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Abstract

The focus of this technical report is implementation issues for three separate but related topics
of interest in elliptic curve point arithmetic. The first concerns use of single-instruction multiple-
data (SIMD) capabilities to speed field multiplication and inversion.

The second topic is inversion in binary fields. A careful analysis of multiplication and inver-
sion costs is necessary for a fair comparison of halving and doubling methods. We also analyze
algorithms for division inF2m and compare them with inversion algorithms.

The final section presents a careful analysis of point multiplication methods that use the point
halving technique of Knudsen and Schroeppel, and compares these methods to traditional algo-
rithms that use point doubling.
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1 Introduction

Three topics of interest in implementing arithmetic on elliptic curves are presented in this technical
report. For the most part, the sections can be read independently, although there are some cross
references.

The use of “special purpose” registers to accelerate field operations is examined in §2. On the
Intel Pentium and AMD processors, the single-instruction multiple-data (SIMD) registers can be
used to speed field arithmetic. Implementation considerations for the common MMX subset are
presented in §2.1. Algorithms for field multiplication (a comb method, used as the basis for com-
parisons in §4) and inversion are implemented; comparative timings against conventional methods
appear with the material of §3. §2.2 briefly examines the SSE2 extensions found on the Pentium 4.

A new method for point multiplication on non-supersingular elliptic curves over binary fields
was proposed independently by Erik Knudsen [19] and Richard Schroeppel [32]. The idea is to
replace almost all point doublings in double-and-add methods with a potentially faster operation
called point halving. Knudsen [19] presented some rough analysis which suggests that halving
methods could be 39% faster than doubling methods ([33] claims a 50% improvement), but these
claims have not been supported by experimental evidence or by detailed analysis.

The purpose of Sections 3 and 4 is to carefully analyze point multiplication methods that use
halving, and to compare them with traditional point multiplications methods that use doubling. We
restrict our attention to implementations on software platforms; some issues with implementing
point halving in hardware are discussed in [36]. Furthermore, we restrict our attention to elliptic
curves over binary fieldsF2m wherem is prime and where the reduction polynomials are trino-
mials or pentanomials. Such parameters are recommended or mandated by various cryptographic
standards including NIST’s FIPS 186-2 [7].

We begin in §3 with a description of three variants of the extended Euclidean algorithm for
computing inverses inF2m. A careful analysis of the software implementation of multiplication
and inversion is necessary for a fair comparison of halving and doubling methods because a lower
relative inversion cost generally favours halving methods over doubling methods. Our extensive
experiments suggest that a realistic estimate of the ratioI /M of inversion to multiplication cost is 8
(or higher) rather than the ratio of 3 that is often quoted in the literature [37, 5, 6]. We also analyze
algorithms for division inF2m and compare them with inversion algorithms.

In §4, we review point halving and efficient methods for solving quadratic equations inF2m.
Most of the material in Sections 4.1, 4.2 and 4.3 is from [19] and [33] with the exceptions of an
improved method for computing square roots in §4.2.3 and an adaptation of an algorithm in §4.3
for point multiplication that allows halving to efficiently cooperate with projective coordinate rep-
resentations. Our analysis of halving methods is presented in §4.4. We compare the best halving
and doubling methods for performing point multiplicationkP in the cases whereP is not known
in advance and whereP is known in advance. The former situation commonly arises in variants of
the Diffie-Hellman key agreement protocol, while the latter is encountered in signature generation
for ElGamal signature schemes. We also compare halving and doubling methods for performing
simultaneous multiple point multiplicationkP + lQ that is encountered in signature verification
for ElGamal signature schemes. Our analysis suggests that point halving methods are about 29%
faster than point doubling methods for computingkP when P is not known in advance. The ad-
vantage is smaller for simultaneous multiple point multiplication. For point multiplication where
P is known in advance, doubling methods outperform halving methods unlessI /M is small. As a
benchmark, it should be noted that theτ -adic methods for Koblitz curves [39] are significantly faster
than halving-based methods, although the latter have the advantage of wider applicability.
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Processor Year MHz Cache (KB) Selected features

386 1985 16 First IA-32 family processor with 32-bit operations and par-
allel stages.

486 1989 25 L1: 8 Decode and execution units expanded in five pipelined stages
in the 486; processor is capable of one instruction per clock
cycle.

Pentium
PentiumMMX

1993
1997

60
166

L1: 16
L1: 32

Dual-pipeline: optimal pairing in U-V pipes could give
throughput of two instructions per clock cycle. MMX added
eight special-purpose 64-bit “multimedia” registers, support-
ing operations on vectors of 1, 2, 4, or 8-byte integers.

Pentium Pro

Pentium II

Celeron
Pentium III

1995

1997

1998
1999

150

233

266
500

L1: 16
L2: 256,512
L1: 32
L2: 256,512
L2: 0,128
L1: 32
L2: 512

P6 architecture introduced more sophisticated pipelining and
out-of-order execution. Instructions decoded toµ-ops, with
up to threeµ-ops executed per cycle. Improved branch pre-
diction, but misprediction penalty much larger than on Pen-
tium. Integer multiplication latency/throughput 4/1 vs 9/9 on
Pentium. Pentium II and newer have MMX; the III intro-
duced SSE extensions with 128-bit registers supporting oper-
ations on vectors of single-precision floating-point values.

Pentium 4 2000 1400 L1: 8
L2: 256

NetBurst architecture runs at significantly higher clock
speeds, but many instructions have worse cycle counts than
P6 family processors. New 12Kµ-op “execution trace
cache” mechanism. SSE2 extensions have double-precision
floating-point and 128-bit packed integer data types.

Table 1: Partial history and features of the Intel IA-32 family of processors. Many variants of a given processor
exist, and new features appear over time (e.g., the original Celeron had no cache). Cache comparisons are
complicated by the different access speeds and mechanisms (e.g., newer PentiumIIIs use an advanced transfer
cache with smaller level 1 and level 2 cache sizes).

2 Use of special-purpose registers

This section presents an overview of technologies and implementation issues for use of the single-
instruction multiple-data instructions present on most processors in the popular Intel Pentium family,
some of which appear in Table 1. Such capabilities are relatively easy to employ, and can dramati-
cally accelerate both prime and binary field arithmetic.

The Pentium is essentially a 32-bit architecture, and said to be “superscalar” since it can process
instructions in parallel. The pipelining capability is easiest to describe for the original Pentium,
where there were two general-purpose integer pipelines, and optimization focused on organizing
code to keep both pipes filled subject to certain pipelining constraints. The case is more complicated
in the newer processors of the Pentium family, which use more sophisticated pipelining and tech-
niques such as out-of-order execution [8, 17]. For the discussion in this paper, only fairly general
properties of the processor are involved.

For applications programmers, the processors in Pentium family have similar instruction sets.
All suffer from a limitation of only eight (mostly) general-purpose registers. There is an integer
multiplier which can perform a 32×32-bit multiplication (giving a 64-bit result), but the operation is
restrictive in the registers used. However, as noted in Table 1 there are significant differences among
Pentium family processors. for example, conventional integer multiplication is significantly faster
on P6 family processors (e.g., Pentium II/III) than on earlier Pentium or newer Pentium 4 processors.
Of fundamental interest are instructionlatencyandthroughput, some of which are given in Table 2.
Roughly speaking, latency is the number of clock cycles required before the result of an operation
may be used, and throughput is the number of cycles which must pass before the instruction may be
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Instruction Pentium II/III Pentium 4
Integer add, xor,... 1 / 1 .5 / .5
Integer add, sub with carry 1 / 1 6–8 / 2–3
Integer multiplication 4 / 1 14–18 / 3–5
Floating-point multiply 5 / 2 7 / 2
MMX ALU 1 / 1 2 / 2
MMX multiply 3 / 1 8 / 2

Table 2: Instruction latency / throughput for the Intel Pentium II/III vs the Pentium 4.

executed again.5 Note that small latency and small throughput are desirable under these definitions.
Many workstation-class processors, such as the Sun UltraSPARC, also exhibit relatively poor

performance with traditional approaches to integer multiplication. The limitations of the 32-bit
conventional instruction set on the Pentium encourage the use of special-purpose registers.

Wide registers and vector operations

Single-instruction multiple-data (SIMD) capabilities perform operations in parallel on vectors. In
the Intel Pentium family, such hardware is present on all but the original Pentium and the Pentium-
pro. The features were initially known as “MMX Technology” for the multimedia applications, and
consisted of eight 64-bit registers, operating on vectors with components of 1, 2, 4, or 8 bytes [15].
The capabilities were extended in subsequent processors: streaming SIMD (SSE) in the Pentium
III has 128-bit registers and single-precision floating-point arithmetic, and SSE2 extends SSE to in-
clude double-precision floating-point and integer operations in the Pentium 4 [17]. Advanced Micro
Devices (AMD) introduced MMX support on their K6 processor [1], and added various extensions
in newer chips.

Although SIMD is often associated with image and speech applications, Intel also suggests
the use of such capabilities in “encryption algorithms” [17]. Aoki and Lipmma [2] evaluated the
effectiveness of MMX-techniques on the AES finalists, noting that MMX was particularly effective
on Rijndael. In cross-platform code distributed for solving the Certicom ECC2K-108 Challenge (an
elliptic curve discrete-log problem for a Koblitz curve over a 109-bit binary field [4]), Robert Harley
provided several versions of field multiplication routines [14]. The MMX version was “about twice
as fast” as the version using only general-purpose registers.6

We consider the use of SIMD capabilities on AMD and Intel processors toaccelerate field arith-
metic. The general idea is to use these special-purpose registers to implement fast 64-bit operations
on what is primarily a 32-bit machine. For binary fields, the common MMX subset can be used to
speed multiplication and inversion. For prime fields, the SSE2 extensions (specific to the Pentium
4) provide an alternative approach to traditional or floating-point methods.

2.1 SIMD and binary field arithmetic

In this section, we consider the use of SIMD capabilities on AMD and Intel processors to speed bi-
nary field arithmetic. The fast method for multiplication described in §2.1.1 is used for comparative
timings with conventional code. §2.1.2 summarizes implementation issues and performance for use
of the MMX subset.

