
and not relying on any unproved hypotheses. In Advances in Cryptology – CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 461–480. Springer-Verlag, 1989.

A The Joux Attack

In an early, unpublished version of the current paper [25] the scheme CMC, then called EMD,
worked a little bit differently: instead of computing T = EK(T) and xoring T into P1 and C1, we
simply xored T into the mask M , setting M = 2(PPP 1 ⊕ PPPm)⊕ T . We claimed—incorrectly—
that the scheme was secure (as a tweakable, strong PRP). Antoine Joux [17] noticed that the scheme
was wrong, pointing out that it is easy to distinguish the mode and its inverse from a tweakable
truly random permutation and its inverse. Below is (a slightly simplified variant of) his attack:

11

1. The adversary picks an arbitrary tweak T and an arbitrary 4-block plaintext P1P2P3P4. It
encrypts (T, P1P2P3P4), obtaining ciphertext C1C2C3C4, and it encrypts (T +1, P1P2P3P4),
obtaining a different ciphertext C ′

1C
′
2C

′
3C

′
4.

2. The adversary now decrypts (T, C1(C
′
2 + 1)(C3 + 1)C4), obtaining plaintext P ′′

1 P ′′
2 P ′′

3 P ′′
4 .

If P ′′
1 = P1 then the adversary outputs 1 (it guesses that it has a “real” enciphering oracle;

otherwise, the adversary answers 0 (it knows that it has a “fake” enciphering oracle). It is easy to
see that this attack has advantage of nearly 1.

What went wrong? Clearly the provided proof had a bug. The bug turns out not to be a
particularly interesting one. On the 14-th page of the proof [25] begins a detailed case analysis.
The case denoted X1–X5 was incorrect: two random variables are said to rarely collide, but with
an appropriate choice of constants the random variables become degenerate (constants) and always
collide. The same happens for case Y1–Y5. The current paper restructures the case analysis.

Our earlier manuscript [25] also mentioned a parallelizable mode that we called EME. Joux also
provides an attack on EME, using the tweak in a manner similar to the attack on CMC. We later
found that, as opposed to CMC, the EME scheme remains insecure even as an untweakable PRP.
Thus one cannot repair EME simply by using a different method of incorporating the tweak.

B A “natively tweakable” variant of CMC

Two minor drawbacks of the tweakable CMC mode is that it uses two keys of the underlying cipher
(rather than just one), and that both directions of the block cipher are used to decipher. Both of
these drawbacks are due to the “generic” way in which the tweak is incorporated into CMC. We
now describe a variant, denoted CMC′, that avoids these drawbacks (at the cost of one more block
encryption), by “natively” incorporating the tweak in the computation. We specify in Figure 3
both the forward direction of this variant, E = CMC′-E, and its inverse D. An illustration is given
in Figure 4.

C A Useful Lemma — ±p̃rp-security ⇔ ±r̃nd-security

Before proving security for CMC, we provide a little lemma that says that a (tweakable) truly
random permutation and its inverse looks very much like a pair of oracles that just return random
bits (assuming you never ask pointless queries). So instead of analyzing indistinguishability from
a random permutation we might as well analyze indistinguishability from random bits.

Let E: K× T ×M→M be a tweaked block-cipher and let D be its inverse. The advantage of

distinguishing E from random bits, Adv±r̃nd
E

, is

Adv±r̃nd
E

(A) = Pr[K
$

←K : AEK(·,·) DK(·,·) ⇒ 1]− Pr[A$(·,·) $(·,·) ⇒ 1]

where $(T, M) returns a random string of length |M |. We insist that A makes no pointless queries,
regardless of oracle responses, and A asks no query (T, M) outside of T × M. We extend the
definition above in the usual way to its resource-bounded versions. We have the following:

Lemma 6 [±p̃rp-security ≈ ±r̃nd-security] Let E: K×T ×M→M be a tweaked block-cipher
and let q ≥ 1. Then

|Adv±p̃rp
E

(q)−Adv±r̃nd
E

(q)| ≤ q(q − 1)/2N+1

where N is the length of a shortest string in M.

12

Algorithm ET

K
(P1 · · ·Pm)

100 CCC 0← PPP0← 0n

101 for i← 1 to m do
102 PP i← Pi ⊕ PPP i−1

103 PPP i← EK(PP i)

110 MC ← EK(PPPm ⊕ T)
111 M ← 2 (PPP1 ⊕MC)
112 MP ← PPP1 ⊕M

120 CCC 1←MC ⊕M
121 for i ∈ [2 .. m− 1] do
122 CCC i← PPPm+1−i ⊕M
123 CCC m← EK(MP)⊕ T

130 for i ∈ [1 .. m] do
131 CC i← EK(CCC i)
132 Ci← CC i ⊕ CCC i−1

140 return C1 · · ·Cm

Algorithm DT

K
(C1 · · ·Cm)

200 PPP0← CCC 0← 0n

201 for i← 1 to m do
202 CC i← Ci ⊕ CCC i−1

203 CCC i← E−1
K

(CC i)

210 MP ← E−1
K

(CCC m ⊕ T)
211 M ← 2 (CCC 1 ⊕MP)
212 MC ← CCC 1 ⊕M

220 PPP1←MP ⊕M
221 for i ∈ [2 .. m− 1] do
222 PPP i← CCCm+1−i ⊕M
223 PPPm← E−1

K
(MC)⊕ T

230 for i ∈ [1 .. m] do
231 PP i← E−1

K
(PPP i)

232 Pi← PP i ⊕ PPP i−1

240 return P1 · · ·Pm

Figure 3: Enciphering (left) and deciphering (right) under E = CMC′[E], where E: K× {0, 1}n → {0, 1}n is a
block cipher. The tweak is T ∈ {0, 1}n and the plaintext is P = P1 · · ·Pm and the ciphertext is C = C1 · · ·Cm.

M

MT

T

PPP1

PP1

P1

CCC 4

CC 4

C4

CC 3

PP2

P2

C3

CCC 3

PPP2

CC 2

PP3

C2

PPP3

CCC 2

P3

PPP4

C1

CCC 1

PP4

CC 1

P4

MC

MP

MM

Figure 4: Enciphering under CMC′ mode for a message of m = 4 blocks. The boxes represent EK . We set
mask M = 2 (PPP1 ⊕MC). This value can also be computed as M = 2 (CCC 1 ⊕MP).

13

2

The proof follows the well-known argument relating PRP-security to PRF-security (e.g., [5]).
Namely, let A be an adversary that interacts with an oracle F F ′. Assume that A makes no
purposeless queries and at most q queries overall. Let X be the multiset of strings which are either
asked to F or answered by F ′, and let Y be the multiset of strings which are either asked to F ′ or
answered by F . When F F ′ = $ $ let C be the event that some string in X appears twice or some
string in Y appears twice, and let Ci be the event that the adversary’s ith query, when added to X
or Y, was already in that set. Then

|Adv±p̃rp
E

(A)−Adv±r̃nd
E

(A)| = |Pr[AEK DK ⇒ 1]−Pr[Aπ π
−1

⇒ 1]−Pr[AEK DK ⇒ 1]+Pr[A$ $ ⇒ 1]|

= |Pr[A$ $ ⇒ 1]− Pr[Aπ π
−1

⇒ 1]|

= |Pr[A$ $ ⇒ 1 |C] Pr[C] + Pr[A$ $ ⇒ 1 |C](1− Pr[C])− Pr[Aπ π
−1

⇒ 1]|

≤ |zy + x(1− y)− x|

= |y(z − x)|

≤ y

where x = Pr[Aπ π−1

⇒ 1]| and y = Pr[C] and z = Pr[A$ $ ⇒ 1 |C]. Now y = Pr[C] ≤
∑q

i=1 Pr[Ci] ≤
(1 + · · · + (q − 1))/2n ≤ q(q − 1)/2N+1 as the i-th query will cause Ci with probability at most
(i− 1)/2N .

D Proof of Theorem 1 — Security of CMC

Our proof of security for CMC is divided into two parts: (1) a game-substitution argument, reducing
the analysis of CMC to the analysis of a simpler probabilistic game; and (2) analyzing that game.
We also use Lemma 6 from above.

D.1 The Game-Substitution Sequence

Let n, m, and q all be fixed, and σ = mq. Let A be an adversary that asks q oracle queries (none
pointless), each of nm bits. Our first major goal is to describe a probability space, NON2, this prob-
ability space depending on constants derived from A, and to define an event on the probability space,
denoted NON2 sets bad , for which Adv±p̃rp

CMC[Perm(n)](A) ≤ 2 · Pr[NON2 sets bad] + σ2/2n. Later

we bound Pr[NON2 sets bad] and, putting that together with Lemma 6, we will get Equation (1)
of Theorem 1. The rest of Theorem 1 follows easily, as explained in Section 5. Game NON2 is
obtained by a game-substitution argument, as carried out in works like [18]. The goal is to simplify
the rather complicated setting of A adaptively querying its oracles and to arrive at a simpler setting
where there is no adversary and no interaction—just a program that flips coins and a flag bad that
does or does not get set.

