Field inversion and point halving revisited

Kenny Fong, Darrel Hankersoh Julio LopeZ, and Alfred Menezés

Abstract

The focus of this technical report is implementation issues for three separate but related topics
of interest in elliptic curve point arithmetic. The first concerns use of single-instruction multiple-
data (SIMD) capabilities to speed field multiplication and inversion.

The second topic is inversion in binary fields. A careful analysis of multiplication and inver-
sion costs is necessary for a fair comparison of halving and doubling methods. We also analyze
algorithms for division ifffom and compare them with inversion algorithms.

The final section presents a careful analysis of point multiplicatiomattthat use the point
halving technique of Knudsen and Schroeppel, and compares these methodiiomaieaigo-
rithms that use point doubling.

Contents

1 Introduction 2

2 Use of special-purpose registers 3
2.1 SIMD and binary field arithmetic 4
2.2 SIMD and prime field arithmetic L. 7

3 Field inversion and division 8
3.1 Inversion based on the Euclidean algorithm 9
3.2 DIVISION . . . 10
3.3 TiMINGS 11

4 Point multiplication using point halving 13
4.1 Pointhalving 14
4.2 Performing point halving efficiently 15
4.3 Pointmultiplication. 19
44 ANAlySIS 21

References 25

Appendix 27

*Dept. of Computer Science, Southern lllinois University Carbondale, USA, kfong@cs.siu.edu
TDept. of Mathematics, Auburn University, USA, hankedr@auburn.edu

*nstitute of Computing, University of Campinas, Brazil, jlopez@ic.unicamp.br

8Dept. of Combinatorics and Optimization, University of Waterloo, Canada, ajmeneze @uwaterloo.ca

Technical Report CORR 2003-18, August 2002 with revisions December 2003. An abbreviated version of this paper will
appear in IEEHTansactions on Computer2004.

1 Introduction

Three topics of interest in implementing arithmetic on elliptic curves are presented in this technical
report. For the most part, the sections can be read independently, although there are some cross
references.

The use of “special purpose” registers to accelerate field operations is examined in §2. On the
Intel Pentium and AMD processors, the single-instruction multiple-data (SIMD) registers can be
used to speed field arithmetic. Implementation considerations for the common MMX subset are
presented in §2.1. Algorithms for field multiplication (a comb method, used as the basis for com-
parisons in §4) and inversion are implemented; comparative timings against conventional methods
appear with the material of 83. §2.2 briefly examines the SSE2 extensions found on the Pentium 4.

A new method for point multiplication on non-supersingular elliptic curves over binary fields
was proposed independently by Erik Knudsen [19] and Richard Schroeppel [32]. The idea is to
replace almost all point doublings in double-and-add methods with a potentially faster operation
called point halving. Knudsen [19] presented some rough analysis which suggests that halving
methods could be 39% faster than doubling methods ([33] claims a 50% improvement), but these
claims have not been supported by experimental evidence or by detailed analysis.

The purpose of Sections 3 and 4 is to carefully analyze point multiplication methods that use
halving, and to compare them with traditional point multiplications methods that use doubling. We
restrict our attention to implementations on software platforms; some issues with implementing
point halving in hardware are discussed in [36]. Furthermore, we restrict our attention to elliptic
curves over binary field§,m wherem is prime and where the reduction polynomials are trino-
mials or pentanomials. Such parameters are recommended or mandated by various cryptographic
standards including NIST’s FIPS 186-2 [7].

We begin in 83 with a description of three variants of the extended Euclidean algorithm for
computing inverses iffom. A careful analysis of the software implementation of multiplication
and inversion is necessary for a fair comparison of halving and doubling metkodade a lower
relative inversion cost generally favours halving methods over doubling methods. Our extensive
experiments suggest that a realistic estimate of the tgfib of inversion to multiplication cost is 8
(or higher) rather than the ratio of 3 that is often quoted in the literature [37, 5, 6]. We also analyze
algorithms for division iflfom and compare them with inversion algorithms.

In 84, we review point halving and efficient methods for solving quadratic equatiofignin
Most of the material in Sections 4.1, 4.2 and 4.3 is from [19] and [33] with the exceptions of an
improved method for computing square roots in 84.2.3 and an adaptation of an algorithm in §4.3
for point multiplication that allows halving to efficiently cooperate with projective coordinate rep-
resentations. Our analysis of halving methods is presented in §4.4. We compare the best halving
and doubling methods for performing point multiplicatioR in the cases wherP is not known
in advance and wher@ is known in advance. The former situation commonly arises in variants of
the Diffie-Hellman key agreement protocol, while the latter is encountered in signature generation
for EIGamal signature schemes. We also compare halving and doubling methods for performing
simultaneous multiple point multiplicatiokP + 1Q that is encountered in signature verification
for EIGamal signature schemes. Our analysis suggests that point halving methods are about 29%
faster than point doubling methods for computkig when P is not known in advance. The ad-
vantage is smaller for simultaneous multiple point multiplication. For point multiplication where
P is known in advance, doubling methods outperform halving methods uhlésss small. As a
benchmark, it should be noted that thadic methods for Koblitz curves [39] are significantly faster
than halving-based methods, although the latter have the advantage of wider applicability.

|Processor Year MHz Cache (KB) Selected features |

386 1985 16 First IA-32 family processor with 32-bit operations and |par-
allel stages.

486 1989 25 L1:8 Decode and execution units expanded in five pipelined stages
in the 486; processor is capable of one instruction per glock
cycle.

Pentium 1993 60 L1:16 Dual-pipeline: optimal pairing in U-V pipes could giye

PentiumMMX 1997 166 L1:32 throughput of two instructions per clock cycle. MMX added

eight special-purpose 64-bit “multimedia” registenspport-
ing operations on vectors of 1, 2, 4, or 8-byte integers.

Pentium Pro 1995 150 L1:16 P6 architecture introduced more sophisticated pipelining and
L2: 256,512 out-of-order execution. Instructions decodedi#tmps, with
Pentium I 1997 233 L1:32 up to threeu-ops executed per cycle. Improved branch pre-
L2:256,512 diction, but misprediction penalty much larger than on Ren-
Celeron 1998 266 L2:0,128 tium. Integer multiplication latency/tbughput 4/1 vs 9/9 op
Pentium IlI 1999 500 L1:32 Pentium. Pentium Il and newer have MMX; the lll intro-

L2:512 duced SSE extensions with 128-bit registers supporting oper-
ations on vectors of single-precision floating-point values.
Pentium 4 2000 1400 L1:8 NetBurst architecture runs at significantly higher clpck
L2:256 speeds, but many instructions have worse cycle counts than
P6 family processors. New 12i¢-op “execution trace
cache” mechanism. SSE2 extensions have double-precision
floating-point and 128-bit packed integer data types.

Table 1: Partial history and features of the Intel IA-32 family of processors. Many variants of a given processor
exist, and new features appear over time (e.g., the original Celeron had no cache). Cache comparisons are
complicated by the different access speeds and mechanisms (e.g., newer B&ntisman advanced transfer

cache with smaller level 1 and level 2 cache sizes).

2 Use of special-purpose registers

This section presents an overview of technologies and implementation issues for use of the single-
instruction multiple-data instructions present on most processors in the popular Intel Pentium family,

some of which appear in Table 1. Such capabilities are relatively easy to employ, and can dramati-
cally accelerate both prime and binary field arithmetic.

The Pentium is essentially a 32-bit architecture, and said to be “superscalar” since it can process
instructions in parallel. The pipelining capability is easiest to describe for the original Pentium,
where there were two general-purpose integer pipelines, and optimization focused on organizing
code to keep both pipes filled subject to certain pipelining constraints. The case is more complicated
in the newer processors of the Pentium family, which use more sophisticated pipelining and tech-
niques such as out-of-order execution [8, 17]. For the discussion in this paper, only fairly general
properties of the processor are involved.