5Intel [17] defineslatencyas the number of clock cycles that are required for the execution core to complete all of the
µops that form an IA-32 instruction, andthroughputas the number of clock cycles required to wait before the issue ports are
free to accept the same instruction again. For many IA-32 instructions, the throughput of an instruction can be significantly
less than its latency.

6The Karatsuba-style approach worked well for the intended target; however, the fastest versions of Algorithm 2.1 using
only general-purpose registers were competitive in our tests.
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A[t − 1] A[1] A[0]
am−1 · · · a(t−1)W · · · a2W−1 · · · aW+1aW aW−1 · · · a1a0︸︷︷︸

s
Figure 1: Representation ofa ∈ F2m as an array ofW-bit words. Thes= tW−m highest order bits ofA[t−1]
remain unused.

y
−−−−→
a31 a30 a29 a28 · · · a3 a2 a1 a0 A[0]
a63 a62 a61 a60 · · · a35 a34 a33 a32 A[1]
a95 a94 a93 a92 · · · a67 a66 a65 a64 A[2]
a127 a126 a125 a124 · · · a99 a98 a97 a96 A[3]
a159 a158 a157 a156 · · · a131 a130 a129 a128 A[4]

a162 a161 a160 A[5]
←−−−−−− v −−−−−→ ←−−−−−− v −−−−−→

Figure 2: Algorithm 2.1 processes columns of the exponent array fora left-to-right. The entries within a width
v column are processed from top to bottom. Example parameters areW = 32,m = 163, andv = 4.

2.1.1 Comb field multiplication

Let f be an irreducible binary polynomial of degreem. The elements ofF2m are the binary polyno-
mials of degree at mostm−1. Addition of field elements is the usual addition of binary polynomials,
and multiplication is performed modulof . A field elementa(z) = am−1zm−1+ · · · + a1z+ a0 is
associated with the binary vectora = (am−1, . . . , a1, a0) of lengthm. If W is the wordsize (in bits)
to be used in software, lett = dm/We, and lets= Wt−m. The vectora may be stored in an array
of t W-bit words: A = (A[t − 1], . . . , A[1], A[0]), where the rightmost bit ofA[0] is a0, and the
leftmosts bits of A[t − 1] are unused (always set to 0), as illustrated in Figure 1.

A fast method of polynomial multiplication given in [25] appears as Algorithm 2.1. This is a
“comb” method requiring storage for a table of 2v field elements for given parameterv. The values
u · b are computed for all polynomialsu of degree less thanv, and then multiplication processesv
bits of A[ j ] at a time. The order in which the bits ofa are processed is illustrated in Figure 2 for the
casem= 163,W = 32, andv = 4. The following notation is used: ifC = (C[n], . . . ,C[1],C[0])
is an array, thenC{ j } denotes the truncated array(C[n], . . . ,C[ j + 1],C[ j ]).

Algorithm 2.1 Left-to-right comb method with windows of widthv

INPUT: Binary polynomialsa(z) andb(z) of degree at mostm− 1.
OUTPUT: c(z) = a(z) · b(z).

1. ComputeBu = u(z) · b(z) for all polynomialsu(z) of degree at mostv − 1.
2. C←0.
3. Fork from (W/v)− 1 downto 0 do

3.1 For j from 0 tot − 1 do
Let u = (uv−1, . . . , u1, u0), whereui is bit (vk + i ) of A[ j ].
Add Bu to C{ j }.

3.2 If k 6= 0 thenC← zv · C.
4. Return(C).

As written, the algorithm performs polynomial multiplication—modular reduction is performed
separately. In some cases, it may be advantageous to include the reduction polynomialf as an
input to the algorithm. Step 1 may then be modified to calculateub mod f , which may allow
optimizations in step 3.
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2.1.2 Field multiplication and inversion with MMX

The first-generation single-instruction multiple-data MMX technology on the Intel and AMD pro-
cessors was designed primarily for fast integer operations in support of graphics and communication.
Eight 64-bit registers perform arithmetic, logical, comparison, transfer, and conversion operations
on vectors with components of 1, 2, 4, or 8 bytes. Although restrictive in the functions supported,
the essential shift and xor operations required for binary field arithmetic are available. The strengths
and shortcomings of the MMX subset for field multiplication and inversion are examined in this
section.

Naively, the 64-bit registers should improve performance by a factor of 2 compared with code
using only general-purpose 32-bit registers. In practice, the results depend on the algorithm and
the method of coding. Implementations may be a mix of conventional and MMX code, and only a
portion of the algorithm benefits from the wide registers. Comparison operations produce a mask
vector rather than setting status flags, and data-dependent branching is not directly supported. The
MMX registers cannot be used to address memory. On the other hand, the Pentium has only eight
general-purpose registers, so effective use of the extra registers may contribute collateral benefits to
general register management. As noted in Table 2, there is no latency or throughput penalty for use
of MMX on the Pentium II/III; on the Pentium 4, scheduling will be of more concern.

Field multiplication Comb multiplication (Algorithm 2.1) with reduction was implemented with
MMX for F2163, with reduction polynomialf (z) = z163+ z7 + z6 + z3 + 1. Comparative tim-
ings with a non-MMX version appear in Table 4. The precomputation step 1 uses MMX, and the
accumulatorC is maintained in six MMX registers; processing of the inputa is accomplished with
general-purpose registers. The algorithm adapts well to use of the wide registers, since the opera-
tions required are simple xor and shifts, there are no comparisons on MMX registers, and (for this
case) the accumulatorC can be maintained entirely in registers. Field multiplication is roughly twice
the speed of a traditional approach.

Field inversion For inversion, Algorithm 3.1 (a Euclidean Algorithm variant) was implemented. In
contrast to multiplication, the inversion algorithmrequires some operations which are less-efficiently
implemented with MMX. A degree calculation is required in step 2.1, and step 2.3 requires an extra
register load since the shift is by a non-constant value. Two strategies were tested. The first used
MMX only on g1 andg2, applying conventional code to track the lengths ofu andv and find degrees.
Somewhat better performance was obtained by the second strategy, which used MMX for all four
variables. Lengths ofu andv were tracked in 32-bit increments, in order to more efficiently perform
degree calculations (by extracting appropriate 32-bit halves and passing to conventional code for
degree). A factor 1.5 improvement was observed in comparison with a non-MMX version.

Programming considerations The use of MMX capabilities may be efficiently isolated to specific
routines such as field multiplication—othercode in an elliptic curve scheme could remain unchanged
if desired. Implementation in C may be done with assembly-language fragments or with intrinsics.
Assembly-language coding allows the most control over register allocation and scheduling, and was
the method used to implement Algorithm 2.1. Programming with intrinsics is somewhat similar
to assembly-language coding, but the compiler manages register allocation. The inversion routines
were coded with intrinsics.

Intel provides intrinsics with its compiler; reportedly, the features have been added to gcc-3.1.
Data alignment on 8-byte boundaries is required for performance. The MMX and floating point
registers share the same address space, and there is a penalty for switching from MMX operations to
floating-point operations. Code targeted for the Pentium 4 could use the SSE2 enhancements, which
do not have the interaction problem with the floating-point stack, and which have wider 128-bit
vector operations.
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2.2 SIMD and prime field arithmetic

The Pentium III has eight 128-bit SIMD registers, and SSE2 extensions on the Pentium 4 support
operations on vectors of double-precision floating-point values and 64-bit integers. In contrast to
floating-point implementations, use of the integer SSE2 capabilities can be efficiently isolated to
specific routines such as field multiplication.

Multiplication in SSE2 hardware does not increase the maximum size of operands over conven-
tional instructions (32 bits in both cases, giving a 64-bit result); however, there are more registers
which can participate in multiplication, the multiplication latency is lower, and products may be
accumulated with 64-bit operations. With conventional code, handling carry is a bottleneck but is
directly supported since arithmetic operations set condition codes that can be conveniently used. The
SSE2 registers are not designed for this type of coding, and explicit tests for carry are expensive.
Implementing the operand-scanning multiplication of [26, Algorithm 14.12] is straightforward with
scalar SSE2 operations, since the additions may be done without concern for carry. The approach
has two additions and a subsequent shift associated with each multiplication in the inner product
operationwi+ j + x j · yi + c. The total number of additions and shifts can be reduced by adapting
a product-scanning approach (where the result is calculated low-to-high) at the cost of more mul-
tiplications. To avoid tests for carry, one or both of the input values are represented in the form
a =∑ai 2W′i whereW′ < 32 so that products may beaccumulated in 64-bit registers.

Example 2.2(multiplication with SSE2 integer operations) Suppose inputs consist of integers rep-
resented as seven 32-bit words (e.g., in the NIST field for P-224). A scalar implementation of the
operand scanning algorithm performs 49 multiplications, 84 additions, and 49 shifts in the SSE2 reg-
isters. If the input is split into 28-bit fragments, then product scanning performs 64 multiplications,
63 additions, and 15 shifts to obtain the product as 16 28-bit fragments.

The multiprecision library GNU MP [10] uses an operand-scanning approach, with an 11-
instruction inner loop. The code is impressively compact, and generic in that it handles inputs of
varying lengths. If the supplied testing harness is used with parameters favourable to multiplication
times, then timings are comparable to those obtained using more complicated code. However, under
more realistic tests, a product-scanning method using code specialized to the 7-word case is 20%
faster, even though the input must be split into 28-bit fragments and the output reassembled into 32-
bit words. A straightforward SSE2 integer implementation of multiplication on 7-word inputs and
producing 14-word output (32-bit words) requires approximately 325 cycles, less than half the time
of a traditional approach (which is especially slow on the Pentium 4 due to the instruction latencies
in Table 2).