Game CMC1. We describe the attack of A against CMC[Perm(n)] as a probabilistic game in which
the permutation π is chosen “on the fly”, as needed to answer the queries of A. Initially, the partial
function π: {0, 1}n → {0, 1}n is everywhere undefined. When we need π(X) and π isn’t yet defined
at X we choose this value randomly among the available range values. When we need π−1(Y) and
there is no X for which π(X) has been set to Y we likewise choose X at random from the available
domain values. As we fill in π its domain and its range thus grow. In the game we keep track
of the domain and range of π by maintaining two sets, Domain and Range, that include all the
points for which π is already defined. We let Domain and Range be the complement of these sets
relative to {0, 1}n. The game, denoted CMC1, is shown in Figure 5. Since game CMC1 accurately

14

Initialization:

000 bad← false; Domain← Range←∅; for all X ∈ {0, 1}n do π(X)← undef

Respond to the s-th adversary query as follows:

An encipher query, Enc(P s
1 · · ·P

s
m):

110 Let u[s] be the largest value in [0 .. m] s.t. P s
1 · · ·P

s

u[s] = P r
1 · · ·P

r

u[s] for some r < s

111 PPPs

0← CCC s

0← 0n; for i← 1 to u[s] do PPs

i ← P s
i
⊕ PPPs

i−1, PPPs

i ← PPPr

i

112 for i← u[s] + 1 to m do
113 PPs

i ← P s
i
⊕ PPPs

i−1

114 PPPs

i

$

←{0, 1}n; if PPPs

i ∈ Range then bad← true , PPPs

i

$

← Range

115 if PPs

i ∈ Domain then bad← true , PPP s

i ← π(PPs

i)

116 π(PPs

i)← PPPs

i , Domain←Domain ∪ {PP s
i
}, Range← Range ∪ {PPPs

i}

120 Ms← 2 (PPPs

1 ⊕ PPPs

m); for i ∈ [1 .. m] do CCC s

i ← PPPs

m+1−i ⊕Ms

130 for i← 1 to m do

131 CC s

i

$

←{0, 1}n; if CC s

i ∈ Range then bad← true , CC s

i

$

← Range

132 if CCC s

i ∈ Domain(π) then bad← true , CC s

i ← π(CCC s

i)

133 Cs
i
← CC s

i ⊕ CCC s

i−1

134 π(CCC s

i)← CC s

i , Domain←Domain ∪ {CCC s

i}, Range← Range ∪ {CC s

i}

140 return C1 · · ·Cm

A decipher query, Dec(Cs
1 · · ·C

s
m):

210 Let u[s] be the largest value in [0 .. m] s.t. Cs
1 · · ·C

s

u[s] = Cr
1 · · ·C

r

u[s] for some r < s

211 CCC s

0← PPPs

0← 0n; for i← 1 to u[s] do CC s

i ← Cs
i
⊕ CCC s

i−1, CCC s

i ← CCC r

i

212 for i← u[s] + 1 to m do
213 CC s

i ← Cs
i
⊕ CCC s

i−1

214 CCC s

i

$

←{0, 1}n; if CCC s

i ∈ Domain then bad← true , CCC s

i

$

←Domain

215 if CC s

i ∈ Range then bad← true , CCC s

i ← π−1(CC s

i)

216 π(CCC s

i)← CC s

i , Domain←Domain ∪ {CCCs
i
}, Range← Range ∪ {CC s

i}

220 Ms← 2 (CCC s

1 ⊕ CCC s

m); for i ∈ [1 .. m] do PPPs

i ← CCC s

m+1−i ⊕Ms

230 for i← 1 to m do

231 PPs

i

$

←{0, 1}n; if PPs

i ∈ Domain then bad← true , PPs

i

$

←Domain

232 if PPPs

i ∈ Range(π) then bad← true , PP s

i ← π−1(PPPs

i)

233 P s
i
← PPs

i ⊕ PPPs

i−1

234 π(PPs

i)← PPPs

i , Domain←Domain ∪ {PPs

i}, Range← Range ∪ {PPPs

i}

240 return P1 · · ·Pm

Figure 5: Game CMC1 describes the attack of A on CMC[Perm(n)], where the permutation π is chosen “on
the fly” as needed. Game RND1 is the same as game CMC1 except we do not execute the shaded statements.

15

represent the attack scenario, we have that

Pr[AEπ Dπ ⇒ 1] = Pr[ACMC1 ⇒ 1] (5)

Looking ahead to the game substitution sequence, we have structured the code in Figure 5 in a
way that makes it easier to present the following games. In particular, here are some things to note
about this code:

The notation u[s]. When handling the s-th adversary query we need to focus on the first “new
block” in that query. Suppose the sth query is an encipher query, P s

1 . . . P s
m. Then we look for

the first index i such that P s
1 . . . P s

i is not a prefix of any other plaintext that was encountered
in the game so far. Since we do CBC encryption at the first layer, the index i represents the
first time we expect to choose a new value for π (all previous values must already be defined).
For convenience, we define u[s] to be the index immediately prior to this “first new block”.
Namely, we define u[s] to give the length, in blocks, of the longest prefix of plaintext blocks
that has already been seen:

u[s]
def
= max{ i : ∃ r < s, s.t. P s

1 . . . P s
i = P r

1 . . . P r
i }

The value of u[s] is understood to be 0 if s = 1 (no prior queries) or s > 1 but all prior
plaintext blocks P r

1 differ from P s
1 . Note that the plaintexts being considered here is both the

plaintexts asked in encipher queries and plaintexts returned by decipher queries. We use the
symmetric definition for decipher queries.

Filling in π and π−1 values. When we need to define π on what is likely to be a new domain
point X, setting π(X)← Y for some Y , we do not do the natural thing of first checking if π
has a value at X and, if not, choosing a random value from Range as Y . Instead, we first
sample Y from {0, 1}n; then re-sample, this time from Range, if the initially chosen sample Y
was already in the range of π; finally, if π already had a value at X, then we forget about Y and
use the original value. We behave analogously for π−1(Y) values. In Figure 5 we highlight the
places where we have to reset a choice we tentatively made. Whenever we do so we set a flag
bad. The flag bad is never seen by the adversary A that interacts with the CMC1 game—it is
only present to facilitate the subsequent analysis.

Game RND1. We next modify game CMC1 by omitting the statements that immediately follow
the setting of bad to true. (This is the usual trick under the game-substitution approach.) Namely,

where before we were making some consistency checks after each random choice π(X) = Y
$

←{0, 1}n

(to see if this value of Y was already in use, or if π was already defined at X), we now omit all
these checks. This means that π may end up not being a permutation, and moreover we may reset
its value on previously chosen points.

Still, the games CMC1 and RND1 are syntactically identical apart from what happens after
the setting of the flag bad to true. Once the flag bad is set to true the subsequent behavior of the
game does not impact the probability that an adversary A interacting with the game can set the
flag bad to true. This is exactly the setup used in the game-substitution method to conclude that

Pr[ACMC1 ⇒ 1]− Pr[ARND1 ⇒ 1] ≤ Pr[ARND1 sets bad] (6)

Game RND2. We now make two adversarially-invisible changes to game RND1. First, we note
that the function π (and its inverse) are never used in game RND1, so we just remove them from

the code. Next, instead of choosing CC s
i

$

←{0, 1}n and then setting Cs
i ← CC s

i ⊕ CCC s
i−1 (in

16

Initialization:

000 bad← false; Domain← Range←∅;

Respond to the s-th adversary query as follows:

An encipher query, Enc(P s
1 · · ·P

s
m):

110 Let u[s] be the largest value in [0 .. m] s.t. P s
1 · · ·P

s

u[s] = P r
1 · · ·P

r

u[s] for some r < s

111 PPPs

0← CCC s

0← 0n; for i← 1 to u[s] do PPs

i ← P s
i
⊕ PPPs

i−1, PPPs

i ← PPPr

i

112 for i← u[s] + 1 to m do
113 PPs

i ← P s
i
⊕ PPPs

i−1

114 PPPs

i

$

←{0, 1}n; if PPPs

i ∈ Range then bad← true
115 if PPs

i ∈ Domain then bad← true
116 Domain←Domain ∪ {PP s

i
}, Range← Range ∪ {PPPs

i}

120 Ms← 2 (PPPs

1 ⊕ PPPs

m); for i ∈ [1 .. m] do CCC s

i ← PPPs

m+1−i ⊕Ms

130 for i← 1 to m do

131 Cs
i

$

←{0, 1}n

132 CC s

i ← Cs
i
⊕ CCC s

i−1; if CC s

i ∈ Range then bad← true
133 if CCC s

i ∈ Domain then bad← true
134 Domain←Domain ∪ {CCC s

i}, Range← Range ∪ {CC s

i}

140 return C1 · · ·Cm

A decipher query, Dec(Cs
1 · · ·C

s
m), is treated symmetrically

Figure 6: Game RND2 is indistinguishable from Game RND1 but chooses some of its variables in different order.