For applications programmers, the processors in Pentium family have similar instruction sets.
All suffer from a limitation of only eight (mostly) general-purpose registers. There is an integer
multiplier which can perform a 3232-bit multiplication (giving a 64-bit result), but the operation is
restrictive in the registers used. However, as noted in Table 1 there are significant differences among
Pentium family processors. for example, conventional integer multiplication is significantly faster
on P6 family processors (e.g., Pentium lI/11l) than on earlier Pentium or newer Pentium 4 processors.
Of fundamental interest are instructimtencyandthroughput some of which are given in Table 2.
Roughly speaking, latency is the number of clock cycles required before the result of an operation
may be used, and throughputis the number of cycles which must pass before the instruction may be

Instruction Pentium I/l Pentium 4
Integer add, xor,... 1/1 5/.5
Integer add, sub with carry 1/1 6-8/2-3
Integer multiplication 4/1 14-18/3-5
Floating-point multiply 5/2 712
MMX ALU 1/1 2/2
MMX multiply 3/1 8/2

Table 2: Instruction latency / throughput for the Intel Pentium II/1ll vs the Pentium 4.

executed agaih.Note that small latency and small throughput are desirable under these definitions.
Many workstation-class processors, such as the Sun UltraSPARC, also exhibit relatively poor

performance with traditional approaches to integer multiplication. The limitations of the 32-bit

conventional instruction set on the Pentium encourage the use of special-purpose registers.

Wide registers and vector operations

Single-instruction multiple-data (SIMD) capabilities perform operations in parallel on vectors. In
the Intel Pentium family, such hardware is present on all but the original Pentium and the Pentium-
pro. The features were initially known as “MMX Technology” for the multimedia applications, and
consisted of eight 64-bit registers, operating on vectors with components of 1, 2, 4, or 8 bytes [15].
The capabilities were extended in subsequent processors: streaming SIMD (SSE) in the Pentium
[l has 128-bit registers and single-precision floating-point arithmetic, and SSE2 extends SSE to in-
clude double-precision floating-point and integer operations in the Pentium 4 [17]. Advanced Micro
Devices (AMD) introduced MMX support on their K6 processor [1], and added various extensions
in newer chips.

Although SIMD is often associated with image anceegh applications, Intel alsaggests
the use of such capabilities in “encryption algorithms” [17]. Aoki and Lipmma [2] evaluated the
effectiveness of MMX-techniques on the AES finalists, noting that MMX was particularly effective
on Rijndael. In cross-platform code distributed for solving the Certicom ECC2K-108 Challenge (an
elliptic curve discrete-log problem for a Koblitz curve over a 109-bit binary field [4]), Robert Harley
provided several versions of field multiplication routines [14]. The MMX version was “about twice
as fast” as the version using only general-purpose regi’ters.

We consider the use of SIMD capabilities on AMD and Intel processaasdelerate field arith-
metic. The general idea is to use these special-purpose registers to implement fast 64-bit operations
on what is primarily a 32-bit machine. For binary fields, the common MMX subset can be used to
speed multiplication and inversion. For prime fields, the SSE2 extensions (specific to the Pentium
4) provide an alternative approach to traditional or floating-point methods.

2.1 SIMD and binary field arithmetic

In this section, we consider the use of SIMD capabilities on AMD and Intel processors to speed bi-
nary field arithmetic. The fast method for multiplication described in §2.1.1 is used for comparative
timings with conventional code. §2.1.2 summarizes implementation issues and performance for use
of the MMX subset.

Sintel [17] definedatencyas the number of clock cycles that are required for the execution core to complete all of the
nops that form an IA-32 instruction, arldroughputas the number of clock cycles required to wait before the issue ports are
free to accept the same instruction again. For many I1A-32 instructions, the throughput of an instruction can be significantly
less than its latency.

6The Karatsuba-style approach worked well for the intended target; however, the fastest versions of Algorithm 2.1 using
only general-purpose registers were competitive in our tests.

Alt —1] All] Al0]
| | Am—1- - At-Hw | | DwW—1" - aw413w | aw—1 - - 189 |
~——

S
Figure 1: Representation afe Fom as an array o#-bit words. Thes = tW —m highest order bits oA[t — 1]

remain unused.

—
J az1 agp 89 apg a3 a ¥ 3 A0
83 82 861 850 azs a4 agz agy |All]
ags agq 8g3 dagy 37 6 95 3s4 | Al2]
a127 @126 a125 124 agg agg agy age | Al3]
a159 158 A157 a156 a131 8130 129 A10g| Al4]
a162 161 160 AlS]

v v

Figure 2: Algorithm 2.1 processes columns of the exponent arregy lfft-to-right. The entries within a width
v column are processed from top to bottom. Example parameteW ate82, m = 163, andv = 4.

2.1.1 Comb field multiplication

Let f be an irreducible binary polynomial of degree The elements dfom are the binary polyno-
mials of degree at most— 1. Addition of field elements is the usual addition of binary polynomials,
and multiplication is performed modulb. A field elementa(z) = am_1Z™ 1+ - -+ a1z + ag is
associated with the binary vectar= (am—1, .. ., a1, ag) of lengthm. If W is the wordsize (in bits)
to be used in software, lét= [m/W1, and lets = Wt — m. The vectora may be stored in an array
of t W-bit words: A = (A[t — 1],..., A[1], A[0]), where the rightmost bit ofA[0] is ag, and the
leftmosts bits of A[t — 1] are unused (always set to 0), as illustrated in Figure 1.

A fast method of polynomial multiplication given in [25] appears as Algorithm 2.1. This is a
“comb” method requiring storage for a table dff&ld elements for given parameter The values
u - b are computed for all polynomialsof degree less tham and then multiplication processes
bits of A[j] at a time. The order in which the bits afare processed is illustrated in Figure 2 for the
casem = 163,W = 32, andv = 4. The following notationis used: € = (C[n], ..., C[1], C[0])
is an array, the©{j } denotes the truncated arré®[n], ..., C[j + 1], C[j D).

Algorithm 2.1 Left-to-right comb method with windows of widti

INPUT: Binary polynomialsi(z) andb(z) of degree at mosh — 1.
OUTPUT: ¢(2) = a(2) - b(2).
1. ComputeB, = u(2) - b(z) for all polynomialsu(z) of degree at moat — 1.
2. C<«0.
3. Fork from (W/v) — 1 downto 0 do
3.1 Forj fromOtot —1do
Letu = (Uy_1, ..., U1, Ug), wherevy; is bit (vk + 1) of A[j].
Add By toC{j}.
3.2 Ifk #0thenC «—z'-C.
4. ReturnC).

As written, the algorithm performs polynomial multiplication—modular reduction is performed
separately. In some cases, it may be advantageous to include the reduction polyh@siah
input to the algorithm. Step 1 may then be modified to calculdienod f, which may allow

optimizations in step 3.

2.1.2 Field multiplication and inversion with MMX

The first-generation single-instruction multiple-data MMX technology on the Intel and AMD pro-
cessors was designed primarily for fast integer operations in support of graphics and communication.
Eight 64-bit registers perform arithmetic, logical, comparison, transfer, and conversion operations
on vectors with components of 1, 2, 4, or 8 bytes. Although restrictive in the functions supported,
the essential shift and xor operations required for binary field arithmetic are available. The strengths
and shortcomings of the MMX subset for field multiplication and inversion are examined in this
section.