Example 2.3(vector operations in the SSE2 registers) Integer multiplication in Example 2.2 uses
only scalar operations in the SSE2 instruction set. Moore [29] exploits vector capabilities of the
128-bit SSE2 registers to perform two products simultaneously from 32-bit values ineach 64-bit half
of the register. The method is roughly operand scanning, obtaining the matrix(ai bj ) of products
of 29-bit valuesai andbj in submatrices of size 4×4 (corresponding to values in a pair of 128-
bit registers). A shuffle instruction (pshufd) is used extensively to load a register with four 32-bit
components selected from a given register. Products areaccumulated, but “carry processing” is
handled in a second stage. The supplied code adapts easily to inputs of fairly general size; however,
for the specific case discussed in Example 2.2, the method was not as fast as a (fixed size) product-
scanning approach using scalar operations.

An alternate strategy with wide applicability involves floating-point hardware commonly found
on workstations. The basic idea is to exploit fast floating-point capabilities to perform integer arith-
metic using a suitable field element representation. In applications such as elliptic curve point mul-
tiplication, the expensive conversions between integer and floating-point formats can be limited to
an insignificant portion of the overall computation, provided that the curve operations are written to
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Multiplication in Fp224 Time (µs)
Classical integer (product scanning) 0.62
Karatsuba-Ofman (depth 2) 0.82
SIMD (Example 2.2) 0.27
Floating-point (Bernstein) 0.20a
aExcludes conversion to/from canonical form.

Table 3: Multiplication inFp224 for the 224-bit NIST primep224= 2224−296+1 on a 1.7 GHz Intel Pentium
4. The time for the floating-point version includes (partial) reduction to eight floating-point values, but not to
or from canonical form; other times include reduction.

cooperate with the new field representation. Bernstein [3] presented this strategy for the NIST rec-
ommended curve P-224 (over the prime fieldFp224 for p224= 2224−296+1), obtaining significantly
faster point multiplication times compared to other published results.

The SSE2 extensions on the Pentium 4 provide double-precision (64-bit) floating point oper-
ations. However, the Pentium family processors have floating point registers capable of 80-bit
extended double precision. Bernstein’s implementation uses the floating point registers; a brief
overview appears in [13]. Table 3 gives times on a Pentium 4 for various approaches to field mul-
tiplication. Note that the time for the floating-point approach includes partial reduction to eight
floating-point values (each of size roughly 28 bits), but excludes the expensive conversion to canon-
ical reduced form.

3 Field inversion and division

When implementing elliptic curve methods, the cost of field inversion to multiplication is of funda-
mental interest, driving the selection of affine versus projective representations of curve points. As
an example, on the NIST-recommended random binary curves overF2m, the costs (in terms of field
multiplicationsM and inversionsI ) for point addition and doubling are summarized in the following
table.

Coordinate representation
Point operation affine projectivea

double I + 2M 4M
add I + 2M 8M

aFormulas appear in the Appendix.

Consider the case that point multiplicationkP is to be performed using a method based on double-
and-add, whereP is not known in advance. The break-evenI /M depends on the method used;
however, a rough estimate (e.g., if window NAF methods are employed) is obtained by assuming
that the cost for each bit ofk is approximatelyD + A/3, whereD denotes the cost of a point
doubling, andA is the cost of a point addition. Under these assumptions, arithmetic using projective
(and mixed) coordinates is expected to outperform affine-only arithmetic wheneverI > 3M.

Goodman and Chandrakasan [11], Chang Shantz [38], and Schroeppel [34] noted that the binary
Euclidean algorithm, commonly employed for inversion of field elements, can be modified to do
division. This is of particular interest if affine arithmetic is in use, provided that division is cheaper
than I + M.

In this section, we are interested in realistic estimates ofI /M under the assumptions that the
processor is general-purpose and can be targeted, and that the code may be optimized for specific
fields. Since it appears clear thatI /M is large (e.g., 40 or more) on such processors for prime fields,
the focus will be on binary fieldsF2m wherem is prime (e.g., as specified in the NIST-recommended
binary curves). A polynomial basis representation will be used for elements ofF2m. Elements ofF2m
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are the binary polynomials inF2[z] of degree at mostm− 1. The reduction polynomial is denoted
by f .

Section 3.1 gives an overview of three variants of the Euclidean algorithm for inversion. As
noted, the binary variant can be converted to a division algorithm. Section 3.2 considers computa-
tional issues in converting the variants to perform division. Timings and implementation notes on
two popular platforms are presented in Section 3.3.

3.1 Inversion based on the Euclidean algorithm

The inverse of a non-zero elementa ∈ F2m is denoteda−1 mod f or simplya−1 if the reduction
polynomial f is understood from context. Inverses can be efficiently computed by the extended
Euclidean algorithm for polynomials, which uses the fact that gcd(a, b) = gcd(b + ca, a) for all
binary polynomialsc.

Algorithm 3.1 is a variant of the classical Euclidean algorithm. Given invertiblea, the algorithm
maintains the invariants

ag1+ f h1 = u

ag2+ f h2 = v
for someh1 andh2 not explicitly calculated. The algorithm terminates whenu = 1, in which case
g1 = a−1.

Algorithm 3.1 Extended Euclidean Algorithm (EEA) for inversion inF2m

INPUT: a ∈ F2m, a 6= 0.
OUTPUT: a−1 mod f .

1. u←a, v← f , g1← 1, g2←0.
2. Whileu 6= 1 do

2.1 j← deg(u)− deg(v).
2.2 If j < 0 then:u↔ v, g1↔ g2, j← − j .
2.3 u← u+ zj v, g1← g1+ zj g2.

3. Return (g1).

In contrast to Algorithm 3.1 where the bits ofu andv are cleared from left to right (high degree
terms to low degree terms), thebinary Euclidean algorithm(BEA) clears bits ofu andv from right
to left.

Algorithm 3.2 Binary Euclidean Algorithm (BEA) for inversion inF2m

INPUT: a ∈ F2m, a 6= 0.
OUTPUT: a−1 mod f .

1. u←a, v← f , g1← 1, g2←0.
2. Whilez dividesu do:

2.1 u← u/z.
2.2 If z dividesg1 theng1← g1/z; elseg1← (g1+ f )/z.

3. If u = 1 then return (g1).
4. If deg(u) < deg(v) then:u↔ v, g1↔ g2.
5. u←u+ v, g1← g1+ g2.
6. Goto step 2.

The degree calculations in step 4 may be replaced by a simpler comparison on the binary repre-
sentations of the polynomials. This differs from Algorithm 3.1, where explicit degree calculations
are required.
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Thealmost inverse algorithm(AIA) [37] is a modification of the binary inversion algorithm in
which a polynomialg and a positive integerk are first computed satisfyingag ≡ zk (mod f ). A
reduction is then applied to obtaina−1 = z−kg mod f . The invariants maintained are

ag1+ f h1 = zku

ag2+ f h2 = zkv

for someh1 andh2 that are not explicitly calculated.

Algorithm 3.3 Almost Inverse Algorithm (AIA) for inversion inF2m

INPUT: a ∈ F2m, a 6= 0.
OUTPUT: a−1 mod f .

1. u←a, v← f , g1← 1, g2←0, k←0.
2. Whilez dividesu do:

2.1 u← u/z, g2← zg2, k← k+ 1.
3. If u = 1 then return (z−kg1).
4. If deg(u) < deg(v) then:u↔ v, g1↔ g2.
5. u←u+ v, g1← g1+ g2.
6. Goto step 2.

A reduction of the formz−kg is required in step 3 and can be performed as follows. Letl =
min{i ≥ 1 | fi = 1}, where f (x) = fmzm + · · · + f1z+ f0. Let s be the polynomial formed
by thel rightmost bits ofg. Thens f + g is divisible byzl and t = (s f + g)/zl has degree less
thanm; thust = gx−l mod f . This process can be repeated to finally obtainz−kg mod f . The
reduction polynomial is said to besuitableif l is above some threshold (which may depend on the
implementation; e.g.,l ≥ 32 is desirable with 32-bit words), since then less effort is required in the
reduction step.

Two strategies can be applied to enlarge the class of “suitable” polynomials. The method of the
preceding paragraph can be extended to arbitraryl ≤ m at relatively low cost [20]. Letq(z) =
fl−1zl−1 + · · · + f1z + 1 and precomputeQ satisfyingQq ≡ 1 (mod zl ) with degQ < l . If
S≡ sQ (mod zl ) with degS< l , thenS f+ g is divisible byzl . If f (z) = zm+q(z), then division
by zl requires twol × l polynomial multiplications. As an alternative, the reduction in step 3 can
be replaced by pre- and post-algorithm multiplications [35]. The revised method findsc = 1/a via
a′ ← z2ma mod f , c′ ← zk/a′ mod f , c← z2m−kc′ mod f ; that is, the revised algorithm processes
z2ma rather thana, and step 3 is modified to findz2m−kg.

Step 2 of AIA is simpler than that in Algorithm 3.2. In addition, theg1 andg2 appearing in these
algorithms grow more slowly in almost inverse. Thus one can expect AIA to outperform BEA if the
reduction polynomial is suitable, and conversely. As with BEA, the explicit degree calculations may
be replaced with simpler comparisons.

3.2 Division

The binary Euclidean algorithm can be easily modified to perform divisionb/a = ba−1 [11, 38, 34].
In cases whereI /M is small, this could be especially significant in elliptic curve schemes, since an
affine point operation could use division rather than an inversion and multiplication.

Division using BEA To obtainb/a, Algorithm 3.2 is modified at step 1, replacingg1←1 with
g1← b. The associated invariants are

ag1+ f h1 = ub

ag2+ f h2 = vb.
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On termination withu = 1, it follows thatg1 = ba−1. The division algorithm is expected to have
the same running time as BEA, sinceg1 in BEA goes to full-length in a few iterations at step 2.2
(i.e., the difference in initialization ofg1 does not contribute significantly to the time for division
versus inversion).