lines 131–133), we will now choose Cs
i

$

←{0, 1}n and then set CC s
i ← Cs

i ⊕ CCC s
i−1. Clearly, this

change preserves the distribution of all these variables. The analogous comments apply to the
choice of PP s

i and P s
i in lines 231–233 of game RND1; we could just as well have chosen P s

i at
random and defined PP s

i using it. Game RND2 is described in Figure 6. (In that figure we did not
bother describing the decipher queries, as they are completely symmetric to the encipher queries.)
Since games RND1 and RND2 define the same distribution over all their variables, it follows in
particular that

Pr[ARND1 sets bad] = Pr[ARND2 sets bad] and Pr[ARND1 ⇒ 1] = Pr[ARND2 ⇒ 1] (7)

Next we note that in game RND2 we return nm random bits in response to any m-block Enc-query.
Similarly, we return nm random bits in response to any m-block Dec-query. Thus RND2 provides
an adversary with an identical view to a pair of random-bit oracles,

Pr[ARND2 ⇒ 1] = Pr[A±r̃nd ⇒ 1] (8)

Combining Equations 5, 6, 7, and 8, we thus have that

Adv±r̃nd
CMC[Perm(n)](A) = Pr[ACMC1 ⇒ 1]− Pr[ARND2 ⇒ 1]

= Pr[ACMC1 ⇒ 1]− Pr[ARND1 ⇒ 1]

≤ Pr[ARND1 sets bad]

= Pr[ARND2 sets bad] (9)

Our task is thus to bound Pr[ARND2 sets bad].

17

Respond to the s-th adversary query as follows:

An encipher query, Enc(P s
1 · · ·P

s
m):

010 tys← Enc

011 Cs = Cs
1 · · ·C

s
m

$

←{0, 1}nm

012 return Cs

A decipher query, Dec(Cs
1 · · ·C

s
m):

020 tys← Dec

021 P s = P s
1 · · ·P

s
m

$

←{0, 1}nm

022 return P s

Finalization:

First phase

050 D←R←∅ // These are multisets—a point can be in D or R more than once
051 for s← 1 to q do

100 if tys = Enc then
110 Let u[s] be the largest value in [0 .. m] s.t. P s

1 · · ·P
s

u[s] = P r
1 · · ·P

r

u[s] for some r < s

111 PPPs

0← CCC s

0← 0n; for i← 1 to u[s] do PPs

i ← P s
i
⊕ PPPs

i−1, PPPs

i ← PPPr

i

112 for i← u[s] + 1 to m do
113 PPs

i ← P s
i
⊕ PPPs

i−1; D←D ∪ {PPs

i}

114 PPPs

i

$

←{0, 1}n; R←R ∪ {PPPs

i}

120 Ms← 2 (PPPs

1 ⊕ PPPs

m)

130 for i← 1 to m do
131 CCC s

i ← PPPs

m+1−i ⊕Ms; D←D ∪ {CCC s

i}
132 CC s

i ← Cs
i
⊕ CCC s

i−1; R←R ∪ {CC s

i}

200 if tys = Dec then behave analogously

Second phase

300 bad← (some value appears more than once in D)
or (some value appears more than once in R)

Figure 7: Game RND3 is adversarially indistinguishable from game RND2 but defers the setting of bad.

Game RND3. Next we reorganize game RND2 so as to separate out (i) choosing random values
to return to the adversary, (ii) defining intermediate variables, and (iii) setting the flag bad.

We already remarked that game RND2 returns mn random bits in response to any m-block
query. Now, in game RND3, shown in Figure 7, we make that even more clear by choosing the
necessary Cs = Cs

1 · · ·C
s
m or P s = P s

1 · · ·P
s
m response just as soon as the sth query is made. Nothing

else is done at that point except for recording if the adversary made an Enc query or a Dec query.
When the adversary finishes all of its oracle queries and halts, we execute the “finalization”

step of game RND3. First, we go over all the variables of the game and determine their values, just
as we do in game RND2. While doing so, we collect all the values in the sets Domain and Range,
this time viewing them as multisets D and R, respectively. When we are done setting values to all
the variables, we go back and look at D and R. The flag bad is set if (and only if) any of these
multisets contains some value more than once. This procedure is designed to set bad under exactly
the same conditions as in game RND2. The following is thus clear:

Pr[ARND2 sets bad] = Pr[ARND3 sets bad] (10)

Game NON1. So far we have not changed the structure of the games at all: it has remained an

18

050 D←R←∅ // Multisets
051 for s← 1 to q do
100 if tys = Enc then
110 Let u[s] be the largest value in [0 .. m] s.t. Ps

1 · · ·P
s

u[s] = Pr
1 · · ·P

r

u[s] for some r < s

111 PPPs

0← CCC s

0← 0n; for i← 1 to u[s] do PPs

i ← Ps
i
⊕ PPPs

i−1, PPPs

i ← PPPr

i

112 for i← u[s] + 1 to m do
113 PPs

i ← Ps
i
⊕ PPPs

i−1 ; D←D ∪ {PPs

i}

114 PPPs

i

$

←{0, 1}n ; R←R ∪ {PPPs

i}

120 for i← 1 to m do
121 CCC s

i ← PPPs

m+1−i ⊕ 2 (PPPs

1 ⊕ PPPs

m); D←D ∪ {CCC s

i}
122 CC s

i ← Cs
i
⊕ CCC s

i−1; R←R ∪ {CC s

i}

200 else (tys = Dec)
210 Let u[s] be the largest value in [0 .. m] s.t. Cs

1 · · ·C
s

u[s] = Cr
1 · · ·C

r

u[s] for some r < s

211 CCC s

0← PPPs

0← 0n; for i← 1 to u[s] do CC s

i ← Cs
i
⊕ CCC s

i−1, CCC s

i ← CCC r

i

212 for i← u[s] + 1 to m do
213 CC s

i ← Cs
i
⊕ CCC s

i−1 ; R←R ∪ {CC s

i}

214 CCC s

i

$

←{0, 1}n ; D←D ∪ {CCC s

i}

220 for i← 1 to m do
221 PPPs

i ← CCC s

m+1−i ⊕ 2 (CCC s

1 ⊕ CCC s

m); R←R ∪ {PPPs

i}
222 PPs

i ← Ps
i
⊕ PPPs

i−1; D←D ∪ {PPs

i}

300 bad← (some value appears more than once in D)
or (some value appears more than once in R)

Figure 8: Game NON1 is based on game RND3 but now τ = (ty,P,C) is a fixed, allowed transcript.

adversary asking q questions to an oracle, our oracle answering those questions, and the internal
variable bad either ending up true or false. The next step, however, actually gets rid of the adversary,
as well as all interaction in the game.

We want to bound the probability that bad gets set to true in game RND3. We may assume
that the adversary is deterministic, and so the probability is over the random choices to the P s

and and Cs values that are made while answering the queries (in lines 011 and 021), and the

random choices PPP s
i

$

←{0, 1}n and CCC s
i

$

←{0, 1}nm that are made in finalization—phase one
(lines 114 and 214). We will now eliminate the coins associated to lines 011 and 021. Recall that
the adversary asks no pointless queries.

We would like to make the stronger statement that for any set of values that might be returned
to the adversary at lines 011 and 021, and for any set of queries (none pointless) associated to
them, the finalization step of game RND3 rarely sets bad. However, this statement isn’t quite
true. For example, assume that r-th and s-th queries (r < s) are both encipher queries, and
that the random choices in line 011 specify that the first block in the two answers is the same,
Cr

1 = Cs
1 . Then the flag bad is sure to be set, since we will have a “collision” between CC r

1

and CC s
1. Formally, since CCC r

0← 0n and CCC s
0← 0n (both in line 111), then we would get in

line 131 CC r
1 = Cr

1 ⊕ 0n = Cs
1 ⊕ 0n = CC s

1 and since the two formal variables CC r
1 and CC s

1

belong to R we would set bad when we examine them in line 302. A similar example can be given
for decipher queries. We call such collisions immediate collisions. Formally, an immediate collision
happens whenever we have Cr

1 = Cs
1 (r < s) and query s is an encipher query, and whenever we

have P r
1 = P s

1 (r < s) and query s is a decipher query. Clearly the probability of an immediate
collision in game RND3 is at most

(
q
2

)
/2n = q(q − 1)/2n+1.