Naively, the 64-bit registers should improve performance by a factor of 2 compared with code
using only general-purpose 32-bit registers. In practice, the results depend on the algorithm and
the method of coding. Implementations may be a mix of conventional and MMX code, and only a
portion of the algorithm benefits from the wide registers. Comparison operations produce a mask
vector rather than setting status flags, and data-dependent branching is not directly supported. The
MMX registers cannot be used to address memory. On the other hand, the Pentium has only eight
general-purpose registers, so effective use of the extra registers may contribute collateral benefits to
general register management. As noted in Table 2, there is no latency or throughput penalty for use
of MMX on the Pentium 11/11; on the Pentium 4, scheduling will be of more concern.

Field multiplication Comb multiplication (Algorithm 2.1) with reduction was implemented with
MMX for Fa163, with reduction polynomialf (z) = 2163+ 2z’ + 28 + 28 + 1. Comparative tim-

ings with a non-MMX version appear in Table 4. The precomputation step 1 uses MMX, and the
accumulatolC is maintained in six MMX registers; processing of the inpu$ accomplished with
general-purpose registers. The algorithm adapts well to use of the wide registers, since the opera-
tions required are simple xor and shifts, there are no comparisons on MMX registers, and (for this
case) the accumulat@rcan be maintained entirely in registers. Field multiplicationis roughly twice

the speed of a traditional approach.

Field inversion For inversion, Algorithm 3.1 (a Euclidean Algorithm variant) was implemented. In
contrast to multiplication, the inversion algorithm requires some operations which are less-efficiently
implemented with MMX. A degree calculation is required in step 2.1, and step 2.3 requires an extra
register load since the shift is by a non-constant value. Two strategies were tested. The first used
MMX only on g; andgy, applying conventional code to track the lengths @hdv and find degrees.
Somewhat better performance was obtained by the second strategy, which used MMX for all four
variables. Lengths af andv were tracked in 32-bit increments, in order to more efficiently perform
degree calculations (by extracting appropriate 32-bit halves and passing to conventional code for
degree). A factor 1.5 improvement was observed in comparison with a non-MMX version.

Programming considerations The use of MMX capabilities may be efficiently isolated to specific
routines such as field multiplication—other code in an elliptic curve scheme could remain unchanged
if desired. Implementation in C may be done with assembly-language fragments or with intrinsics.
Assembly-language coding allows the most control over register allocation and scheduling, and was
the method used to implement Algorithm 2.1. Programming with intrinsics is somewhat similar
to assembly-language coding, but the compiler manages register allocation. The inversion routines
were coded with intrinsics.

Intel provides intrinsics with its compiler; reportedly, the features have been added to gcc-3.1.
Data alignment on 8-byte boundaries is required for performance. The MMX and floating point
registers share the same address space, and there is a penalty for switching from MMX operations to
floating-point operations. Code targeted for the Pentium 4 could use the SSE2 enhancements, which
do not have the interaction problem with the floating-point stack, and which have wider 128-bit
vector operations.

2.2 SIMD and prime field arithmetic

The Pentium IIl has eight 128-bit SIMD registers, and SSE2 extensions on the Pentium 4 support
operations on vectors of double-precision floating-point values and 64-bit integers. In contrast to
floating-point implementations, use of the integer SSE2 capabilities can be efficiently isolated to
specific routines such as field multiplication.

Multiplicationin SSE2 hardware does not increase the maximum size of operands over conven-
tional instructions (32 bits in both cases, giving a 64-bit result); however, there are more registers
which can participate in multiplication, the multiplication latency is lower, and products may be
accumulated with 64-bit operations. With conventional code, handling carry iftlar®ck but is
directly supported since arithmetic operations set condition codes that can be conveniently used. The
SSE? registers are not designed for this type of coding, and explicit tests for carry are expensive.
Implementing the operand-scanning multiplication of [26, Algorithm 14.12] is straightforward with
scalar SSE2 operations, since the additions may be done without concern for carry. The approach
has two additions and a subsequent shift associated with eakiplioation in the inner product
operationwi4j + Xj - ¥i + €. The total number of additions and shifts can be reduced by adapting
a product-scanning approach (where the result is calculated low-to-high) at the cost of more mul-
tiplications. To avoid tests for carry, one or both of the input values are represented in the form
a=)> g 2Wi whereW’ < 32 so that products may ls&cumulated in 64-bit registers.

Example 2.2(multiplication with SSE2 integer operations) Suppose inputs consist of integers rep-
resented as seven 32-bit words (e.g., in the NIST field for P-224). A scalar implementation of the
operand scanning algorithm performs 49 multiplications, 84 additions, and 49 shiftsin the SSE2 reg-
isters. If the input is split into 28-bit fragments, then product scanning performs 64 multiplications,
63 additions, and 15 shifts to obtain the product as 16 28-bit fragments.

The multiprecision library GNU MP [10] uses an operand-scanning approach, with an 11-
instruction inner loop. The code is impressively compact, and generic in that it handles inputs of
varying lengths. If the supplied testing harness is used with parameters favourable to multiplication
times, then timings are comparable to those obtained using more complicated code. However, under
more realistic tests, a product-scanning method using code specialized to the 7-word case is 20%
faster, even though the input must be splitinto 28-bit fragments and the output reassembled into 32-
bit words. A straightforward SSE2 integer implementation of multiplication on 7-word inputs and
producing 14-word output (32-bit words) requires approximately 325 cycles, less than half the time
of a traditional approach (which is especially slow on the Pentium 4 due to the instruction latencies
in Table 2).

Example 2.3(vector operations in the SSE2 registers) Integer multiplication in Example 2.2 uses
only scalar operations in the SSE2 instruction set. Moore [29] exploits vector capabilities of the
128-bit SSE2 registers to perform two products simultaneously from 32-bit valeaslir64-bit half

of the register. The method is roughly operand scanning, obtaining the natiy of products

of 29-bit valuesa; andbj in submatrices of size 44 (corresponding to values in a pair of 128-

bit registers). A shuffle instruction (pshufd) is used extensively to load a register with four 32-bit
components selected from a given register. Productaiecamulated, but “carry processing” is
handled in a second stage. The supplied code adapts easily to inputs of fairly general size; however,
for the specific case discussed in Example 2.2, the method was not as fast as a (fixed size) product-
scanning approach using scalar operations.

An alternate strategy with wide applicability involves floating-point hardware commonly found
on workstations. The basic idea is to exploit fast floating-point capabilities to perform integer arith-
metic using a suitable field element representation. In applications such as elliptic curve point mul-
tiplication, the expensive conversions between integer and floating-point formats can be limited to
an insignificant portion of the overall computation, provided that the curve operations are written to

Multiplication in Fp,,, Time (us)
Classical integer (product scanning) 0.62

Karatsuba-Ofman (depth 2) 0.82
SIMD (Example 2.2) 0.27
Floating-point (Bernstein) 0.0

aExcludes conversion to/from canonical form.

Table 3: Multiplication inF p,,, for the 224-bit NIST primeppz4 = 2224~ 29 4-1 on a 1.7 GHz Intel Pentium
4. The time for the floating-point version includes (partial) reduction to eight floating-point values, but not to
or from canonical form; other times include reduction.

cooperate with the new field representation. Bernstein [3] presented this strategy for the NIST rec-
ommended curve P-224 (over the prime figlg,, for pao4 = 2224—-2%1), obtaining significantly
faster point multiplication times compared to other published results.

The SSE2 extensions on the Pentium 4 provide double-precision (64-bit) floating point oper-
ations. However, the Pentium family processors have floating point registers capable of 80-bit
extended double precision. Bernstein’s implementation uses the floating point registers; a brief
overview appears in [13]. Table 3 gives times on a Pentium 4 for various approaches to field mul-
tiplication. Note that the time for the floating-point approach includes partial reduction to eight
floating-point values (each of sizeughly 28 bits), but excludes the expensive conversion to canon-
ical reduced form.