If BEA is the inversion method of choice, then affine point operations would benefit from use
of division, since the cost of a point double or addition changes fromI + 2M to I + M. If I /M
is small, then this represents a significant improvement; e.g., ifI /M is indeed 3, then use of a
division algorithm variant of BEA provides a 20% reduction in the time to perform an affine point
double or addition. However, ifI /M > 7, then the savings is less than 12%. Note that unless
I /M is very small, it is likely that schemes are used which reduce the number of inversions required
(e.g., halving and projective coordinates), so that point multiplication involves relatively few field
inversions, diluting any savings from use of a division algorithm.

Division using EEA Algorithm 3.1 can be transformed to a division algorithm in a similar fashion.
However, the change in the initialization step may have significant impact on implementation of
a division algorithm based on EEA. There are two performance issues: tracking of the lengths of
variables, and implementing the addition tog1 at step 2.3.

In EEA, it is relatively easy to track the length ofu andv efficiently (the lengths shrink), espe-
cially if the number of wordst representing a field element is (roughly) four or more. In EEA, it
is also possible to track the lengths ofg1 andg2. However, the change in initialization for division
means thatg1 goes to full-length immediately, and tracking the lengths ofg1 andg2 is no longer
effective.

The second performance issue concerns the addition tog1 at step 2.3 of EEA. An implemen-
tation of EEA may assume that the addition may be done as ordinary polynomial addition with no
reduction; i.e., the degrees ofg1 andg2 never exceedm− 1. In adapting for division, step 2.3 may
be less-efficiently implemented, sinceg1 is full-length on initialization.

Division using AIA Although Algorithm 3.3 is similar to the binary Euclidean algorithm, the abil-
ity to efficiently track the lengths ofg1 and g2 (in addition to the lengths ofu andv) may be an
implementation advantage of AIA over BEA. As with EEA, this advantage is lost in a division
algorithm variant of AIA.

It should be noted that efficient tracking of the lengths ofg1 andg2 (in addition to the lengths
of u andv) in AIA may involve significant code expansion (perhapst2 fragments rather than thet
fragments in BEA). If this code expansion cannot be tolerated (because of application constraints or
platform characteristics), then AIA may not be preferable to the other inversion algorithms (even if
the reduction polynomial is suitable).7

3.3 Timings

Table 4 gives some comparative timings on two popular platforms: the Intel Pentium III and Sun
UltraSPARC. Both processors are capable of 32- and 64-bit operations, although only the Ultra-
SPARC is 64-bit. The 64-bit operations on the Pentium III are via the single-instruction multiple-
data (SIMD) registers, introduced on the Pentium MMX (see Table 1). The example fields are
from the NIST recommendations, with reduction polynomialsf (z) = z163+ z7+ z6+ z3+ 1 and
f (z) = z233+ z74+ 1, respectively. Field multiplication based on the comb method [25] appears
to be fastest on these platforms. A width-4 comb was used, and the times include reduction. Other

7Most of the performance of AIA can be obtained with modest code expansion [35]. The lengths of the variablesu andv
decrease, while the lengths ofg1 andg2 increase. Ifl = max{lenu, lenv}, then AIA can be expanded under the assumption
that the lengths ofg1 andg2 are bounded byt + 1− l , with a fall back generic inversion routine used in exceptional cases.
Experimentally, we observed a performance penalty of roughly 15% compared to the times in Table 4 forF2233 on the
SPARC.
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Pentium III (800 MHz) SPARC (500 MHz)
32-bit 64-bit 32-bit 64-bit

Algorithm gcc icc mmx gcc cc cc

Arithmetic inF2163

multiplication 1.8 1.3 .7 1.9 1.8 .9
Euclidean algorithm 10.9 10.6 7.1 21.4 14.8 —
binary Euclidean algorithm 20.7 16.0 — 16.8 14.9 10.6
almost inverse (a−1=z2m−k(zk/z2ma)) 12.9 11.1 — 14.3 11.4 7.8
I /M 6.1 8.0 9.8 7.9 6.7 8.9
Arithmetic inF2233

multiplication 3.0 2.3 — 4.0 2.9 1.7
Euclidean algorithm 18.3 18.8 — 45.5 25.7 —
binary Euclidean algorithm 36.2 28.9 — 42.0 34.0 16.9
almost inverse 22.7 20.1 — 36.8 24.7 12.9
I /M 6.1 8.2 9.2 8.5 7.7

Table 4: Multiplication and inversion times (inµsec) for the Intel Pentium III and Sun UltraSPARC IIe. The
compilers are GNU C 2.95 (gcc), Intel 6 (icc), and Sun Workshop 6U2 (cc). The 64-bit “multimedia” registers
were employed for the entries under “mmx.” Inversion to multiplication (I /M) uses the best inversion time.

than the MMX code and a one-line assembler fragment for EEA, algorithms were coded entirely in
C.

Some table entries are as expected; e.g., the relatively good times for almost inverse inF2233.
Other entries illustrate the significant differences between platforms or between compilers on a
single platform. To obtain acceptable multiplication times with gcc on the Sun SPARC, code was
tuned to be more “gcc-friendly.” Limited tuning for gcc was also performed on the inversion code.
Optimizing the inversion code is tedious, in part because rough operation counts at this level often
fail to capture processor or compiler characteristics adequately. There are apparent inconsistencies
remaining in Table 4, but we believe that the fastest times provide meaningful estimates of inversion
and multiplication costs on these platforms.

The timings do not make a very strong case for division using a modification of the BEA. Unless
EEA or AIA can be converted to efficiently perform division, then it appears that division will be
fastest via inversion followed by multiplication. Furthermore, the ratioI /M is at least 8 in most
cases, and hence the savings from use of a division algorithm would be less than 10%. With such a
ratio, elliptic curve methods will be chosen to reduce the number of inversions, so the savings on a
point multiplicationkP would be significantly less than 10%.

On the other hand, if affine-only arithmetic is in use in a point multiplication method based on
double-and-add, then a fast division would be especially welcomed even ifI /M is significantly
larger than 5. If BEA is the algorithm of choice, then division has essentially the same cost as
inversion.

Implementation notes

In addition to the special tuning required for gcc, there were other troublesome compiler differences
and flaws. A small code change triggered an apparent optimization flaw in the Sun Workshop (6U2)
compiler, causing shifts to be processed as multiplication,a much slower operation on that platform.
The only workarounds were to post-process the assembler output or use a weaker optimization
setting.

We note that the Microsoft compiler (Visual C 6) gives times comparable to that produced by the
Intel compiler (icc, on Linux in our case). However, the insertion of short in-lineassembly fragments
is less effective than with icc or gcc, since there is only limited ability in the Microsoft product to
direct the cooperation with the surrounding C code. We also found significant optimization problems
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with the Microsoft compiler concerning inlining of C code, although this was not an issue for the
algorithms in this section.

Multimedia registers The Intel Pentium family (all but the original and the Pentium-Pro) and
AMD processors possess eight 64-bit “multimedia” registers that were employed for the times in
the column marked “mmx” [1, 17]. Use of these capabilities for field arithmetic is discussed in §2.

Field multiplication The GNU C compiler (gcc) is weak at instruction scheduling on these plat-
forms, but can be coerced into producing somewhat better sequences by relatively small changes
to the source. The times in the table for multiplication with gcc on SPARC are for code that has
received such tuning.

We believe that the commonly-cited ratio ofI /M ≈ 3 [37, 5, 6] is too optimistic for processors
such as the Pentium and SPARC, and is due, in part, to use of a sub-optimal field multiplication.

EEA Algorithm 3.1 requires polynomial degree calculations. A relatively fast method uses a bi-
nary search and table lookup, once the nonzero word of interest is located. Some processors have
instruction sets from which a fast “bit scan” may be built. As an example, the Intel x86 has single
instructions (bsrandbsf) for finding the position of the most or least significant bit in a word. A one-
line assembler fragment for bit scan was used for the Intel EEA timings, resulting in an improvement
of approximately 15%. The SPARC has a Hamming weight (population) instruction which Sun sug-
gests using for building a fast bit scan from the right; unfortunately, our field representation needed
a bit scan from the left.

The code tracks the lengths ofu andv usingt fragments of similar code, each fragment corre-
sponding to the current “top” ofu andv. Here,t was chosen to be the number of words required to
represent field elements.

BEA Algorithm 3.2 was implemented with at -fragment split to track the lengths ofu andv effi-
ciently. Rather than the degree calculation indicated in step 4, a simpler comparison on the appro-
priate words was used.

AIA Algorithm 3.3 allows efficient tracking of the lengths ofg1 andg2 (in addition to the lengths of
u andv). A total of t2 similar fragments of code were used, a significant amount of code expansion
unlesst is small. As with BEA, a simple comparison replaces the degree calculations. An optimiza-
tion flaw in the Sun compiler for 64-bit code was corrected by replacing expensive multiplications
with shifts in the compiler output.

4 Point multiplication using point halving

Let E be an elliptic curve overF2m defined by the equationy2 + xy = x3 + ax2 + b, where
a, b ∈ F2m, b 6= 0. Let P = (x, y) be a point onE with P 6= −P. Then the (affine) coordinates of
Q = 2P = (u, v) can be computed as follows:

λ = x + y/x (1)

u = λ2+ λ+ a (2)

v = x2 + u(λ + 1). (3)

Affine point doubling requires 1 field multiplication and 1 field division. With projective coordinates
anda ∈ {0, 1}, point doubling can be done in 4 field multiplications.

Point halving is the following operation: givenQ = (u, v), computeP = (x, y) such that
Q = 2P. Since halving is the reverse operation of doubling, the basic idea for halving is to solve
(2) for λ, (3) for x, and finally (1) fory. That is, solveλ2+λ = u+ a for λ, andx2 = v+ u(λ+ 1)
for x. Finally, computey = λx + x2.

13



Let G be a point of odd ordern on E. It can be proven that point doubling and point halving
are automorphisms of〈G〉. Therefore, given a pointQ ∈ 〈G〉, one can always find a unique point
P ∈ 〈G〉 such thatQ = 2P. Sections 4.1 and 4.2 describe an efficient algorithm for point halving
in 〈G〉. In Section 4.3, point halving is used to obtain efficienthalve-and-addmethods for point
multiplication in cryptographic schemes based on elliptic curves over binary fields. Section 4.4
compares the point halving methods and the traditional point doubling methods.