We make from the Finalization part of game RND3 a new game, game NON1 (for “noninter-

19

050 D←∅ // Multiset
051 for s← 1 to q do
100 if tys = Enc then
110 Let u[s] be the largest value in [0 .. m] s.t. Ps

1 · · ·P
s

u[s] = Pr
1 · · ·P

r

u[s] for some r < s

111 PPPs

0← CCC s

0← 0n; for i← 2 to u[s] do PPs

i ← Ps
i
⊕ PPPs

i−1, PPPs

i ← PPPr

i

112 for i← u[s] + 1 to m do

113 PPs

i ← Ps
i
⊕ PPPs

i−1 ; D←D ∪ {PPs

i}

114 PPPs

i

$

←{0, 1}n

120 for i ∈ [1 .. m] do CCC s

i ← PPPs

m+1−i ⊕ 2 (PPPs

1 ⊕ PPPs

m); D←D ∪ {CCC s

i}

200 else (tys = Dec)
210 Let u[s] be the largest value in [0 .. m] s.t. Cs

1 · · ·C
s

u[s] = Cr
1 · · ·C

r

u[s] for some r < s

211 CCC s

0← PPPs

0← 0n; for i← 1 to u[s] do CC s

i ← Cs
i
⊕ CCC s

i−1, CCC s

i ← CCC r

i

212 for i ∈ [u[s] + 1 .. m] do CCC s

i

$

←{0, 1}n ; D←D ∪ {CCC s

i}

220 for i ∈ [1 .. m] do PPPs

i ← CCC s

m+1−i ⊕ 2 (CCC s

1 ⊕ CCC s

m)

230 for i ∈ [1 .. m] do PPs

i ← Ps
i
⊕ PPPs

i−1; D←D ∪ {PPs

i}

300 bad← (some value appears more than once in D)

Figure 9: Game NON2. Twice the probability that bad gets set in this game bounds the probability that bad

gets set in game NON1. We highlight by shading the random selections in this game, and we highlight by boxing
statements that grow D.

active”). This game silently depends on a fixed transcript τ = 〈ty,P,C〉 with ty = (ty1, · · · , tyq),
P = (P1, · · · , Pq), and C = (C1, · · · , Cq) where tys ∈ {Enc, Dec} and Ps = Ps

1 · · ·P
s
m and Cs =

Cs
1 · · ·C

s
m for |Pr

i | = |Cr
i | = n. This fixed transcript may not specify any immediate collisions or

pointless queries; we call such a transcript allowed. Thus saying that τ is allowed means that for
all r < s we have the following: if tys = Enc then (i) Ps 6= Pr and (ii) Cs

1 6= Cr
1; while if tys = Dec

then (i) Cs 6= Cr and (ii) Ps
1 6= Pr

1. Now fix an allowed transcript τ that maximizes the probability
of the flag bad being set. This one transcript τ is hardwired into game NON1. We have that

Pr[ARND3 sets bad] ≤ Pr[NON1 sets bad] + q(q − 1)/2n+1 (11)

This step can be viewed as conditioning on the presence or absence of an immediate collision,
followed by the usual argument that an average of a collection of real numbers is at most the
maximum of those numbers. One can also view the transition from game RND3 to game NON1 as
augmenting the adversary, letting it specify not only the queries to the game, but also the answers
to these queries (as long as it does not specify immediate collisions or pointless queries). In terms of
game RND3, instead of having the oracle choose the answers to the queries at random in lines 011
and 021, we let the adversary supply both the queries and the answers. The oracle just records
these queries and answers. When the adversary is done, we execute the finalization step as before
to determine the bad flag. Clearly such an augmented adversary does not interact with the oracle
at all, it just determines the entire transcript, giving it as input to the oracle. Now maximizing
the probability of setting bad over all such augmented adversaries is the same as maximizing this
probability over all allowed transcripts.

Game NON2. Before we move to analyze the non-interactive game, we make one last change,
aimed at reducing the number of cases that we need to handle in the analysis. We observe that due
to the complete symmetry between D and R, it is sufficient to analyze the collision probability in

20

just one of them. Specifically, because of this symmetry we can assume w.l.o.g. that in game NON1

Pr[some value appears more than once in D] ≥ Pr[some value appears more than once in R]

and therefore Pr[NON1 sets bad] ≤ 2 · Pr[some value appears more than once in D].
We therefore replace the game NON1 by game NON2, in which we only set the flag bad if there

is a collision in D. We now can drop the code that handles R, as well as anything else that doesn’t
affect the multiset D. The resulting game is described in Figure 9, and we have

Pr[NON1 sets bad] ≤ 2 · Pr[NON2 sets bad] (12)

D.2 Analysis of the Non-Interactive Game NON2

It is helpful to view the multiset D as a set of formal variables (rather than a multiset containing
the values that these variables assume). Namely, whenever in game NON2 we set D←D ∪ {X}
for some variable X, we would think of it as setting D←D ∪ {“X”} where “X” is the name of
that formal variable. Viewed in this light, our goal now is to bound the probability that two formal
variables in D assume the same value in the execution of NON2. We observe that the formal
variables in D are uniquely determined by τ—they don’t depend on the random choices made in
the game NON2; specifically,

D = {PPs
i | tys = Dec} ∪ {PP s

i | tys = Enc and i > u[s]} ∪

{CCC s
i | tys = Enc} ∪ {CCC s

i | tys = Dec and i > u[s]}

We view the formal variables in D as ordered according to when they are assigned a value in the
execution of game NON2. This ordering too is fixed, depending only on the fixed transcript τ .

Throughout the remainder of this section, in all probability claims, the implicit experiment is
that of game NON2. We adopt the convention that in an arithmetic or probability expression, a
formal variable implicitly refers to its value. For example, Pr[X = X ′] means the probability that
the value assigned to X is the same as the value assigned to X ′. (At times we may still write “X”
to stress that we refer to the name of the formal variable X, or value(X) to stress that we refer to
the value of X.) The rest of this section is devoted to case analysis, proving the following claim:

Claim 1 For any two distinct variables X, X ′ ∈ D we have Pr[X = X ′] ≤ 2−n
2

Before proving Claim 1, we show how to use it to complete the proof of Theorem 1. As there are
no more than 2σ variables in D, we use the union bound to conclude

Pr[NON2 sets bad] ≤

(
2σ

2

)
/2n (13)

Combining Lemma 6 with Equations 9, 10, 11, 12, and 13 we are done:

Adv±p̃rp
CMC[Perm(n)](A) ≤ Adv±r̃nd

CMC[Perm(n)](A) + q(q − 1)/22n+1

≤ 2 · Pr[NON2 sets bad] + q(q − 1)/2n+1 + q(q − 1)/22n+1

≤ 2 ·

(
2σ

2

)
/2n + q(q − 1)/2n+1 + q(q − 1)/22n+1

≤ 5σ2/2n

21

φ(CCC s
i) =

{
CCC s

i if i > u[s] and tys = Dec CCC1

PPPs
m if tys = Enc CCC2

φ(PPs
i) =

none if i = 1 PP1

CCC s
m if i > 1 and tys = Dec PP2

PPPs
i−1 if i > 1 and tys = Enc and i > u[s] + 1 PP3

PPP
r[s,i−1]
i−1 if i > 1 and tys = Enc and i = u[s] + 1 and tyr[s,i−1] = Enc PP4

CCC
r[s,i−1]
m if i > 1 and tys = Enc and i = u[s] + 1 and tyr[s,i−1] = Dec PP5

Figure 10: Defining the last free variable, φ(X), associated to formal variable X ∈ D. Transcript τ = (ty,P,C)
has been fixed and it determines u[·] and r[·, ·].

Since A was an arbitrary adversary that asks at most q queries, each consisting of m blocks, we
conclude that Adv±p̃rp

CMC[Perm(n)](nσ) ≤ 5σ2/2n, as required, which completes Equation (1). The
proof for the remainder of Theorem 1 is explained in the discussion following the theorem.

The case analysis. We now need to prove Claim 1. We first prove a few claims (Claims 3
through 7 below), each covering some special cases of collisions, and then go through a systematic
case analysis, showing that all possible cases are indeed covered by these claims.