3 Field inversion and division

When implementing elliptic curve methods, the cost of field inversion to multiplication is of funda-
mental interest, driving the selection of affine versus projective representations of curve points. As
an example, on the NIST-recommended random binary curvesfowethe costs (in terms of field
multiplicationsM and inversions) for point addition and doubling are summarized in the following
table.

Coordinate representation
Point operation| affine projectivé
double I +2M aM
add I +2M 8M
@Formulas appear in the Appendix.

Consider the case that point multiplicatikR is to be performed using a method based on double-
and-add, wherd® is not known in advance. The break-evefiM depends on the method used;
however, a rough estimate (e.g., if window NAF methods are employed) is obtained by assuming
that the cost for each bit df is approximatelyD + A/3, whereD denotes the cost of a point
doubling, andA is the cost of a point addition. Under these assumptions, arithmetic using projective
(and mixed) coordinates is expected to outperform affine-only arithmetic whehev&M.

Goodman and Chandrakasan [11], Chang Shantz [38], and Schroeppel [34] noted that the binary
Euclidean algorithm, commonly employed for inversion of field elements, can be modified to do
division. This is of particular interest if affine arithmetic is in use, provided that division is cheaper
thanl + M.

In this section, we are interested in realistic estimates/& under the assumptions that the
processor is general-purpose and can be targeted, and that the code may be optimized for specific
fields. Since it appears clear tHatM is large (e.g., 40 or more) on such processors for prime fields,
the focus will be on binary fieldB,m wherem is prime (e.g., as specified in the NIST-recommended
binary curves). A polynomial basis representation will be used for elemefits oElements offom

are the binary polynomials ifio[z] of degree at mosh — 1. The reduction polynomial is denoted
by f.

Section 3.1 gives an overview of three variants of the Euclidean algorithm for inversion. As
noted, the binary variant can be converted to a division algorithm. Section 3.2 considers computa-
tional issues in converting the variants to perform division. Timings and implementation notes on
two popular platforms are presented in Section 3.3.

3.1 Inversion based on the Euclidean algorithm

The inverse of a non-zero elememte Fom is denoteda—! mod f or simplya~! if the reduction
polynomial f is understood from context. Inverses can be efficiently computed by the extended
Euclidean algorithm for polynomials, which uses the fact that@dd) = gcd(b + ca, a) for all
binary polynomials.

Algorithm 3.1 is a variant of the classical Euclidean algorithm. Given invertibthe algorithm
maintains the invariants

agr+ fhy=u
agp+ fha=v

for somehs andhy not explicitly calculated. The algorithm terminates whee- 1, in which case
-1
gL=a -.

Algorithm 3.1 Extended Euclidean Algorithm (EEA) for inversionliiam

INPUT: @ € Fom, a # 0.
OuTPUT: a 1 mod f.
l.u<a v« f,00<1,g2<«0.
2. Whileu # 1 do
2.1 j < deqgu) — degv).
22 Ifj <Otheniu < v, 01 < @2,] < — |.
23u<u+7ziv,gr<g+7Zg.
3. Return).

In contrast to Algorithm 3.1 where the bitsofandv are cleared from left to right (high degree
terms to low degree terms), thénary Euclidean algorithniBEA) clears bits ofu andv from right
to left.

Algorithm 3.2 Binary Euclidean Algorithm (BEA) for inversion ifipm

INPUT: & € Fom, a £ 0.
OuTPUT: a1 mod f.
l.u<a v« f,0g0<1,g2<«0.
2. Whilez dividesu do:
21 u<«u/z
2.2 If zdividesg; theng; <— g1/7; elseg; < (g1 + f)/z.
3. If u = 1 then returndy).
4. If degu) < degv) then:u < v, g1 < O2.
5. U<«U+v,01<« 01+ 0.
6. Goto step 2.

The degree calculations in step 4 may be replaced by a simpler comparison on the binary repre-
sentations of the polynomials. This differs from Algorithm 3.1, where explicit degree calculations
are required.

The almost inverse algorithrfAlA) [37] is a modification of the binary inversion algorithm in
which a polynomialy and a positive integek are first computed satisfyingg = 2 (mod f). A
reduction is then applied to obta@m® = z~Xg mod f. The invariants maintained are

ag + fhy =Zu
ag + fhy =2

for someh; andh; that are not explicitly calculated.

Algorithm 3.3 Almost Inverse Algorithm (AlA) for inversion iffifom

INPUT: & € Fom, a # 0.
OuTPUT: a ! mod f.
l.u<a v« f,01< 1,02« 0,k<«0.
2. Whilez dividesu do:
21 u<«u/z,g2 <z, k<« k+ 1.
If u = 1 then returnzKgy).
If degu) < deg(v) then:u < v, g1 < Q2.
U<Uu-+v, 01«01+ 0o
Goto step 2.

o0k w

A reduction of the formzXg is required in step 3 and can be performed as follows. | Let
min{i > 1| fi = 1}, wheref(x) = fpz"+ ...+ f1z+ fo. Lets be the polynomial formed
by thel rightmost bits ofg. Thensf + g is divisible byZ andt = (sf + g)/Z has degree less
thanm; thust = gx~' mod f. This process can be repeated to finally obtikg mod f. The
reduction polynomial is said to uitableif | is above some threshold (which may depend on the
implementation; e.gl, > 32 is desirable with 32-bit words), since then less effort is required in the
reduction step.

Two strategies can be applied to enlarge the class of “suitable” polynomials. The method of the
preceding paragraph can be extended to arbifraty m at relatively low cost [20]. Letj(z) =
fil1Z2 1+ ...+ f1z+ 1 and precomput® satisfyingQq = 1 (modZ) with degQ < I. If
S=sQ (mod Z) with degS < |, thenSf + g is divisible byZ . If f(z) = z"+ q(z), then division
by Z requires twd x | polynomial multiplications. As an alternative, the reduction in step 3 can
be replaced by pre- and post-algorithmitiplications [35]. The revised method finds= 1/a via
a' < zZ"amod f, ¢ < Z¢/a’ mod f, c < 22" K¢’ mod f; that is, the revised algorithm processes
72Ma rather thara, and step 3 is modified to firff™Kg.

Step 2 of AlA is simpler than that in Algorithm 3.2. In addition, tiieandg, appearing in these
algorithms grow more slowly in almost inverse. Thus one can expect AlA to outperform BEA if the
reduction polynomial is suitable, and conversely. As with BEA, the explicit degree calculations may
be replaced with simpler comparisons.

3.2 Division

The binary Euclidean algorithm can be easily modified to perform divisian= ba—1[11, 38, 34].
In cases wheré/M is small, this could be especially significant in elliptic curve schemes, since an
affine point operation could use division rather than an inversion and multiplication.

Division using BEA To obtainb/a, Algorithm 3.2 is modified at step 1, replacimg < 1 with
g1 < b. The associated invariants are

agi+ fhy=ub
ag + fhy=vb.

10

On termination wittu = 1, it follows thatg; = ba~1. The division algorithm is expected to have
the same running time as BEA, singe in BEA goes to full-length in a few iterations at step 2.2
(i.e., the difference in initialization of; does not contribute significantly to the time for division
versus inversion).

If BEA is the inversion method of choice, then affine point operations would benefit from use
of division, since the cost of a point double or addition changes from2M to | + M. If I /M
is small, then this represents a significant improvement; e.d,/M is indeed 3, then use of a
division algorithm variant of BEA provides a 20% reduction in the time to perform an affine point
double or addition. However, if/M > 7, then the savings is less than 12%. Note that unless
I /M is very small, it is likely that schemes are used which reduce the number of inversions required
(e.g., halving and projective coordinates), so that point multiplication involves relatively few field
inversions, diluting any savings from use of a division algorithm.