4.1 Point halving

The notion oftrace plays a central role in deriving an efficient algorithm for point halving. Let
Tr : F2m → F2m be defined by Tr(c) = c+ c2 + c22 + · · · + c2m−1

.

Lemma 4.1 Let c, d ∈ F2m.

(i) Tr(c) = Tr(c2) = Tr(c)2; in particular,Tr(c) ∈ {0, 1}.
(ii) Trace is linear; i.e.,Tr(c+ d) = Tr(c)+ Tr(d).

(iii) The NIST-recommended random curves [7] over binary fields haveTr(a) = 1.

(iv) If (x, y) ∈ 〈G〉, thenTr(x) = Tr(a).

Given Q = (u, v) ∈ 〈G〉, point halving seeks the unique pointP = (x, y) ∈ 〈G〉 such that
Q = 2P. The first step of halving is to findλ = x + y/x by solving the equation

λ̂2+ λ̂ = u+ a (4)

for λ̂ ∈ F2m. An efficient algorithm for solving (4) is presented in Section 4.2. Letλ̂ denote the
solution of (4) obtained from this algorithm. It is easily verified thatλ̂ = λ or λ̂ = λ + 1. If
Tr(a) = 1, the following result [19] can be used to identifyλ.

Theorem 4.2 Let P = (x, y), Q = (u, v) ∈ 〈G〉 be such thatQ = 2P, and denoteλ = x + y/x.
Let λ̂ be a solution to(4), and t = v + ûλ. Suppose thatTr(a) = 1. Then λ̂ = λ if and only if
Tr(t) = 0.

Proof: Recall thatx2 = v + u(λ + 1). By Lemma 4.1(iv), we get Tr(x) = Tr(a), sinceP =
(x, y) ∈ 〈G〉. Thus,

Tr(v + u(λ+ 1)) = Tr(x2) = Tr(x) = Tr(a) = 1.

Hence, if̂λ = λ + 1, then Tr(t) = Tr(v + u(λ + 1)) = 1 as required. Otherwise, we must have
λ̂ = λ, which gives Tr(t) = Tr(v + uλ) = Tr(v + u((λ+ 1)+ 1)). Since the trace is linear,

Tr(v + u((λ + 1)+ 1)) = Tr(v + u(λ+ 1))+ Tr(u) = 1+ Tr(u) = 0.

Hence, we conclude that̂λ = λ if and only if Tr(t) = 0. �
Theorem 4.2 suggests a simple algorithm for identifyingλ in the case that Tr(a) = 1.8 We can

then solvex2 = v + u(λ + 1) for the unique rootx. Section 4.2 presents efficient algorithms for
finding traces and square roots inF2m. Finally, if needed,y = λx + x2 may be recovered with one
field multiplication.

Let theλ-representation of a pointQ = (u, v) be (u, λQ), whereλQ = u + v/u. Given the
λ-representation ofQ as the input to point halving, we may computet in Theorem 4.2 without
converting to affine coordinates, since

t = v + ûλ = u
(
u+ u+ v

u

)
+ ûλ = u(u + λQ + λ̂).

8The algorithm can be modified for binary curves with Tr(a) = 0; however, it is comparatively complicated, since
Tr(v + uλ) and Tr(v + u(λ + 1))may not necessarily be distinct. See [19, 33].
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In point multiplication, repeated halvings may be performed directly on theλ-representation of a
point, with conversion to affine coordinates only when a point addition is required.

Algorithm 4.3 Point halving

INPUT: λ-representation(u, λQ) or affine representation(u, v) of Q ∈ 〈G〉.
OUTPUT: λ-representation(x, λP) of P = (x, y) ∈ 〈G〉, whereλP = x + y/x andQ = 2P.

1. Find a solution̂λ of λ̂2+ λ̂ = u+ a.
2. If the input is inλ-representation, then computet = u(u+ λQ + λ̂);

else, computet = v + ûλ.
3. If Tr(t) = 0, thenλP← λ̂, x←√t + u;

elseλP← λ̂+ 1, x←√t .
4. Return(x, λP).

4.2 Performing point halving efficiently

Point halving requires a field multiplication and three main steps: computing the trace oft , solv-
ing the quadratic equation (4), and computing a square root. In a normal basis, field elements
are represented in terms of a basis of the form{β, β2, . . . , β2m−1}. The trace of an elementc =∑

ciβ
2i = (cm−1, . . . , c0) is given by Tr(c) = ∑ ci . The square root computation is a right rota-

tion:
√

c = (c0, cm−1, . . . , c1). Squaring is a left rotation, andx2 + x = c can be solved bitwise.
These operations are expected to be inexpensive relative to field multiplication. However, field mul-
tiplication in software for normal basis representations is very slow in comparison to multiplication
with a polynomial basis [31, 30]. Conversion between polynomial and normal bases ateach halving
is likely too slow to give a competitive method, even if significant storage is used [18]. For these
reasons, we restrict our discussion to computations in a polynomial basis representation.

4.2.1 Computing the trace

Let c = ∑m−1
i=0 ci zi ∈ F2m, with ci ∈ {0, 1}, represented as the vectorc = (cm−1, . . . , c1, c0). A

primitive method for computing Tr(c) uses the definition of trace, requiringm− 1 field squarings
andm− 1 field additions. A much more efficient method makes use of the property that the trace is
linear: Tr(c) = Tr(

∑m−1
i=0 ci zi ) =∑m−1

i=0 ci Tr(zi ). The values Tr(zi )may be precomputed, allowing
the trace of an element to be found efficiently, especially if Tr(zi ) = 0 for mosti .

Example 4.4 ConsiderF2163 with reduction polynomialf (z) = z163+ z7+ z6+ z3+ 1. A routine
calculation shows that Tr(zi ) = 1 if and only if i ∈ {0, 157}. As examples, Tr(z160+ z46) = 0,
Tr(z157+ z46) = 1, and Tr(z157+ z46 + 1) = 0. ForF2233 with reduction polynomialf (z) =
z233+ z74+ 1, Tr(zi ) = 1 if and only if i ∈ {0, 159}.

4.2.2 Solving the quadratic equation

The first step of point halving seeks a solutionx of a quadratic equation of the formx2+ x = c over
F2m. The performance of this step is crucial in point halving.

Lemma 4.5 Assumem is odd, and let thehalf-traceH : F2m → F2m be defined by

H (c) =
(m−1)/2∑

i=0

c22i
.

(i) H (c+ d) = H (c)+ H (d) for all c, d ∈ F2m.
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(ii) H (c) is a solution of the equationx2 + x = c+ Tr(c).

(iii) H (c) = H (c2)+ c+ Tr(c) for all c ∈ F2m.

Let c = ∑m−1
i=0 ci zi ∈ F2m with Tr(c) = 0; in particular,H (c) is a solution ofx2 + x = c. A

simple method for findingH (c) directly from the definition requiresm−1 squarings and(m−1)/2
additions. If storage for{H (zi ) : 0 ≤ i < m} is available, then Lemma 4.5(i) may be applied to
obtain

H (c) = H

(m−1∑
i=0

ci z
i
)
=

m−1∑
i=0

ci H (zi ).

However, this requires storage form field elements, and the associated method requires an average
of m/2 field additions.

Lemma 4.5 can be used to significantly reduce the storage required as well as the time needed
to solve the quadratic equation. The basic strategy is to writeH (c) = H (c′)+ s wherec′ has fewer
nonzero coefficients thanc. For eveni , note thatH (zi ) = H (zi/2)+ zi/2+ Tr(zi ). Algorithm 4.6 is
based on this observation, eliminating storage ofH (zi ) for all eveni . Precomputation builds a table
of (m− 1)/2 field elementsH (zi ) for odd i , and the algorithm is expected to have approximately
m/4 field additions at step 4. The terms involving Tr(zi ) and H (1) have been discarded, since it
suffices to produce a solutions ∈ {H (c), H (c) + 1} of x2+ x = c.

Algorithm 4.6 Solvex2 + x = c (basic version)

INPUT: c=∑m−1
i=0 ci zi ∈ F2m with Tr(c) = 0.

OUTPUT: A solutions of x2+ x = c.
1. PrecomputeH (zi ) for oddi , 1≤ i ≤ m− 2.
2. s← 0.
3. Fori from (m− 1)/2 downto 1 do

3.1 If c2i = 1 then do:c← c+ zi , s← s+ zi .

4. s← s+
(m−1)/2∑

i=1
c2i−1H (z2i−1).

5. Return (s).

Further improvements are possible by use of Lemma 4.5 together with the reduction polynomial
[19, Appendix B]. Leti be odd, and definej ands by m ≤ 2 j i = m+ s< 2m. The basic idea is to
apply iii j times, obtaining

H (zi ) = H (z2 j i )+ z2 j−1i + · · · + z4i + z2i + zi + j Tr(zi ). (5)

Let f (z) = zm + r (z), wherer (z) = zb` + · · · + zb1 + 1 and 0< b1 < · · · < b` < m. Then

H (z2 j i ) = H (zsr (z)) = H (zs+b`)+ H (zs+b`−1)+ · · · + H (zs+b1)+ H (zs).

Thus, storage forH (zi ) may be exchanged for storage ofH (zs+e) for e ∈ {0, b1, . . . , b`} (some of
which may be further reduced). The amount of storage reduction is limited by dependencies among
elementsH (zi ).

If degr < m/2, the strategy can be applied in an especially straightforward fashion to eliminate
some of the storage forH (zi ) in Algorithm 4.6. Form/2< i < m− degr ,

H (zi ) = H (z2i )+ zi + Tr(zi )

= H (r (z)z2i−m)+ zi + Tr(zi )

= H (z2i−m+b` + · · · + z2i−m+b1 + z2i−m)+ zi + Tr(zi ).
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Since 2i − m+ degr < i , the reduction may be applied to eliminate storage ofH (zi ) for odd i ,
m/2 < i < m− degr . If degr is small, Algorithm 4.7 requires approximatelym/4 elements of
storage.