Inspecting the code of game NON2 we see that the only random choices in the game are the

selection PPP s
i

$

←{0, 1}n on encipher (line 114) and the selection CCC s
i

$

←{0, 1}n on decipher
(line 212). Hereafter we refer to these variables as the free variables of the game, and we let F

denote the set of them:

F = {PPPs
i | tys = Enc and i > u[s]} ∪ {CCC s

i | tys = Dec and i > u[s]}

The value of any variable in the game NON2 can be expressed as a function in the free variables.
To help the analysis, we consider, for each variable X ∈ D, the last free variable that X depends
on, denoted φ(X). We now explicitly define the function φ: D → F ∪ {none}. For that definition,
it is important to keep in mind that since all the queries are of the same length and there are
no pointless queries, we have that u[s] < m for all s. Therefore we have PPP s

m ∈ F whenever
tys = Enc, and CCC s

m ∈ F whenever tys = Dec.
A formal variable CCC s

i ∈ D may be assigned a value PPP s
m+1−i ⊕ 2(PPPs

1 ⊕ PPPs
m) in

line 120 (on encipher), in which case the variable PPP s
m (which has to be a free variable) is

the “last free variable that CCC s
i depends on”, φ(CCC s

i) = PPPs
m. Alternatively, CCC s

i may be
chosen at random in line 212, in which case it is itself a free variable, φ(CCC s

i) = CCC s
i . The

rules for PPs
i ∈ D are a bit more involved. On either encipher (line 113) or decipher (line 230),

the variable PP s
i is assigned the value Ps

i ⊕ PPPs
i−1, so φ(PPs

i) must be the same as “the last free
variable that PPP s

i−1 depends on”. Here we must consider several cases:

• If i = 1 then PPP s
i−1 is the constant zero, and so we denote φ(PP s

i) = none.

• If i > 1 and this is a decipher query, then PPP s
i−1 is assigned a value CCC s

m+1−i ⊕ 2(CCC s
1 ⊕

CCC s
m) in line 220, and as CCC s

m must be a free variable, we have φ(PP s
i) = CCC s

m.

• If i > 1 and this is an encipher query, and if i > u[s] + 1, then PPP s
i−1 is chosen at random

in line 114 (at the iteration just before the assignment of PP s
i). Thus, PPPs

i−1 is itself a free
variable, so we have φ(PP s

i) = PPPs
i−1.

22

• If i > 1 and this is an encipher query, and if i = u[s] + 1, then PPP s
i−1 is assigned the value

PPPr
i−1 in line 111, where r is some prior query such that Pr

1 · · ·P
r
i−1 = Ps

1 · · ·P
s
i−1. For the

purpose of determining the “last free variable that PPP s
i−1 depends on” we need to look at

the first such query r. Thus, for an encryption query, tys = Enc, we define for any index j,

r[s, j]
def
= min{ r ≤ s : Pr

1 · · ·P
r
j = Ps

1 · · ·P
s
j}.

Setting r = r[s, i−1], we know that i−1 ≥ u[r]+1 (since the prefix Pr
1 · · ·P

r
i−1 did not appear

anywhere before query r). Hence, if query r is an encryption query then PPP r
i−1 is itself a

free variable, and therefore φ(PP s
i) = PPP r

i−1. Lastly, if query r is a decryption query then
(similarly to the second bullet above), we have φ(PP s

i) = CCC r
m.

• The case where this is an encipher query and i < u[s] + 1 is not interesting, since in this case
PPs

i /∈ D.

A summary of all these cases appears in Figure 10. We stress that just like the sets D and F, the
function φ too depends only on the fixed transcript τ and not on the random choices in the game
NON2. Justifying the name “last free variable” we observe the following, which follows from the
preceding discussion:

Claim 2 Let X ∈ D be a formal variable, and let XXX = φ(X). If XXX 6= none then the value
that X assumes in game NON2 can be expressed as value(X) = a · value(XXX)⊕ β where a ∈
{1, 2, 3} is a constant (that depends the name of the formal variable X and on the fixed transcript τ)
and β is an expression involving only constants and free variables that occur before XXX in the
game NON2. 2

As an immediate corollary of Claim 2, we get the following.

Claim 3 Let X, X ′ ∈ D be formal variables such that φ(X) 6= φ(X ′). Then for any fixed ∆ ∈
{0, 1}n we have that Pr[X ⊕X ′ = ∆] = 2−n.

Proof : let XXX = φ(X) and let XXX ′ = φ(X ′), and assume that XXX ′ occurs before XXX in
NON2. By Claim 2, we have X ⊕X ′ = a · XXX ⊕ b ⊕ a′ · XXX ′ ⊕ b′, where a is a constant,
and b⊕ a′ ·XXX ′ ⊕ b′ is an expression involving only constants and free variables that occur before
XXX . As the value of XXX is chosen at random from GF (2n), independently of the other free
variables, it follows that Pr[X ⊕X ′ = ∆] = 2−n.

Claim 3 leaves us with the task of analyzing collisions between two variables that are assigned the
same free variable by φ. These cases are covered by the following four claims.

Claim 4 For any i and any r < s, if PP r
i ,PPs

i ∈ D with φ(PP r
i) = φ(PPs

i) there is a fixed
∆ ∈ {0, 1}n, ∆ 6= 0n, such that the values assigned to PP r

i ,PPs
i satisfy PP r

i ⊕ PPs
i = ∆ with

probability one.

Proof : If i = 1 then we have PP r
1 ⊕ PPs

1 = Pr
1 ⊕ Ps

1, which is clearly a constant. If query s is
decipher then this constant must be non-zero since the transcript τ cannot specify immediate
collisions. It query s is encipher then the fact that PP s

1 ∈ D tells us that 1 > u[s], which means
that Ps

1 is a “new block”, different than Pr
1. Thus, here too this constant must be non-zero. From

now on we assume that i ≥ 2.

23

The conditions r < s and φ(PP r
i) = φ(PPs

i) imply that φ(PP s
i) was assigned by rules PP4

or PP5 from Figure 10: If we were using rules PP2 or PP3, we would get φ(PP r
i) = φ(PPs

i) ∈
{PPPs

i−1,CCC s
m}, which is impossible since PP r

i cannot depend on a free variable from a future
query s > r.

It therefore follows that tys = Enc, i = u[s] + 1, and we either have r[s, i − 1] = r (if φ(PP r
i) was

assigned by rules PP2 or PP3) or at least r[s, i − 1] = r[r, i − 1] (if we used rules PP4 or PP5).
Either way, from the definition of r[·, ·] we conclude that Pr

1 . . . Pr
i−1 = Ps

1 . . .Ps
i−1, and therefore

PPPr
i−1 = PPPs

i−1. This, in turn, implies that PP r
i ⊕ PPs

i = Pr
i ⊕ Ps

i , which is a constant. To
show that this constant must be non-zero, we note that since PP s

i ∈ D, then Ps
1 . . . Ps

i cannot be a
prefix of Pr. But since we know that Ps

1 . . .Ps
i−1 is a prefix of Pr, it must be that Pr

i 6= Ps
i .

Claim 5 For any encipher query s, any two indexes i 6= j, and any fixed ∆ ∈ {0, 1}n we have that
Pr[CCC s

i ⊕ CCC s
j = ∆] = 2−n.

Proof : We prove this proposition by induction over s. In fact, it is easier to prove a stronger claim,
asserting the same collision probability also for PPP s

i ’s. Specifically, our inductive claim is that for
any s ≤ q, any i 6= j, and any fixed ∆ ∈ {0, 1}n, we have Pr[CCC s

i ⊕ CCC s
j = ∆] = 2−n if s is an

encipher query, and Pr[PPP s
i ⊕ PPPs

j = ∆] = 2−n if s is a decipher query.

The proposition holds vacuously for s = 0 (since there are no such formal variables). Assume now
that it holds for any r < s, and we prove for s. We prove here just the case of the CCC s

i ’s, as the
case for PPP s

i ’s is completely analogous. (But note that we assume that both cases hold for any
r < s).

Assume that i > j. If j = 0, then CCC s
j = 0, while CCC s

i = PPPs
m−i+1 ⊕ 2(PPPs

1 ⊕ PPPs
m)

(line 120 of game NON2). As PPP s
m is a free variable, it follows that Pr[CCC s

i ⊕ CCC s
j = ∆] =

2−n. From now on we assume that i > j > 0.

Recall that in line 120 of game NON2 we set CCC s
i = PPPs

m−i+1 ⊕ 2(PPPs
1 ⊕ PPPs

m), and CCC s
j =

PPPs
m−j+1 ⊕ 2(PPPs

1 ⊕ PPPs
m). Therefore we have CCC s

i ⊕ CCC s
j = PPPs

i′ ⊕ PPPs
j′ , where we

denote i′ = m− i + 1 and j ′ = m− j + 1.