Division using EEA Algorithm 3.1 can be transformed to a division algorithm in a similar fashion.
However, the change in the initialization step may have significant impact on implementation of
a division algorithm based on EEA. There are two performance issues: tracking of the lengths of
variables, and implementing the additiongpat step 2.3.

In EEA, itis relatively easy to track the length ofandv efficiently (the lengths shrink), espe-
cially if the number of words representing a field element is (roughly) four or more. In EEA, it
is also possible to track the lengths@fandg,. However, the change in initialization for division
means thag; goes to full-length immediately, and tracking the lengthgpandg; is no longer
effective.

The second performance issue concerns the addition &t step 2.3 of EEA. An implemen-
tation of EEA may assume that the addition may be done as ordinary polynomial addition with no
reduction; i.e., the degrees of andg, never exceedn — 1. In adapting for division, step 2.3 may
be less-efficiently implemented, singgis full-length on initialization.

Division using AIA Although Algorithm 3.3 is similar to the binary Euclidean algorithm, the abil-
ity to efficiently track the lengths ofj; and g, (in addition to the lengths af andv) may be an
implementation advantage of AlA over BEA. As with EEA, this advantage is lost in a division
algorithm variant of AlA.

It should be noted that efficient tracking of the lengthgofindg, (in addition to the lengths
of u andv) in AIA may involve significant code expansion (perhapgragments rather than thie
fragments in BEA). If this code expansion cannot be toleratedgbse of application constraints or
platform characteristics), then AIA may not be preferable to the other inversion algorithms (even if
the reduction polynomial is suitablé).

3.3 Timings

Table 4 gives some comparative timings on two popular platforms: the Intel Pentium Ill and Sun
UltraSPARC. Both processors are capable of 32- and 64-bit operations, although only the Ultra-
SPARC is 64-bit. The 64-bit operations on the Pentium Il are via the single-instruction multiple-
data (SIMD) registers, introduced on the Pentium MMX (see Table 1). The example fields are
from the NIST recommendations, with reduction polynomialg) = 2163+ z' + 28+ 22+ 1 and

f(z) = 2233+ 2% + 1, respectively. Field multiplication based on the comb method [25] appears
to be fastest on these platforms. A width-4 comb was used, and the times include reduction. Other

"Most of the performance of AIA can be obtained with modest code expansion [35]. The lengths of the variattles
decrease, while the lengths@f andgy increase. If = maxlenu, lenv}, then AIA can be expanded under the assumption
that the lengths ofj; andg, are bounded by + 1 — |, with a fall back generic inversion routine used in exceptional cases.
Experimentally, we observed a performance penalty of roughly 15% compared to the times in Tablg;Z3aon the
SPARC.

11

Pentium Il (800 MHz) | SPARC (500 MHz)

32-bit 64-bit 32-bit 64-bit
Algorithm gcc icc mmx| gcc cc cc
Arithmetic inlF,163
multiplication 1.8 1.3 70 19 1.8 .9
Euclidean algorithm 109 10.6 7.021.4 14.8 —
binary Euclidean algorithm 20.7 16.0 —+16.8 149 10.6
almost inverseg1=22M-KX/22Ma)) 129 111 —| 143 114 7.8
1/M 6.1 8.0 98| 79 6.7 8.9
Arithmetic inlF233
multiplication 3.0 2.3 —| 4.0 2.9 1.7
Euclidean algorithm 18.3 18.8 —+455 257 —
binary Euclidean algorithm 36.2 28.9 —+42.0 340 16.9
almost inverse 227 20.1 —+36.8 247 12.9
1/M 6.1 82 92 85 7.7

Table 4: Multiplication and inversion times (jmsec) for the Intel Pentium Ill and Sun UltraSPARC lle. The
compilers are GNU C 2.95 (gcc), Intel 6 (icc), and Sun Workshop 6U2 (cc). The 64-bit “multimedia” registers
were employed for the entries under “mmx.” Inversion toltiplication (I /M) uses the best inversion time.

than the MMX code and a one-line assembler fragment for EEA, algorithms were coded entirely in
C.

Some table entries are as expected; e.g., the relatively good times for almost invBsse. in
Other entries illustrate the significant differences between platforms or between compilers on a
single platform. To obtain acceptable Hiplication times with gcc on the Sun SPARC, code was
tuned to be more “gcc-friendly.” Limited tuning for gcc was also performed on the inversion code.
Optimizing the inversion code is tedious, in part becawsgh operation counts at this level often
fail to capture processor or compiler characteristics adequately. There are apparent inconsistencies
remaining in Table 4, but we believe that the fastest times provide meaningful estimates of inversion
and multiplication costs on these platforms.

The timings do not make a very strong case for division using a modification of the BEA. Unless
EEA or AlA can be converted to efficiently perform division, then it appears that division will be
fastest via inversion followed by multiplication. Furthermore, the r&fi is at least 8 in most
cases, and hence the savings from use of a division algorithm would be less than 10%. With such a
ratio, elliptic curve methods will be chosen to reduce the number of inversions, so the savings on a
point multiplicationk P would be significantly less than 10%.

On the other hand, if affine-only arithmetic is in use in a point multiplication method based on
double-and-add, then a fast division would be especially welcomed eMegtMifis significantly
larger than 5. If BEA is the algorithm of choice, then division has essentially the same cost as
inversion.

Implementation notes

In addition to the special tuning required for gcc, there were other troublesome compiler differences
and flaws. A small code change triggered an apparent optimization flaw in the Sun Workshop (6U2)
compiler, causing shifts to be processed as multiplication, a much slower operation on that platform.
The only workarounds were to post-process the assembler output or use a weaker optimization
setting.

We note that the Microsoft compiler (Visual C 6) gives times comparable to that produced by the
Intel compiler (icc, on Linux in our case). However, the insertion of short in-line assembly fragments
is less effective than with icc or gcc, since there is only limited ability in the Microsoft product to
direct the cooperation with the surrounding C code. We also found significant optimization problems

12

with the Microsoft compiler concerning inlining of C code, although this was not an issue for the
algorithms in this section.

Multimedia registers The Intel Pentium family (all but the original and the Pentium-Pro) and
AMD processors possess eight 64-bit “multimedia” registers that were employed for the times in
the column marked “mmx” [1, 17]. Use of these capabilities for field arithmetic is discussed in §2.

Field multiplication The GNU C compiler (gcc) is weak at instruction scheduling on these plat-
forms, but can be coerced into producing somewhat better sequences by relatively small changes
to the source. The times in the table for multiplication with gcc on SPARC are for code that has
received such tuning.

We believe that the commonly-cited ratiolgfM ~ 3 [37, 5, 6] is too optimistic for processors
such as the Pentium and SPARC, and is due, in part, to use of a sub-optimal field multiplication.

EEA Algorithm 3.1 requires polynomial degree calculations. A relatively fast method uses a bi-
nary search and table lookup, once the nonzero word of interest is located. Some processors have
instruction sets from which a fast “bit scan” may be built. As an example, the Intel x86 has single
instructions bsrandbsf) for finding the position of the most or least significant bitin a word. A one-
line assembler fragment for bit scan was used for the Intel EEA timings, resulting in an improvement
of approximately 15%. The SPARC has a Hamming weight (population) instruction which Sun sug-
gests using for building a fast bit scan from the right; unfortunately, our field representation needed
a bit scan from the left.

The code tracks the lengths wfandv usingt fragments of similar code, each fragment corre-
sponding to the current “top” af andv. Here,t was chosen to be the number of words required to
represent field elements.