Algorithm 4.7 Solvex2 + x = c

INPUT: c=∑m−1
i=0 ci zi ∈ F2m with Tr(c) = 0, and reduction polynomialf (z) = zm + r (z).

OUTPUT: A solutions of x2+ x = c.
1. PrecomputeH (zi ) for i ∈ I0 ∪ I1, whereI0 = [1, (m− 1)/2] \ 2Z and I1 = [m− degr,m−

2] \ 2Z.
2. s← 0.
3. For each oddi ∈ ((m− 1)/2,m− degr ), processed in decreasing order, do:

3.1 If ci = 1 then do:c← c+ z2i−m+b` + · · · + z2i−m, s← s+ zi .
4. Fori from (m− 1)/2 downto 1 do:

4.1 If c2i = 1 then do:c← c+ zi , s← s+ zi .
5. s← s+ ∑

i∈I0∪I1

ci H (zi ).

6. Return (s).

The technique may also reduce the time required for solving the quadratic equation, since the
cost of reducing eachH (zi ) may be less than the cost of adding a precomputed value ofH (zi ) to
the accumulator. Elimination of the even terms (step 4) can be implemented efficiently. Processing
odd terms (as in step 3) is more involved, but will be less expensive than a field addition if only a
few words must be updated.

Example 4.8 ConsiderF2163 with reduction polynomialf (z) = z163+ z7+ z6+ z3+ 1. Step 3 of
Algorithm 4.7 begins withi = 155. By Lemma 4.5,

H (z155) = H (z310)+ z155+ Tr(z155)

= H (z147z163)+ z155= H (z147(z7+ z6+ z3+ 1))+ z155.

If c155 = 1, thenz154+ z153+ z150+ z147 is added toc, andz155 is added tos. In this fashion,
storage forH (zi ) is eliminated fori ∈ {83, 85, . . . , 155}, the odd integers in((m−1)/2,m−degr ).

Algorithm 4.7 uses 44 field elements of precomputation. While this is roughly half that required
by the basic algorithm, it is not minimal. For example, storage forH (z51) may be eliminated, since

H (z51) = H (z102)+ z51+ Tr(z51)

= H (z204)+ z102+ z51+ Tr(z102)+ Tr(z51)

= H (z163z41)+ z102+ z51= H (z48+ z47+ z44+ z41)+ z102+ z51

which corresponds to equation (5) withj = 2. The same technique eliminates storage forH (zi ),
i ∈ {51, 49, . . . , 41}. Similarly, if (5) is applied withi = 21 and j = 3, then

H (z21) = H (z12+ z11+ z8+ z5)+ z84+ z42+ z21.

Note that the odd exponents 11 and 5 are less than 21, and hence storage forH (z21) may be elimi-
nated.

In summary, the use of (5) withj ∈ {1, 2, 3}eliminates storage for odd values ofi ∈ {21, 41, . . . ,
51, 83, . . . , 155}, and a corresponding algorithm for solving the quadratic equation requires 37 el-
ements of precomputation. Further reductions are possible, but there are some complications since
the formula forH (zi ) involvesH (zj ) for j > i . As an example,

H (z23) = H (z28+ z27+ z24+ z21)+ z92+ z46+ z23

17



and storage forH (z23) may be exchanged for storage onH (z27). Our implementation uses these
strategies to reduce the precomputation to 30 field elements, significantly less than the 44 used in
Algorithm 4.7. In fact, use of

zn = z157+n+ zn+1+ zn−3 + zn−6

together with the previous techniques reduces the storage to 21 field elementsH (zi ) for i ∈ {157,
73, 69, 65, 61, 57, 53, 39,37,33, 29, 27, 17, 15,13,11, 9, 7,5, 3,1}. However, this final reduction
comes at a somewhat higher cost in required code compared with the 30-element version.

Experimentally, the algorithm for solving the quadratic equation (with 21 or 30 elements of
precomputation) requires approximately 2/3 the time of a field multiplication. Special care should
be given to branch misprediction factors as this algorithm performs many bit tests.

Example 4.9 ConsiderF2233 with reduction trinomialf (z) = z233+ r (z) = z233+ z74+ 1. In
comparison with the reduction polynomial forF2163 in the preceding example, degr is relatively
large. Algorithm 4.7 requires 95 field elements of precomputation, significantly more than the ap-
proximatelym/4≈ 59 elements required by the algorithm when degr is small.

The amount of precomputation can be reduced to the 43 elementsH (zi ) for i ∈ {1, 3, . . . , 79,
155, 157, 159}by direct application of the relationzn = zn+159+zn−74 together with Lemma 4.5iii.
Using a slightly different order of computation, the entries fori ∈ {75, 77, 155, 157} are eliminated
(but at somewhat higher cost), and the corresponding algorithm uses 39 elements of precomputation.
Experimentally, the algorithm solves the quadratic equation in approximately half the time of a field
multiplication.

4.2.3 Computing square roots inFFF2m

The basic method for computing
√

c, c ∈ F2m, is based on the little theorem of Fermat:c2m = c.
Then

√
c can be computed as

√
c = c2m−1

, requiringm− 1 squarings. A more efficient method can
be obtained from the observation that

√
c can be expressed in terms of the square root of the element

z. Let c = ∑m−1
i=0 ci zi ∈ F2m, ci ∈ {0, 1}. Since squaring is a linear operation inF2m, the square

root ofc can be written as

√
c =

(m−1∑
i=0

ci z
i
)2m−1

=
m−1∑
i=0

ci (z
2m−1

)i .

Splittingc into even and odd powers, we have

√
c=

(m−1)/2∑
i=0

c2i (z
2m−1

)2i +
(m−3)/2∑

i=0

c2i+1(z
2m−1

)2i+1

=
(m−1)/2∑

i=0

c2i z
i +

(m−3)/2∑
i=0

c2i+1z2m−1
zi =

∑
i even

ci z
i
2 +√z

∑
i odd

ci z
i−1

2 .

This reveals an efficient method for computing
√

c: extract the two half-length vectorsceven =
(cm−1, . . . , c4, c2, c0) andcodd = (cm−2, . . . , c5, c3, c1) from c (assumingm is odd), perform a
field multiplication ofcodd of lengthbm/2c with the precomputed value

√
z, and finally add this

result withceven. The computation is expected to require approximately half the time of a field
multiplication.

An improved method for trinomials

In the case that the reduction polynomialf is a trinomial, we can further speed the computation
of
√

c by the observation that an efficient formula for
√

z can be derived directly fromf . Let
f (z) = zm+ zk + 1 be an irreducible trinomial of degreem, wherem> 2 is prime.
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Consider the case thatk is odd. Note that 1≡ zm + zk (mod f (z)). Then multiplying byz and
taking the square root, we get

√
z≡ z

m+1
2 + z

k+1
2 (mod f (z)).

Thus, the product
√

z · codd requires two shift-left operations and one modular reduction.
Now supposek is even. Observe thatzm ≡ zk + 1 (mod f (z)). Then dividing byzm−1 and

taking the square root, we get

√
z≡ z−

m−1
2 (z

k
2 + 1) (mod f (z)).

In order to computez−s modulo f (z), wheres = m−1
2 , one can use the congruencesz−t ≡ zk−t +

zm−t (mod f (z)) for 1 ≤ t ≤ k for writing z−s as a sum of few positive powers ofz. Hence, the
product

√
z · codd can be performed with a few shift-left operations and one modular reduction.

Example 4.10 The trinomial for the NIST-recommended finite fieldF2409 is f (z) = z409+ z87+1.
Then, the new formula for computing the square root ofc ∈ F2409 is

√
c = ceven+ z205 · codd+ z44 · codd mod f (z).

Example 4.11 The trinomial for the NIST-recommended finite fieldF2233 is f (z) = z233+ z74+1.
Sincek = 74 is even, we have

√
z = z−116 · (z37 + 1) mod f (z). Notice thatz−74 ≡ 1 +

z159 (mod f (z)) andz−42 ≡ z32+ z191 (mod f (z)). It follows that z−116 ≡ z32+ z117+ z191

(mod f (z)). Hence, the new method for computing the square root ofc ∈ F2233 is

√
c = ceven+ (z32+ z117+ z191)(z37+ 1) · codd mod f (z).

Compared to the standard method of computing square roots, the proposed technique eliminates
the need of storage and replaces the required field multiplication by a faster operation. Experimen-
tally, finding a root in Example 4.11 requires roughly 1/8 the time of a field multiplication.

4.3 Point multiplication

Let P = (x, y) ∈ 〈G〉 andk be an integer with 0≤ k < n. Furthermore, letO denote the point at
infinity, andt = blog2 nc+1. Point multiplicationkP dominates the execution time of elliptic curve
cryptographic schemes. The basic technique for point multiplication is thedouble-and-add method,
also known as thebinary method, which is the additive version of the repeated-square-and-multiply
method for exponentiation. The expected number of ones in the binary representation ofk is t/2,
whence the expected running time of this method is approximately(t/2)A+ t D, whereA denotes
a point addition andD denotes a point doubling.

Point subtraction on an elliptic curve is as efficient as point addition, motivating use of the
non-adjacent formof k, NAF(k) = ∑l−1

i=0 ki 2i with ki ∈ {0,±1}, which has the property that
no two consecutive coefficientski are nonzero [39]. Thewidth-w NAF is a generalization, where
eachnonzero coefficientki is odd, |ki | < 2w−1, and at most one of any consecutivew digits is
nonzero. NAFs are used to reduce the number of point additions required in findingkP, and have
the following properties.