Depending on whether i′, j′ are more than u[s], the variables PPP s
i′ ,PPPs

j′ may or may not be

set equal to previous variables PPP r
i′ ,PPPr′

j′ , respectively. Either way, we denote by PPP r
i′ “the

variable that PPP s
i′ is set equal to” (which can be PPP s

i′ itself), and likewise PPP r′

i′ is “the variable

that PPPs
j′ is set equal to”. Namely, we have r

def
= r[s, i′] and r′

def
= r[s, j′]. (Observe that r, r′ ≤ s,

with r = s iff i′ > u[s] and similarly r′ = s iff j′ > u[s].) Since we have PPP s
i′ = PPPr

i′ and
PPPs

j′ = PPPr′

j′ , we get

CCC s
i ⊕ CCC s

j = PPPs
i′ ⊕ PPPs

j′ = PPPr
i′ ⊕ PPPr′

j′

Recall that i > j, and therefore i′ < j′, which in turn implies that r ≤ r′ (because if Pr′

1 . . .Pr′

j′ =

Ps
1 . . .Ps

j′ then in particular Pr′

1 . . .Pr′

i′ = Ps
1 . . .Ps

i′). Recall also that (by definition of r[·, ·]), the

string Pr′

1 . . .Pr′

j′ is not a prefix of any prior plaintext. If query r′ is an encipher query, this means

that the variable PPP r′

j′ is a free variable, hence Pr[CCC s
i ⊕ CCC s

j = ∆] = Pr[PPP r
i′ ⊕ PPPr′

j′ =
∆] = 2−n.

If query r′ is decipher and r < r′, then PPP r′

j′ depends on the free variable CCC r′

m (via line 220), but

PPPr
i′ cannot depend on it, so again Pr[CCC s

i ⊕ CCC s
j = ∆] = Pr[PPP r

i′ ⊕ PPPr′

j′ = ∆] = 2−n.

24

The last remaining case is when query r′ is decipher and r = r′. Note that this means that
r′ 6= s (since query s is encipher). That is, we have two variable PPP r′

i′ and PPP r′

j′ for some
decipher query r′ < s. We now use the induction hypothesis, thus concluding that also in this case
Pr[CCC s

i ⊕ CCC s
j = ∆] = Pr[PPP rr′

i′ ⊕ PPPr′

j′ = ∆] = 2−n.

Claim 6 For any two distinct variables PP r
i ,PPr′

j ∈ D such that φ(PP r
i) = φ(PP r′

j) = CCC s
m for

some s, we have that Pr[PP r
i = PPr′

j] ≤ 2−n.

Proof : The case where i = j is covered in Claim 4, where it is shown that Pr[CC r
i = CC r′

j] = 0.
So we now assume that i 6= j.

We note again that since CCC s
m is a free variable, then query s is decipher, and therefore all the

variables PPs
k (k = 1 .. m) are in D, and they are all assigned φ(PP s

k) = CCC s
m. In particular,

we have φ(PP s
i) = φ(PP r

i) = CCC s
m, and φ(PPs

j) = φ(PP r′

j) = CCC s
m. Using Claim 4 again, we

get with probability one PP r
i = PPs

i ⊕∆i and PPr′j = PPs
j ⊕∆j for some fixed ∆i, ∆j ∈ {0, 1}

n.

(Note that here we allow r = s or r′ = s, so these ∆’s may equal to zero.) Hence PP r
i ⊕ PPr′

j =
PPs

i ⊕ PPs
j ⊕∆i ⊕∆j .

Recalling that in line 113 of game NON2 we set PP s
i ← Ps

i ⊕ PPPs
i−1 and PPs

j ← Ps
j ⊕ PPPs

j−1, we
conclude that

PPr
i ⊕ PPr′

j = PPs
i ⊕ PPs

j ⊕∆i ⊕∆j = PPPs
i−1 ⊕ PPPs

j−1 ⊕ Ps
i ⊕ Ps

j ⊕∆i ⊕∆j

Let ∆ = Ps
i ⊕ Ps

j ⊕∆i ⊕∆j . By Claim 5 we get Pr[PP r
i = PPr′

j] = Pr[PPPs
i−1 ⊕ PPPs

j−1 = ∆] =
2−n.

Claim 7 For any free variable CCC s
m and any PP r

i ∈ D such that φ(PP r
i) = CCC s

m it is the case
that Pr[PP r

i = CCC s
m] = 2−n.

Proof : Since φ(PP r
i) = CCC s

m, Claim 4 tells us that PP r
i = PPs

i ⊕∆ for some fixed ∆ (where
∆ = 0 if r = s and ∆ 6= 0 otherwise). We therefore get

PPr
i ⊕ CCC s

m = PPs
i ⊕∆⊕ CCC s

m

= PPPs
i−1 ⊕ Ps

i ⊕∆⊕ CCC s
m

=
(
CCC s

m−(i−1)+1 ⊕ 2(CCC s
1 ⊕ CCC s

m)
)
⊕ Ps

i ⊕∆⊕ CCC s
m

= Ps
j ⊕∆⊕ 2CCC s

1 ⊕ CCC s
m−i+2 ⊕ 3CCC s

m

The last expression is of the form a · CCC s
m ⊕ b where a is a constant (a = 2 if j = 2 and a = 3

otherwise), and b is an expression involving only constants and free variables that occur before
CCC s

m. Hence we have Pr[PP r
i = CCC s

m] = Pr[CCC s
m = b · a−1] = 2−n.

Proof of Claim 1. All that is left now is to verify that Claims 3 through 7 above indeed cover
all the possible types of collisions between X, X ′ ∈ D. It will be convenient to refer by name to the
four parts of D, so we denote

D1
def
= {PPs

i | tys = Dec} D2
def
= {PPs

i | tys = Enc and i > u[s]}

D3
def
= {CCC s

i | tys = Enc} D4
def
= {CCC s

i | tys = Dec and i > u[s]}

Now let X, X ′ ∈ D be two distinct variables, and assume that X occurs after X ′ in game NON2.
We partition the analysis to four cases, depending on the part of D that contains X.

25

X ∈ D4. Here X = “CCC s
i ” where s is a decryption query and i > u[s]. In this case X is a free

variable φ(X) = X, but since X comes after X ′, it must be that φ(X ′) 6= X. By Claim 3 we
have Pr[X = X ′] = 2−n.

X ∈ D3. Here X = “CCC s
i ” where s is an encryption query, hence φ(X) = PPP s

m. If X ′ is also
of this form X ′ = “CCC s

j ”, belonging to the same query s (but having a different index,
i 6= j) then Claim 5 tells us that Pr[X = X ′] = 2−n. In any other case φ(X ′) 6= PPPs

m, and
again from Claim 3 we get Pr[X = X ′] = 2−n.

X ∈ D1. Here X = “PP s
i ” where s is a decryption query, hence φ(X) = CCC s

m. We have two
sub-cases, depending on whether X ′ is of the form “CCC r

j ” or “PP r
j ”. Consider first the case

that X ′ = “CCC r
j ” for some r, j. If X ′ = “CCC s

m” (i.e., the last CCC variable in the same
query s), then by Claim 7 we have Pr[X = X ′] = 2−n. In any other case, φ(X ′) 6= CCC s

m so
we get the same bound from Claim 3.

As for the other case, X ′ = “PP r
j ” for some r, j, if φ(X ′) = φ(X) = CCC s

m, then by Claim 6
we get Pr[X = X ′] ≤ 2−n. Otherwise, we get the usual Pr[X = X ′] = 2−n from Claim 3.

X ∈ D2. Here X = “PP s
i ” where s is an encryption query and i > u[s]. Hence φ(X) is assigned

according to one of the rules PP3, PP4 or PP5.

The case where it was assigned according to rule PP5 is handled just as the case X ∈ D1
above. In this case we have φ(X) = CCC r

m where r = r[s, i − 1]. If X ′ = “CCC r
m” then by

Claim 7 we have Pr[X = X ′] = 2−n. If X ′ = “CCC t
j ” for any other pair (t, j) 6= (r, m), then

φ(X ′) 6= CCC t
m and we get the bound from Claim 3. If X ′ = “PP r

j ” with φ(X ′) = φ(X) =
CCC r

m then we get the bound from Claim 6, and if X ′ = “PP r
j ” with φ(X ′) 6= φ(X) then

we get the bound again from Claim 3.

Assume, then, that φ(X) is assigned according to one of the rules PP3, or PP4. That is, we
have φ(X) = PPP r

i−1, where r = r[s, i−1] (r = s if i > u[s]+1, and r < s otherwise). Observe
that the index of this free variable PPP r

i−1 is strictly smaller than m. If X ′ = “CCC t
j ” for

some t, j then φ(X ′) 6= PPPr
i−1 (since φ(X ′) is either some CCC t

j or PPP t
m.) Similarly, if

X ′ = “PP t
j ” for j 6= i and some t, then φ(X ′) 6= PPP r

i−1 (since φ(X ′) can be either none,
some CCC t

j or PPP t
m). In these cases, we get the usual Pr[X = X ′] = 2−n from Claim 3.