BEA Algorithm 3.2 was implemented with tafragment split to track the lengths afandv effi-
ciently. Rather than the degree calculation indicated in step 4, a simpler comparison on the appro-
priate words was used.

AIA Algorithm 3.3 allows efficient tracking of the lengthsgfandgy (in addition to the lengths of

u andv). A total of t? similar fragments of code were used, a significant amount of code expansion
unlesg is small. As with BEA, a simple comparison replaces the degree calculations. An optimiza-
tion flaw in the Sun compiler for 64-bit code was corrected by replacing expensive multiplications
with shifts in the compiler output.

4 Point multiplication using point halving
Let E be an elliptic curve oveFom defined by the equatiog? + xy = x3 + ax? + b, where

a,beFom, b#0. LetP = (X, y) be a point orE with P #£ —P. Then the (affine) coordinates of
Q = 2P = (u, v) can be computed as follows:

A =X+ y/X 1)
u=12+r4+a)
v=x2+u@®+1). (3)

Affine pointdoubling requires 1 field multiplication and 1 field division. With projective coordinates
anda € {0, 1}, point doubling can be done in 4 field multiplications.

Point halving is the following operation: giveQ = (u, v), computeP = (X, y) such that
Q = 2P. Since halving is the reverse operation of doubling, the basic idea for halving is to solve
(2) for , (3) for x, and finally (1) fory. That is, solvet? + 1 = u+afor A, andx? = v+ u(x + 1)
for x. Finally, computey = AX + X2.

13

Let G be a point of odd ordemn on E. It can be proven that point doubling and point halving
are automorphisms df5). Therefore, given a poin € (G), one can always find a unique point
P € (G) such thatQ = 2P. Sections 4.1 and 4.2 describe an efficient algorithm for point halving
in (G). In Section 4.3, point halving is used to obtain efficibaive-and-addnethods for point
multiplication in cryptographic schemes based on elliptic curves over binary fields. Section 4.4
compares the point halving methods and the traditional point doubling methods.

4.1 Point halving

The notion oftrace plays a central role in deriving an efficient algorithm for point halving. Let
Tr : Fom — Fom be defined by Tic) = ¢ + ¢ +¢2 + .-+ 2" .

Lemma4.l Letc, d € Fom,
(i) Tr(c) = Tr(c?) = Tr(c)?; in particularTr(c) € {0, 1}.
(i) Trace s linear; i.eJr(c+d) = Tr(c) + Tr(d).
(iii) The NIST-recommended random curves [7] over binary fields faizg = 1.
(iv) If (x,y) € (G), thenTr(x) = Tr(a).

Given Q = (u,v) € (G), point halving seeks the unique poiRt= (x, y) € (G) such that
Q = 2P. The first step of halving is to find = x 4+ y/x by solving the equation

P+i=u+a (4)

for » € Fom. An efficient algorithm for solving (4) is presented in Section 4.2. Letenote the
solution of (4) obtained from this algorithm. It is easily verified that= A or» = 1 + 1. If
Tr(a) = 1, the following result [19] can be used to identify

Theorem 4.2 Let P = (X, Y), Q = (u, v) € (G) be such tha®Q = 2P, and denote. = x + y/X.
Letx be a solution tq4), andt = v + Ux. Suppose thafr(a) = 1. Theni = A if and only if
Tr(t) = 0.

Proof: Recall thatx? = v + u(x + 1). By Lemma 4.1(iv), we get Tk) = Tr(a), sinceP =
(X, y) € (G). Thus,

Trv+ur+1) = Tr(xz) =Tr(x) =Tr(a) = 1.

Hence, ifA = A +1,thenT(t) = Trv + U + 1)) = 1 as required. Otherwise, we must have
A = A, which gives Ttt) = Tr(v + ui) = Tr(v + u((x + 1) + 1)). Since the trace is linear,

Tro+u(@ +1)+1) =Tr(w+u@ +1)+Tr(u) =1+ Tru) =0.

Hence, we conclude that= if and only if Tr(t) = 0. O

Theorem 4.2 suggests a simple algorithm for identifyirig the case that Ta) = 1.2 We can
then solvex? = v 4+ u(x + 1) for the unique rook. Section 4.2 presents efficient algorithms for
finding traces and square rootslipn. Finally, if neededy = Ax + x2 may be recovered with one
field multiplication.

Let the A-representation of a poir@ = (u, v) be (U, 1g), whereAqg = u + v/u. Given the
A-representation of) as the input to point halving, we may computén Theorem 4.2 without
converting to affine coordinates, since

t=U+U’)':=U(U+U+S>+U/X:U(U+AQ+1\).

8The algorithm can be modified for binary curves with@r = 0; however, it is comparatively complicated, since
Tr(v + ur) and Ti(v + u(x + 1)) may not necessarily be distinct. See [19, 33].

14

In point multiplication, repeated halvings may be performed directly omthepresentation of a
point, with conversion to affine coordinates only when a point addition is required.

Algorithm 4.3 Point halving

INPUT: A-representatioiu, 1q) or affine representatiofu, v) of Q € (G).
OUTPUT: A-representatiox, Ap) of P = (x, y) € (G), whereAp = x + y/x andQ = 2P.
1. Find a solution. of A2+ = u+ a.
2. Ifthe input is ink-representation, then compute= u(u + g +0);
else, computé = v + UA.
3. If Tr(t) = 0, thenip < A, X < I+ U;
elserp <A + 1, X < /1.
4. Return(x, Ap).

4.2 Performing point halving efficiently

Point halving requires a field multiplication and three main steps: computing the traceaf-

ing the quadratic equation (4), and computing a square root. In a normal basis, field elements
are represented in terms of a basis of the fopmB2, .. ., ﬂzm_l}. The trace of an elemermt =

Zciﬂz' = (Cm-1, - -, Co) iS given by Tkc) = >_ ¢;. The square root computation is a right rota-
tion: /€ = (Co, Cm—1, . .., C1). Squaring is a left rotation, arxf 4+ x = ¢ can be solved bitwise.
These operations are expected to be inexpensive relative to field multiplication. However, field mul-
tiplication in software for normal basis representations is very slow in comparison to multiplication
with a polynomial basis [31, 30]. Conversion between polynomial and normal basastalalving

is likely too slow to give a competitive method, even if significant storage is used [18]. For these
reasons, we restrict our discussion to computations in a polynomial basis representation.

4.2.1 Computing the trace

Letc = imz’olcizi € IFom, with ¢ € {0, 1}, represented as the vectwe= (Cy—1,...,C1,Cp). A
primitive method for computing Tc) uses the definition of &ce, requiringn — 1 field squarings
andm — 1 field additions. A much more efficient method makes use of the property that the trace is
linear: Trie) = Tr(XM ot ciz) = Yot a Tr(Z). The values Tiz') may be precomputed, allowing

the trace of an element to be found efficiently, especially (r= 0 for mosti.

Example 4.4 ConsidetFies with reduction polynomiaf (z) = 263+ 27 + 28 + 23 + 1. A routine
calculation shows that T') = 1 if and only ifi € {0, 157). As examples, Tz*¢0 + 7*6) = 0,
Tr(z?7 + %) = 1, and Tz + 2*¢ + 1) = 0. ForFy2s with reduction polynomialf (z) =
72334 714+ 1, Tr(Z) = Lifand only ifi € {0, 159.

4.2.2 Solving the quadratic equation

The first step of point halving seeks a solutioaf a quadratic equation of the forr? +x = c over
Fom. The performance of this step is crucial in point halving.

Lemma 4.5 Assumenm is odd, and let théalf-traceH : Fom — Fom be defined by

(m-1)/2 ”
H(c) = Z 2.
i—0

(i) Hc+d)=H(c)+H@) forallc,d e Fom.