1. k has a unique width-w NAF, denoted NAFw(k).
2. NAF2(k) = NAF(k).
3. The length of NAFw(k) is at most one more than the length of the binary representation ofk.
4. The average density of nonzero digits among all width-w NAFs of lengthl is approximately

1/(w + 1).
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Algorithm 4.12 modifies the binary method by using NAFw(k) instead of the binary representa-
tion of k. The expected running time is approximately

((w > 2) · D + (2w−2− 1)A) + (t/(w+ 1)A+ t D)

where(w > 2) is understood to be 1 ifw > 2 and 0 otherwise. IfP is known a priori, then the 2w−2

points calculated in step 1 of Algorithm4.12 can be precomputed statically, and the expected running
time of this algorithm will then be approximatelyt/(w + 1)A+ t D. If affine coordinates are used,
then both point addition and point doubling costM+V , whereM denotes a field multiplication and
V denotes a field division; forw = 2, this translates to a field operation count of(4/3)t M+(4/3)tV.
The accumulatorQ may be stored in projective coordinates, in which case a point addition costs 8M
and a point doubling costs 4M. The field operation count in thew = 2 case is then(20/3)t M +
(2M + I ).

Algorithm 4.12 Window NAF method for point multiplication

INPUT: Window widthw, NAFw(k) =∑l−1
i=0 ki 2i , P ∈ 〈G〉.

OUTPUT: kP.
1. ComputePi = i P, for i ∈ {1, 3, 5, . . . , 2w−1− 1}.
2. Q←O.
3. Fori from l − 1 downto 0 do

3.1 Q← 2Q.
3.2 If ki > 0 thenQ←Q + Pki .
3.3 If ki < 0 thenQ←Q − P−ki .

4. Return(Q).

The halve-and-addmethod for point multiplication proposed by Knudsen and Schroeppel re-
places almost all pointdoublings in double-and-add methods with point halvings. However, it may
be necessary (depending on the application) to convert the representation ofk.

Lemma 4.13 Let
∑t

i=0 k′i 2i be thew-NAF representation of2t k modn. Then

k ≡
t∑

i=0

k′t−i

2i
(mod n).

Proof: We have 2t k ≡∑t
i=0 k′i 2i (mod n). Sincen is odd, we can divide the congruence by 2t to

obtain

k ≡
t∑

i=0

k′i
2t−i
≡

t∑
i=0

k′t−i

2i
(mod n). �

Algorithm 4.14 presents a right-to-left version of the halve-and-add method with the input
2tk modn in w-NAF representation. Point halving occurs on the inputP rather than on accu-
mulators. The expected running time is approximately(step 3 cost)+ (t/(w+ 1)− 2w−2)A′ + t H ,
whereH denotes a point halving andA′ is the cost of a point addition when one of the inputs is in
λ-representation. If projective coordinates are used forQi , then the additions in step 2 are mixed-
coordinate. Step 3 may be performed by conversion ofQi to affine (with costI + (5 · 2w−2− 3)M
if inverses are obtained by a simultaneous method), and then the sum is obtained by interleaving
with appropriate signed-digit representations of the odd multipliersi . The cost for 2≤ w ≤ 5 is
approximatelyw − 2 point doublings and 0, 2, 6, or 16 point additions, respectively.9

9Knuth [21, Exercise 4.6.3-9] suggests calculatingQi ←Qi +Qi+2 for i from 2w−1−3 to 1, and then the result is given
by Q1+ 2

∑
i∈I \{1} Qi . The cost is comparable in the projective point case. See also [27, 28].
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Algorithm 4.14 Halve-and-addw-NAF (right-to-left) method for point multiplication

INPUT: Window widthw, NAFw(2t k modn) =∑t
i=0 k′i 2i , P ∈ 〈G〉.

OUTPUT: kP. (Note:k = k′0/2t + · · · + k′t−1/2+ k′t mod n.)

1. Qi ←O, i ∈ I = {1, 3, . . . , 2w−1− 1}.
2. Fori from t downto 0 do:

2.1 If k′i > 0 thenQk′i ←Qk′i + P.

2.2 If k′i < 0 thenQ−k′i ← Q−k′i − P.
2.3 P← P/2.

3. Q← ∑
i∈I iQi .

4. Return (Q).

Consider the casew = 2. The expected running time of Algorithm 4.14 is then approximately
(1/3)t A′ + t H . If affine coordinates are used, then a point halving costs approximately 2M, while
a point addition costs 2M + V since theλ-representation ofP must be converted to affine with
one field multiplication. It follows that the field operation count with affine coordinates is approxi-
mately(8/3)t M + (1/3)tV. However, ifQ is stored in projective coordinates, then a point addition
requires 9M. The field operation count of a mixed-coordinate Algorithm 4.14 withw = 2 is then
approximately 5t M + (2M + I ).

Algorithm 4.15 is a left-to-right method. Point halving occurs on theaccumulatorQ, whence
projective coordinates cannot be used. The expected running time is approximately(D + (2w−2 −
1)A) + (t/(w + 1)A′ + t H ).

Algorithm 4.15 Halve-and-addw-NAF (left-to-right) method for point multiplication

INPUT: Window widthw, NAFw(2t k modn) =∑t
i=0 k′i 2i , P ∈ 〈G〉.

OUTPUT: kP. (Note:k = k′0/2t + · · · + k′t−1/2+ k′t mod n.)
1. ComputePi = i P, for i ∈ {1, 3, 5, . . . , 2w−1− 1}.
2. Q←O.
3. Fori from 0 tot do

3.1 Q← Q/2.
3.2 If k′i > 0 thenQ←Q + Pk′i .
3.3 If k′i < 0 thenQ←Q − P−k′i .

4. Return(Q).

4.4 Analysis

In comparison to methods based on doubling, point halving looks best whenI /M is small andkP
is to be computed forP not known in advance. In applications, the operationskP andkP+ lQ with
P known in advance are also of interest, and this section provides comparative results. The concrete
examples used are the NIST random curves overF2163 andF2233 (known as B-163 and B-233, resp.),
although the general conclusions apply more widely.

Example 4.16 Table 5 provides an operation count comparison between double-and-add and halve-
and-add methods for the NIST random curve overF2163. For the field operations, the assumption is
that I /M = 8 and that a field division has costI + M.

The basic NAF halving method is expected to outperform thew-NAF doubling methods. How-
ever, the halving method has 46 field elements of precomputation. In contrast, Algorithm 4.12 with
w = 4 (which runs in approximately the same time as withw = 5) requires only 6 field elements of
extra storage.
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Storage Point Field operations (H = 2M, I /M = 8)
Method (field elts) operations affine projective

NAF, doubling
(Algorithm 4.12) 0 163D+54A 217(M+V)=2173 1089M+I=1097

NAF, halving
(Algorithm 4.14) 46 163H+54A′ 435M+54V= 924 817M+I= 825

5-NAF, doubling
(Algorithm 4.12) 14 [D+7A]+163D+27A 198(M+V)=1982 879M+8V+I= 959

4-NAF, halving
(Algorithm 4.14) 55 [3D+6A]+163H+30A′ — 671M+2I= 687

5-NAF, halving
(Algorithm 4.15) 60 [D+7A]+163H+27A′ 388M+35V= 705 —

Table 5: Point and field operation counts for point multiplication for the NIST random curve overF2163.
Halving uses 30 field elements of precomputation in solvingx2 + x = c, and 16 elements for square root.
A′ = A+ M, the cost of a point addition when one of the inputs is inλ-representation. Field operation counts
assume that a divisionV costsI + M.

The left-to-rightw-NAF halving method requires that the accumulator be in affine coordinates,
and point additions have cost 2M + V (since a conversion fromλ-representation is required). For
sufficiently largeI /M, the right-to-left algorithm will be preferred; in the example, Algorithm 4.14
with w = 2 will outperform Algorithm 4.15 at roughlyI /M = 11. Table 6 gives timings on an
Intel Pentium III. Only general-purpose registers are used, and all code is in C except for a one-line
assembler fragment for computing polynomial degree during inversion. The observed inversion to
multiplication ratio isI /M ≈ 8. On this platform, field division is fastest by performing an inversion
and multiplication; i.e.,V = I + M.

The timing for solvingx2 + x = c in F2163 is with a routine that uses an 8-word table to
assist in processingzi for odd i , reducing the number of conditional expressions. (Branch mispre-
diction penalties are a significant factor in the implementation.) On some platforms, incremental
improvements in halving may be obtained by using a larger table of precomputation in the square
root routine. Improvements in the routine to solvex2 + x = c were observed with limited use of
assembly-language coding (essentially to improve on register allocation).

For point multiplicationkP whereP is not known in advance, the example case in Table 5 pre-
dicts that use of halving gives roughly 25% improvement over a similar method based on doubling,
when I /M = 8. (On the test platform in Table 6, the observed improvement was 29% for B-163.)
The improvement is less than the 39% estimate in [19], where the comparison was based on the
use of methods similar to Algorithms 4.12 and Algorithm 4.14 withw = 2 and I /M = 3. The
small ratio favours halving—if Table 5 is modified to useI /M = 3, then the predicted improvement
using Algorithm 4.14 over Algorithm 4.12 withw = 2 matches that in [19]. The trinomial inF2233

also favours halving, in part because the cost of finding a square root is significantly less than the
estimate used to obtain Table 5.

The comparison is unbalanced in terms of storage required, since halving was permitted 39–46
field elements of precomputation for solvingx2 + x = c and finding square roots. The amount of
storage in the square root routine (forF2163) can be reduced at tolerable cost to halving; significant
storage (e.g., 30 elements) for solvingx2+ x = c appears to be essential. In addition to the routines
specific to halving, most of the support for methods based on doubling will be required, giving some
code expansion.

Random curves versus Koblitz curvesTheτ -adic methods on Koblitz curves [39] (curves defined
overF2) share strategy with halving in the sense that point doubling is replaced by a less-expensive
operation. In the Koblitz curve case, the replacement is the Frobenius mapτ : (x, y) 7→ (x2, y2),
an inexpensive operation compared to field multiplication. Point multiplication on Koblitz curves
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Algorithm B-163 B-233

Field operations
multiplication (width-4 comb [25], with reduction) 1.32 2.28
inversion (Alg. 3.1) 10.55 18.75
square root .69a .26b

solvex2 + x = c .89c 1.17d

Curve operations
double (projective) 6.40 10.4
halve (Alg 4.3) 3.08 3.95
Point multiplication kP (random point)
NAF, halving (Alg 4.14, mixed coords) 1262 2675
4-NAF, halving (Alg 4.14, mixed coords) 1062 2150
5-NAF, halving (Alg 4.15, affine coords) 1046 2200
5-NAF, doubling (Alg 4.12, mixed coords) 1477 3375
Point multiplication kP+ lQ
6-NAF interleaved with 5-NAF, halving (affine coords) 1431 3100
6-NAF interleaved with 5-NAF, doubling (mixed coords) 1769 4075
a16 elements of precomputation.bExample 4.11.c30 elements of precomputation.
d39 elements of precomputation.