The only case left is when X ′ = “PP t
i ” for some t. Here, either φ(X ′) 6= φ(X), in which case

Pr[X = X ′] = 2−n by Claim 3, or φ(X ′) = φ(X), in which case Pr[X = X ′] = 0 by Claim 4.

This completes the proof of Claim 1 and with that the proof of Theorem 1 as well.

E Proof of Theorem 2 — Security of the E / E construction

Let A be an adversary with a pair of oracles. Assume that A runs in time t, asks q queries, and these
queries total µ bits. Recall that A asks no pointless queries (as previously defined). We consider A’s
oracles being instantiated with a random instance of any of the following pairs (E, D):

(1) E = E / E and D = E−1

(2) E = E / Perm(n) and D = E−1

(3) E = Perm(M) / Perm(n) and D = E−1

(4) E = $ and D = $, each returning a random string of |M | bits to any query (T, M)

(5) E = PermT (M) where T = {0, 1}n and D = E−1

26

Let pi be the probability that A outputs 1 when its oracles are instantiated as a random pair
of oracles selected according to case (i). Let pij = pi − pj . So establishing Equation (4) is the
same as bounding p15. We use the triangle inequality, noting that p15 ≤ p12 + p23 + p34 + p45 and
p35 ≤ p34 + p35. Let t′ be as specified in the theorem statement. The following are either easy or
standard:

p12 ≤ Advprp
E

(t′, q). To show this, construct a distinguisher A12 for E and Perm(n) by
simulating E and its inverse, as needed.

p23 ≤ Adv±prp
E (t′, q, µ). To show this, construct a distinguisher A23 for E (and its inverse) and

Perm(M) (and its inverse), simulating the random permutation π ∈ Perm(n).

p45 ≤ 0.5q2/2N . This fact is easy and general. It follows by Lemma 6.

The main thing, then is to show that p34 ≤ q2/2n + 0.5q2/2N . This is done as follows. First
consider the perfect simulation of the p3-defining environment given in Figure 11. Here the flag bad

is initialized to false and π and Π are initialized to partial functions that are defined nowhere. We
let Domain(π), Range(π), Domain(π) and Range(π) have their usual meaning, with complements
taken relative to {0, 1}n. We similarly refer to Domain(Π), Range(Π), Domaini(Π) and Rangei(Π),
where the complements are restricted to strings of length i. We call this “game Real”.

Following the usual game-playing approach, we can modify or drop from game Real any state-
ments whose execution only occurs following the setting of bad to true and this change will not
effect A’s ability to set bad to true. Thus we modify game Real by dropping the shaded statements,
obtaining game Rand. We note that the modified game returns uniform random bits, and so p34

can be bounded by probability that A manages to set the flag bad in game Rand.
Observe that game Rand provides no information to the adversary A about the value of π; all

values related to π are xored with a random string that is independent of π. As a consequence, it
is easy to compute the probability the A can set the flag bad. On the ith enciphering query, the
chance that bad will get set at lines 12 is at most (i− 1)/2n and the the chance that bad will get
set at lines 16 is at most (i − 1)/2N (because we have assumed that the shortest message in the
message space has at least N bits). The chance that bad gets set to true at line 14 uses the fact
that all of the T-values are random, and the adversary is given no information about any T-value.
Thus this probability is also at most (i − 1)/2n. Deciphering queries work identically. Summing,
we have that the chance that bad gets set to true during the game is at most q2/2n + 0.5q2/2N .
This completes the proof.

F Proof of Theorem 3 — ±p̃rp-security ⇒ ±ĩnd-security

Our goal is to show that for any enciphering scheme E: K×T ×M→M whose message spaceM

consists of strings of length at least n bits, and for any t, q, µ, we have that Adv±ĩnd
E

(t, q, 2µ) ≤

2Adv±p̃rp
E

(t′, q, µ)+2q2/(2n − q). We show how to construct a PRP attacking adversary B from a
left-or-right distinguisher A such that the advantage and resource bounds of the former is related
to the advantage and resource bound of the latter according to the formula from above.

The crux of the proof is to show that Adv±ĩnd
PermT (M)

(q) ≤ 2
(
q
2

)
/(2n − q). Namely, when we

replace E with a (tweakable) truly random permutation, then any left-or-right distinguisher that
asks at most q queries can have advantage of at most 2

(
q
2

)
/(2n − q). The intuition here is that

when we have a truly random permutation, the adversary’s only information about b comes from
“accidental collisions” that happen with probability at most

(
q
2

)
2−n. (For example, if the adversary

sees the two queries Eb
K(T0, P0, T1, P1) = C and Db

K(T ′
0, C0, T1, C1) = P1, with C1 6= C, it can

conclude that b = 0 for sure, since these two queries are not consistent with b = 1.)

27

When A asks E (T, P)
10 if T ∈ Domain(π) then T← π(T)

11 else T
$

←{0, 1}n

12 if T ∈ Range(π) then bad← true , T
$

← Range(π)

13 π(T)← T; X ← T ←⊕ P

14 if X ∈ Domain(Π) then bad← true , Y ←Π(X) else

15 Y
$

←{0, 1}|P |

16 if Y ∈ Range(Π) then bad← true , Y
$

← Range|P |(Π)

17 Π(X)← Y
18 return T ←⊕ Y

When A asks D (T, C)
20 if T ∈ Domain(π) then T← π(T)

21 else T
$

←{0, 1}n

22 if T ∈ Range(π) then bad← true , T
$

← Range(π)

23 π(T)← T; Y ← T ←⊕ C

24 if Y ∈ Range(Π) then bad← true , X ←Π−1(Y) else

25 X
$

←{0, 1}|C|

26 if X ∈ Domain(Π) then bad← true , X
$

←Domain|C|(Π)

27 Π(X)← Y
28 return T ←⊕ X

Figure 11: Game Real perfectly simulates Perm(M) / Perm(n). Game Rand drops the shaded statements.

To formalize this intuition, fix an adversary A, and assume without loss of generality that it is
deterministic. Also assume that q < 2n−1 (otherwise the theorem is vacuously true). We consider
two games, denoted Real and Ideal. In both games we run A and build two permutations π0, π1

that are intended to be consistent with b = 0, b = 1 respectively. In the game Real the distribution
over the pairs (b, A’s view) will be identical to the real left-or-right game, and in the game Ideal the

view of A will be independent of the bit b. We will prove the bound on Adv±ĩnd
PermT (M)

by arguing

that these two games are very close.
Throughout these games, we maintain for each tweak value T ∈ T and each position b ∈ {0, 1}

a “pool of unused plaintexts”, denoted Pb
T and a “pool of unused ciphertexts”, denoted Cb

T . We
also keep a flag, bad, which is initialized to false. We begin both games by choosing a random bit b,
setting P i

T = Cb
T ←M for all b, T , and then running the adversary A. We respond to A’s queries

during this run as follows:

28

An encipher query, E(T0, P0, T1, P1), |P0| = |P1| = `:

10 Pick C0← C1←{0, 1}
` ∩ C0

T0

11 if C1 /∈ ∩ C1
T1

then bad← true , C1←{0, 1}
` ∩ C1

T1

12 return Cb

A decipher query, D(T0, C0, T1, C1), |C0| = |C1| = `:

20 Pick P0← P1←{0, 1}
` ∩ P0

T0

21 if P1 /∈ ∩ P1
T1

then bad← true , P1←{0, 1}
` ∩ P1

T1

22 return Pb

where the only difference between the two games is that in game Ideal we do not execute the
shaded statements, following the setting bad← true. After each query, we assign π0(T0; P0)← C0

and π1(T1; P1)← C1, and update the sets P, C by setting

P0
T0
←P0

T0
− {P0}, P1

T1
←P1

T1
− {P1}, C0

T0
←C0

T0
− {C0}, and C1

T1
←C1

T1
− {C1}

It is important to note that because of the restrictions that are listed in Table 1, as long as the flag
bad is not set we cannot run into a conflict when defining π0 and π1 in this manner.

It is clear that in the game Ideal, the resulting view of A is independent of the bit b, and that
as long as bad is not set, the distributions of both games are identical. Therefore, we have

Pr
Real

[AEb,Db

⇒ b] ≤ Pr[Real sets bad] + Pr
Ideal

[AEb,Db

⇒ b] =
1

2
+ Pr[Real sets bad]

It remains to bound the probability Pr[Real sets bad]. Assume that the i’th query of the adversary
is an encipher query. The size of C0

T0
∩{0, 1}` when this query is asked is at least 2`−i+1 ≥ 2n−i+1.