15

(i) H(c) is a solution of the equatiok? + x = ¢ + Tr(c).
(i) H(c) = H(c?) + c+ Tr(c) forall c € Fom.

Letc = i”:OlCi Z' e Fom with Tr(c) = 0; in particular,H (c) is a solution ofx? + x = c. A
simple method for finding (c) directly from the definition requires — 1 squarings angm—1)/2
additions. If storage fofH(Z') : 0 < i < m} is available, then Lemma 4.5(i) may be applied to
obtain

m—1) m—1)
H(c) = H(Zqz‘) =Y GH@@).
i=0 i=0

However, this requires storage forfield elements, and the associated method requires an average
of m/2 field additions.

Lemma 4.5 can be used to significantly reduce the storage required as well as the time needed
to solve the quadratic equation. The basic strategy is to Wif® = H(c') + s wherec’ has fewer
nonzero coefficients than For everi, note thatH (') = H (/%) + 2/2+ Tr(Z'). Algorithm 4.6 is
based on this observation, eliminating storagel¢f') for all eveni. Precomputation builds a table
of (m — 1)/2 field elementsH (Z') for oddi, and the algorithm is expected to have approximately
m/4 field additions at step 4. The terms involvinngb and H (1) have been discarded, since it
suffices to produce a solutiene {H (c), H(c) + 1} of x2 + x = c.

Algorithm 4.6 Solvex? + x = ¢ (basic version)
INPUT: ¢ = Y™ L6 7 € Fom with Tr(c) = 0.
OUTPUT: A solutions of X2 + x = c.

1. Precomputéd (Z) for oddi, 1 <i <m— 2.

2. s<0.

3. Fori from(m — 1)/2 downto 1 do

3.1 Ifcy = 1thendoc<«c+2Z,s<s+7.
(m-1)/2)
4. s<s+ Y ciiHEZ@.

i=1
5. Return§).

Further improvements are possible by use of Lemma 4.5 together with the reduction polynomial
[19, Appendix B]. Leti be odd, and defing andsbym < 2/i = m+ s < 2m. The basic idea is to
apply iii j times, obtaining

HZ)=H@)+ 2+t A4+ 2 7 + T, ()
Let f(z) = 2" +r(2), wherer(z) = 2% + .-+ 22 + 1and O< by < --- < by < m. Then
HZ) = H@Zr (@) = HZ) + HE@E0) - HE) + H@).

Thus, storage foH (z') may be exchanged for storagetsfzSt€) for e € {0, by, ..., by} (some of
which may be further reduced). The amount of storage reduction is limited by dependencies among
elementsH (2').

If degr < m/2, the strategy can be applied in an especially straightforward fashion to eliminate
some of the storage fad (Z') in Algorithm 4.6. Form/2 < i < m — degr,

H(Z)=H@)+ 7 +Tr@)
=Hr@22 ™ +7 +Tr@)

16

Since 2 — m + degr < i, the reduction may be applied to eliminate storagéiet') for oddi,
m/2 < i < m—degr. If degr is small, Algorithm 4.7 requires approximatety/4 elements of
storage.

Algorithm 4.7 Solvex? + x = ¢
INPUT. Cc = im:’olci 7' € Fom with Tr(c) = 0, and reduction polynomidl(z) = z™ + r (2).
OUTPUT: A solutions of x2 + x = c.

1. Precomputéd (Z)fori € lgU Iy, wherelg = [1, (m— 1)/2]\ 2Z andl1 = [m — degr, m —

2]\ 27.
2. s<0.
3. Foreach odd € ((m— 1)/2, m — degr), processed in decreasing order, do:
3.1 Ifg =1thendoc<«c+ 22 "Mbe ... 4 722-M g g4 7.
4. Fori from (m — 1)/2 downto 1 do:
4.1 Ifcy =1thendoc<«c+7,s<s+7.
5.s«<s+ > ¢ H(Z).

ielgUly

Return §).

o

The technique may also reduce the time required for solving the quadratic equation, since the
cost of reducing eachl (Z') may be less than the cost of adding a precomputed vali(@f) to
the accumulator. Elimination of the even terms (step 4) can be implemented efficiently. Processing
odd terms (as in step 3) is more involved, but will be less expensive than a field addition if only a
few words must be updated.

Example 4.8 Consideif,163 with reduction polynomialf (z) = 2163+ z7 4 28 + 2% + 1. Step 3 of
Algorithm 4.7 begins with = 155. By Lemma 4.5,

H (2155 = H (319) + 2155 4 Tr(z1%5)
— H(Z4723) 4 2455 — H(47" + B+ 2B + 1)) + 2255
If c155 = 1, thenz!* 4 7193 + 7150 4 7147 s added tec, andz!%® is added tos. In this fashion,
storage foH (Z') is eliminated foii € {83, 85, ..., 155}, the odd integers io(m—1)/2, m—degr).
Algorithm 4.7 uses 44 field elements of precomputation. While this is roughly half that required
by the basic algorithm, it is not minimal. For example, storage-foz°1) may be eliminated, since
= H(Z% 4 71024 514 Tr(z192) 4 Tr(ZSl)
= H (28341 1 7102 4 751 — (A8 4 AT 444 ALy 4 71024 551
which corresponds to equation (5) with= 2. The same technique eliminates storageHar'),
i €{51,49,...,41}. Similarly, if (5) is applied with = 21 andj = 3, then
HZY =H@2+ 4+ B+ 22+ B4+ 22+ 22

Note that the odd exponents 11 and 5 are less than 21, and hence storlagezﬁc)rmay be elimi-
nated.

In summary, the use of (5) withe {1, 2, 3} eliminates storage for odd valuesiof {21, 41, ...,
51,83, ..., 155, and a corresponding algorithm for solving the quadratic equation requires 37 el-
ements of precomputation. Further reductions are possible, but there are some complications since
the formula forH (') involvesH (z!) for j > i. As an example,

21)

H (223) —H (228 + Z27 + 224+ yian 292+ Z46 + Z23

17

and storage foH (z23) may be exchanged for storage br(z2’). Our implementation uses these
strategies to reduce the precomputation to 30 field elements, significantly less than the 44 used in
Algorithm 4.7. In fact, use of

N — Z157+n + Zn+l + Zn73 + ane

together with the previous techniques reduces the storage to 21 field eletehtdor i € {157,
73,69, 65, 61, 57,53 39,37,33,29,27,17,15,13, 11,9, 7,5, 3, 1}. However, this final reduction
comes at a somewhat higher cost in required code compared with the 30-element version.

Experimentally, the algorithm for solving the quadratic equation (with 21 or 30 elements of
precomputation) requires approximately8zhe time of a field multiplication. Special care should
be given to branch misprediction factors as this algorithm performs many bit tests.

Example 4.9 ConsiderF,233 with reduction trinomialf (z) = 2233+ r(z) = 2234+ 24+ 1. In
comparison with the reduction polynomial fBpi6s in the preceding example, degds relatively
large. Algorithm 4.7 requires 95 field elements of precomputation, significantly more than the ap-
proximatelym/4 ~ 59 elements required by the algorithm when dégsmall.

The amount of precomputation can be reduced to the 43 elerakiats fori € {1,3,...,79,
155, 157, 159 by direct application of the relatial = z"t1594 z2"~74together with Lemma 4.5iii.
Using a slightly different order of computation, the entriesifer {75, 77, 155 157} are eliminated
(but at somewhat higher cost), and the corresponding algorithm uses 39 elements of precomputation.
Experimentally, the algorithm solves the quadratic equation in approximately half the time of a field
multiplication.