Table 6: Curve and field timings (inµ sec) for the NIST curves B-163 and B-233 on an 800 MHz Intel Pen-
tium III, using general-purpose registers only. Multiple random elements are used, to obtain realistic branch-
misprediction penalties in routines such as solve. The Intel compiler version 6 was used on Linux 2.2.

usingτ -adic methods will be faster than those based on halving, with approximate cost forkP given
by (

2w−2− 1+ t

w + 1

)
A+ t · (cost ofτ )

when using a width-w τ -adic NAF in a scheme similar to that described by Algorithm 4.12. To
compare with Table 5, assume that mixed coordinates are used,w = 5, and that field squaring has
approximate costM/6. In this case, the operation count is approximately 379M, significantly less
than the 687M required by the halving method.

Known point versus unknown point In the case thatP is known in advance (e.g., signature gen-
eration in ECDSA) and storage is available for precomputation, halving loses some of its perfor-
mance advantages. For our case, and for relatively modest amounts of storage, the single-table
comb method [12, Algorithm 17] is among the fastest and can be used to obtain meaningful opera-
tion count comparisons. The multiplierk is split intow ≥ 2 rows, and then columns are processed
left to right; a total of 2w − 1 points of precomputation are required. The operation counts forkP
using methods based on doubling and halving are approximately

t

w

(
D + 2w − 1

2w
A
)

and
t

w

(
H + 2w − 1

2w
A′
)
,

respectively. In contrast to the random point case, roughly half the operations are point additions.
Note that the method based on doubling may use mixed-coordinate arithmetic (in which caseD =
4M, A = 8M, and there is a final conversion to affine), while the method based on halving must
work in affine coordinates (withH = 2M and A′ = V + 2M). If V = I + M, then values oft
andw of practical interest give a thresholdI /M between 7 and 8, above which the method based on
doubling is expected to be superior (e.g., forw = 4 andt = 163, the threshold is roughly 7.4).

Simultaneous multiple point multiplication In ECDSA signature verification, the computation-
ally expensive step is a calculationkP+lQ where onlyP is known in advance. The times in Table 6
for kP+ lQ use an interleaving method [9, 27] with width-w NAFs. Given widthsw1 andw2, the
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pointsi P for oddi < 2w1−1 andiQ for oddi < 2w2−1 are computed; sinceP is known in advance,
the precomputation involvingP may be stored for repeated use. The expansions NAFw1(k) and
NAFw2(l ) are processed jointly, left to right, with a single double or halving of theaccumulator at
each stage. The expected operation count for the method based on doubling is approximately

[(w2 > 2) · D + (2w2−2− 1)A] + t
[
D + ( 1

w1+ 1
+ 1

w2+ 1

)
A
]

where the precomputation involvingP is not included. (The expected count for the method using
halving can be estimated by a similar formula; however, a more precise estimate must distinguish
the case where consecutive additions occur, since the cost isA′ + V + M rather than 2A′ .)

In the example case presented in Table 6, the interleaving method forkP + lQ with halving is
superior to the method based on doubling, although the difference is less pronounced than in the case
of a random point multiplicationkP, due to the larger number of point additions relative to halvings.
Note that the interleaving method cannot be efficiently converted to a right-to-left algorithm (where
w1 = w2 = 2), since the halving or doubling operation would be required on two points ateach
step. For sufficiently largeI /M, the method based on doubling will be superior; in the example, this
occurs at roughlyI /M = 11.7.

Constrained environments For workstations (e.g., the example platforms based on the SPARC
and Pentium), the memory consumption of the algorithms and supporting routines described in
this paper is relatively modest. Exceeding processor cache size may be a serious concern in some
routines, but the memory consumed by a few dozen field elements may be inconsequential. The
analysis is more complicated if there are significant memory constraints.

Point multiplicationmethods based on halving require most of the support used in methods based
on doubling, and there are also the routines for solvingx2+x = c and finding square roots. It appears
that a significant number of field elements of precomputation (e.g., 21–30 forF2163) are necessary
for halving to be efficient. In comparison, the method of Montgomery point multiplication [24] can
be coded compactly, requiring storage for only a few temporary field elements, and has running time
approximately 6t M (which is competitive with Algorithm 4.12 with optimalw).

ForF2163, the field-dependent precomputation specific to halving includes 30 field elements for
solvingx2 + x = c, 16 elements for square root, and 8 words to reduce the number of conditionals
in solvingx2+ x = c; there is also a 256-byte table supporting extraction of even and odd bits of a
word. For a fixed field, these tables are static. If dynamic storage is the principal constraint and the
platform provides (fast) access to a sufficient amount of static data, then methods based on halving
use roughly the same amount of the scarce resource as methods based on doubling.

Constraints on code and data size for field routines are likely to affect the inversion to multi-
plication ratio. (Squaring would also be affected if the static 8-to-16 expansion table of size 512
bytes must be shortened.) The scenario of interest here is where static storage is relatively abun-
dant but dynamic memory is scarce. If the 15 elements of data-dependent precomputation in the
width-4 comb method must be reduced, then a reasonable choice is a right-to-left comb, requiring
only a single field element (and some temporary storage comparable to that in thew = 4 comb),
with performance degradation by a factor between 2 and 3. The penalty for inversion in the case
that code size is limited is more difficult to estimate. (On the Pentium, for example, the Euclidean
Algorithm 3.1 with limited code expansion incurs only small penalty relative to the times in Table
4.) Constraints which give a smallerI /M will favor affine coordinates and halving methods.

In summary, methods based on halving are likely to retain their advantages in the constrained
case over methods based on doubling, under the assumption that a threshold amount of static storage
is available for solvingx2 + x = c. The advantages would in fact extend to the known-point case
if constraints limit the number of points of precomputation. However, if processor speed is also
limited, then there is a strong incentive to use Koblitz curves, provided that the cost of support for
τ -adic NAFs is not prohibitive.
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Conclusions

Point multiplication methods based on halving are straightforward to implement, although some
extra static storage (per field) is required over methods based on doubling. The performance ad-
vantage of halving methods is clearest in the case of point multiplicationkP whereP is not known
in advance, and smaller inversion to multiplication ratios generally favour halving. Algorithm 4.14
partially addresses the challenge presented in Knudsen [19] to derive “an efficient halving algorithm
for projective coordinates.” While the algorithm does not provide halving on a projective point, it
does illustrate an efficient windowing method with halving and projective coordinates, especially
applicable in the case of largerI /M.

The analysis in [19] gives halving methods a 39% advantage for the unknown point case, under
the assumption thatI /M ≈ 3. The results in Section 3 suggest that this ratio is too optimistic on
common SPARC and Pentium platforms, where the fastest times giveI /M > 8. The larger ratio re-
duces the advantage to approximately 25% in the unknown-point case under a similar analysis; ifP
is known in advance and storage for a modest amount of precomputation is available, then methods
based on halving are inferior. ForkP+ lQ where onlyP is known in advance, the differences be-
tween methods based on halving and methods based on doubling are smaller, with halving methods
faster for ratiosI /M commonly reported.

Our analysis using windowing methods estimates that point multiplication with halving is about
29% faster than doubling-based methods, under the assumptions that a field division costs roughly
the same as inversion followed by multiplication,I ≈ 8M, andH ≈ 2M. In our experiments on
an Intel Pentium III, we obtainedH ≈ 2.3M for B-163 andH ≈ 1.7M for B-233, and the cor-
responding observed improvements in point multiplication times were 29% and 36%, respectively.
For simultaneous point multiplication under similar assumptions, the analysis gives halving-based
methods a 15% edge over those based on doubling. Experimentally, we observed improvements of
19% and 24% for B-163 and B-233, respectively.

Our work has focused on methods using relatively modest amounts of precomputation. How-
ever, the routines for solving quadratic equations benefit from per-field precomputation and are
fundamental to the performance of halving-based methods. A practical comparison under more
generous memory ceilings would be of interest.

Finally, it should be noted that methods based on halving will be significantly slower thanτ -adic
methods for Koblitz curves. However, the halving methods apply to all curves, and finding aτ -adic
NAF for a givenk involves some extra code [39].
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Appendix

In the projective coordinates L´opez-Dahab [23], the projective point(X : Y : Z), Z 6= 0, corre-
sponds to the affine point(X/Z,Y/Z2). The projective form of the elliptic curve equationy2+xy=
x3+ ax2+ b is

Y2+ XY Z= X3Z + aX2Z2+ bZ4.
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The point at infinity corresponds to(1 : 0 : 0), while the negative of(X : Y : Z) is (X : X+Y : Z).
The double(X3 : Y3 : Z3) of (X1 : Y1 : Z1) is given by

Z3← X2
1 · Z2

1, X3← X4
1 + b · Z4

1, Y3←bZ4
1 · Z3+ X3 · (aZ3+ Y2

1 + bZ4
1).

The mixed-coordinate sum(X3 : Y3 : Z3) of (X1 : Y1 : Z1) and(X2 : Y2 : 1) is given by

A← Y2 · Z2
1 + Y1, B← X2 · Z1+ X1, C← Z1 · B, D← B2 · (C + aZ2

1),

Z3←C2, E← A · C, X3← A2 + D + E, F← X3+ X2 · Z3,

G← (X2+ Y2) · Z2
3, Y3← (E + Z3) · F +G.

If a ∈ {0, 1}, then doubling in projective coordinates requires 4 field multiplications, and addition
(with mixed coordinates) requires 8 multiplications [23, 22].
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