On the other hand, the size of (C0
T0
∩{0, 1}`)−C1

T1
is at most i−1. Thus, the probability of C1 /∈ C1

T1

in this step is at most i−1
2N−i+1

. The same bound holds also if this is a decipher query. As there are
at most q queries, the total probability of the bad event is at most

q∑

i=1

i− 1

2n − i + 1
<

q∑

i=1

i− 1

2n − q
=

(
q
2

)

2n − q

We conclude that PrReal[A
Eb,Db

⇒ b] ≤ 1
2 +

(
q
2

)
/(2n − q).

We are now ready to show how to construct a PRP attacking adversary B from a left-or-
right distinguisher A. Recall that B has two oracles E(·, ·), D(·, ·), and that A has two oracles
E∗(·, ·, ·, ·), D∗(·, ·, ·, ·). The PRP attacker B begins by choosing a random bit b, and then it runs
the left-or-right distinguisher A. When A makes an encryption query E∗(T0, P0, T1, P1), B makes
an encryption query of its own, E(Tb, Pb), and returns the answer to A. Similarly, on decryption
query D∗(T0, C0, T1, C1), B makes a decryption query of its own, D(Tb, Cb), and returns the answer
to A. When A halts, B checks its output. If A outputs a single bit b′, and if b = b′, then B
outputs 1. In any other case, B outputs 0. It is clear that the running time of B is that of A plus
an amount linear in the query lengths and B asks its oracle exactly half the number of bits that A
does.

By definition, when the oracles of B are implemented by an enciphering scheme E, the proba-

bility that A outputs b′ = b is exactly 1
2(1 + Adv±ĩnd

E
(A)). On the other hand, from the discussion

above we know that when the oracles of B are implemented by a tweakable truly random permu-
tation, the probability that A outputs b′ = b is at most 1

2 +
(
q
2

)
/(2n − q). It follows that

Adv±p̃rp
E

(B) ≥
1

2

(
1 + Adv±ĩnd

E
(A)
)
−

(
1

2
+

(
q
2

)

2n − q

)
=

1

2
Adv±ĩnd

E
(A)−

(
q
2

)

2n − q

29

G Proof of Theorem 4 — ±ĩnd-security ⇒ ±p̃rp-security

We show how to construct a left-or-right distinguisher A from a PRP attacker B. Recall that A
has two oracles E∗(·, ·, ·, ·), D∗(·, ·, ·, ·), and that B has two oracles E(·, ·), D(·, ·). Also recall that
we can assume that B never makes pointless queries to its oracles.

The left-or-right distinguisher A runs the PRP attacker B, and uses its own oracles to answer
the oracle queries of B. Roughly speaking, when B asks a query (T, X), A prepares a query
(T, $, T, X) to its oracle, where $ is a randomly chosen string of the appropriate length. When the
left-or-right bit is 1, the left-or-right oracle always returns the right encryption or the decryption of
(T, X), so the oracles of B are implemented by the enciphering scheme. On the other hand, when
the left-or-right bit is 0, the oracle returns “random answers”, so the oracles of B are implemented
by a random permutation. Details follow.

Throughout the execution, A keeps track of the sets of “unused plaintexts” and “unused plain-
texts” for each tweak value T ∈ T . As in the proof of Theorem 3, we denote these sets by PT , CT ,
respectively. Initially, we have PT = CT =M for all T . When B asks an encryption query E(T, P),

A picks at random P ′ $

←PT , asks its own encryption query C←E∗(T, P ′, T, P), and return the
answer C to B. It then updates PT ←PT − {P

′} and CT ←CT − {C}. Similarly, on decryption

query E(T, C), A picks at random C ′ $

←CT , asks its own decryption query P ←D∗(T, C ′, T, C),
returns the answer P to B, and updates PT ←PT − {P} and CT ←CT − {C

′}. If B halts with
output 1, then A does the same. If B halts with any other output, then A outputs 0.

One can see that the running time of A is only slightly more than that of B, the difference
being the time that it takes to store and update the sets P, C and to pick random element from
them. Using standard data structures, this extra time can be made O(µ log µ), where µ is the total
number of query bits that B uses. Also, the number of bits that A queries its oracles is exactly
twice that of B.

It should be obvious that when the left-or-right bit is set to 1, the oracles of B are indeed
implemented by the enciphering scheme E. On the other hand, when the bits is set to zero, then
each encryption query is answered by a random “unused ciphertext”, and each decryption query
is answered by a random “unused plaintext”, so the oracle of B are implemented by a tweakable

truly random permutation. Hence, we have Adv±ĩnd
E

(A) = Adv±p̃rp
E

(B).

H Proof of Theorem 5 — ±ĩnd-security ⇒ ±ñm-security

Let A be an adversary that attacks E in the ±ñm-sense and suppose that A runs in time t and asks
its oracles at most µ total bits and then A outputs a triple (T, C, P). We construct an adversary B
that attacks E in the ±p̃rp sense.

Adversary B works as follows. It runs A. When A asks its first oracle, E, to encipher some
(T, P), adversary B asks its own first oracle, E , to encipher (T, P) and B returns to A the answer C
that it receives. When A asks its second oracle, D, to decipher some (T, C), adversary B asks its own
second oracle, D, to decipher (T, C) and B returns to A the answer P that it receives. When A
halts, outputting a triple (T, C, f), adversary B calls its second oracle, D, on (T, C), getting a
result P . Then B computes f(P). If f(P) = 1 then adversary B outputs 1 (it is guessing that
(E ,D) = (EK , DK) is a real enciphering oracle and its inverse) and if f(P) 6= 1 then adversary B
outputs 0 (it is guessing (E ,D) = (π, π−1) is a random permutation oracle and its inverse).

Note that B asks its oracles q +1 queries and at most σ + ς bits and B runs in time t+ c(σ + ς)
for some absolute constant c. We now proceed to analyze B’s advantage in relation to A’s. Recall
that the advantage of B is

Adv±p̃rp
E

(B) = Pr[BEK DK ⇒ 1]− Pr[Bπ π−1

⇒ 1] (14)

30

and the advantage of A is

Adv±ñm
E

(A) = Pr[(T, C, f)
$

←AEK DK ; P ←D
T
K(C) : f(P) = 1]−

Pr[(T, C, f)
$

←AEK DK ; P
$

← P
T (C) : f(P) = 1] (15)

By definition of the behavior of B we know that

Pr[BEK DK ⇒ 1] = Pr[(T, C, f)
$

←AEK DK ; P ←D
T
K(C) : f(P) = 1] (16)

and so combining Equations 14, 15 and 16 we have that

Adv±ñm
E

(A)

= Adv±p̃rp
E

(B) + Pr[Bπ π
−1

⇒ 1]− Pr[(T,C, f)
$

←AEK DK ; P
$

← P
T (C) : f(P) = 1]

= Adv±p̃rp
E

(B) + Pr[(T,C, f)
$

←Aπ π
−1

; P ← π−1
T

(C) : f(P) = 1]−

Pr[(T,C, f)
$

←AEK DK ; P
$

← P
T (C) : f(P) = 1]

= Adv±p̃rp
E

(B) +(
Pr[(T,C, f)

$

←Aπ π
−1

; P ← π−1
T

(C) : f(P) = 1]− Pr[(T,C, f)
$

←Aπ π
−1

; P
$

← P
T (C) : f(P) = 1]

)
+

(
Pr[(T,C, f)

$

←Aπ π
−1

; P ← P
T (C) : f(P) = 1]− Pr[(T,C, f)

$

←AEK DK ; P
$

← P
T (C) : f(P) = 1]

)

We claim that the first difference is zero and the second is at most Adv±p̃rp
E

(t′, q + 1, µ + ς). To
see that the first difference is zero imagine filling into an initially empty table values for π(·, ·)
as needed, in the natural way. When the adversary outputs a triple (T, C, f) either the value for

π−1
T (C) has already been determined, in which case P

$

← PT (C) is equivalent to the assignment
statement P ← π−1

T (C), or else the value for π−1
T (C) has not yet been determined, in which case

filling in a random but consistent value for π−1
T (C) is the same as filling in random but consistent

values for all the preimages of C under tweak T and then choosing a random one of these as P . To
see that the second difference is at most Adv±p̃rp

E
(t′, q + 1, µ + ς) note that time t′ (using standard

data-structure methods) and µ + ς bits of oracle queries is enough to make a distinguisher for
[EK DK] and [π, π−1] that behaves according to A to compute (T, C, f), samples P from PT (C),
and returns 1− f(P). Thus

Adv±ñm
E

(A) ≤ Adv±p̃rp
E

(B) + Adv±p̃rp
E

(t′, q + 1, µ + ς)

and so

Adv±ñm
E

(t, µ, ς) ≤ 2 Adv±p̃rp
E

(t′, q + 1, µ + ς)

This completes the proof.

31