4.2.3 Computing square roots ifFom

The basic method for computingc, ¢ € Fom, is based on the little theorem of Fermat" = c.
Then/c can be computed agc = "t requiringm — 1 squarings. A more efficient method can
be obtained from the observation that can be expressed in terms of the square root of the element
z. Letc = im:j)lci Z e Fom, ¢ € {0, 1}. Since squaring is a linear operationpn, the square
root of c can be written as

m—1 _ om-1 m—1 L
ﬁz(ZQZ') =Y a@).
i=0 i=0

Splittingc into even and odd powers, we have

(m-1)/2 (m-3)/2
Ve= Y @ HP+ Y i@)AH
i=0 i=0
(m-1)/2 (m=3)/2 _ _
= 3 @+ Y wn? 7= azz+vz) 627,
i=0 i=0 i even i odd

This reveals an efficient method for computigé: extract the two half-length vectoigyen =
(Cm—1, ..., Ca, C2, Cp) @andCogd = (Cm—2, ... , Cs, C3, C1) from ¢ (assumingm is odd), perform a
field multiplication of coqq of length [m/2] with the precomputed valug/z, and finally add this
result withceven The computation is expected to require approximately half the time of a field
multiplication.

An improved method for trinomials

In the case that the reduction polynomialis a trinomial, we can further speed the computation
of ,/c by the observation that an efficient formula fgfz can be derived directly fronf. Let
f(z) = 2"+ ZX + 1 be an irreducible trinomial of degree wherem > 2 is prime.

18

Consider the case thkiis odd. Note that &= z™ + Z¢ (mod f (z)). Then multiplying byz and
taking the square root, we get

JZ= 2"t + zkiz1 (mod f (2)).

Thus, the product/z - coqq requires two shift-left operations and one modular reduction.
Now suppos« is even. Observe thaf® = % + 1 (mod f (2)). Then dividing byz"* and
taking the square root, we get

VZ=7""7 (@ +1) (mod f(2).

In order to compute S modulo f (z), wheres = m7*1 one can use the congruenee$ = -ty
zZ™ ! (mod f (2)) for 1 < t < k for writing z—S as a sum of few positive powers af Hence, the
product,/z - Codd can be performed with a few shift-left operations and one modular reduction.

Example 4.10 The trinomial for the NIST-recommended finite fidgkos is f (z) = 24094 287 4- 1.
Then, the new formula for computing the square roat af[F240 is

VC = Cevent 2% Codd + 2** - Coaa Mod f (2).

Example 4.11 The trinomial for the NIST-recommended finite fidlgkss is f (z) = 22334 274+ 1.
Sincek = 74 is even, we havg/z = z 116. (287 + 1) mod f(2). Notice thatz " = 1 +
7159 (mod f (2)) andz %2 = 232 + 2191 (mod f (2)). It follows thatz 116 = 732 4 71174 7191
(mod f (2)). Hence, the new method for computing the square rootoff,233 is

V€ = Ceven+ (232 + 227 4 2191)(237 + 1) -Cogg mod f(2).

Compared to the standard method of computing square roots, the proposed technique eliminates
the need of storage and replaces the required fieltiptication by a faster operation. Experimen-
tally, finding a root in Example 4.11 requires roughji8ithe time of a field multiplication.

4.3 Point multiplication

Let P = (X, y) € (G) andk be an integer with Gz k < n. Furthermore, le© denote the point at
infinity, andt = |log, n] + 1. Point multiplicatiork P dominates the execution time of elliptic curve
cryptographic schemes. The basic technique for point multiplication ahlele-and-add method
also known as thbinary methodwhich is the additive version of the repeated-square-and-multiply
method for exponentiation. The expected number of ones in the binary representdtitst ¢2,
whence the expected running time of this method is approximétg?y A + t D, where A denotes

a point addition and denotes a point doubling.

Point subtraction on an elliptic curve is as efficient as point addition, motivating use of the
non-adjacent formof k, NAF(k) = Zli;éki? with ki € {0, &1}, which has the property that
no two consecutive coefficienks are nonzero [39]. Theidth-w NAF is a generalization, where
eachnonzero coefficienk; is odd, |ki| < 2*~1, and at most one of any consecutivedigits is
nonzero. NAFs are used to reduce the number of point additions required in floBjrand have
the following properties.

k has a unique widths NAF, denoted NAF; (k).

NAR (k) = NAF(K).

The length of NAF; (k) is at most one more than the length of the binary representation of
The average density of nonzero digits among all widtNAFs of lengthl is approximately
1/(w +1).

el s

19

Algorithm 4.12 modifies the binary method by using NAK) instead of the binary representa-
tion of k. The expected running time is approximately

(w>2)-D+ 2" 2-1A) + (t/(w+1A+tD)

where(w > 2) is understood to be 1i6 > 2 and 0 otherwise. IP is known a priori, then the*2-2

points calculated in step 1 of Algorithm 4.12 can be precomputed statically, and the expected running
time of this algorithm will then be approximately(w + 1) A + tD. If affine coordinates are used,

then both point addition and point doubling cd4t+ V, whereM denotes a field multiplication and

V denotes afield division; fap = 2, this translates to a field operation coun{4f3)t M +(4/3)tV.

The accumulato® may be stored in projective coordinates, in which case a point addition ddsts 8
and a point doubling costsM. The field operation count in the = 2 case is theri20/3)tM +

2M + 1).

Algorithm 4.12 Window NAF method for point multiplication

INPUT: Window widthw, NAF,, (k) = Y1_5k 2, P € (G).
OuTPUT: kP.
1. ComputeP =iP, fori € {1,3,5,...,2%v~1—1}.
2. Q0.
3. Fori froml| — 1 downto O do
3.1 Q< 20Q.

3.2 Ifk > 0thenQ < Q + P .
33 Ifkk <0thenQ <« Q — P_.
4. ReturgQ).

The halve-and-addnethod for point multiplication proposed by Knudsen and Schroeppel re-
places almost all poirdoublings in double-and-add methods with point halvings. However, it may
be necessary (depending on the application) to convert the representation of

Lemma4.13 Let Z?:o 4 2 be thew-NAF representation ditk modn. Then

t kt/)
k= Z 2—7' (mod n).
i=0

Proof: We have % = Y"/_qk/2' (mod n). Sincen is odd, we can divide the congruence By@
obtain

LK K

kEZthi EZ—i (mod n). O
i=0 i=0

Algorithm 4.14 presents a right-to-left version of the halve-and-add method with the input
2'k modn in w-NAF representation. Point halving occurs on the inputather than on accu-
mulators. The expected running time is approximatstgp 3 cost+ (t/(w + 1) —2¥2) A’ +tH,
whereH denotes a point halving andl is the cost of a point addition when one of the inputs is in
A-representation. If projective coordinates are usedJarthen the additions in step 2 are mixed-
coordinate. Step 3 may be performed by conversio@jofo affine (with costl + (5-2%¥~2 — 3)M
if inverses are obtained by a simultaneous method), and then the sum is obtained by interleaving
with appropriate signed-digit representations of the odd multiplief®he cost for 2< w < 5is
approximatelyw — 2 point doublings and 0, 2, 6, or 16 point additions, respectiVely.

9Knuth [21, Exercise 4.6.3-9] suggests calcula@g<— Q; + Q; 42 fori from 2v=1_31t0 1, and then the result is given
by Q1 + 22i6|\{1} Qj. The cost is comparable in the projective point case. See also [27, 28].

20

Algorithm 4.14 Halve-and-addv-NAF (right-to-left) method for point multiplication
INPUT: Window widthw, NAF,,(2'k modn) = YI_,k'2', P € (G).
OuTpPUT: kP. (Notetk = k{/2' + -+ Kk _;/2+ k' modn.)
1. Q «0,iel ={13,...,2v1_1}
2. Fori fromt downto O do:
21 If ki/ >0 thenQK_/ < Qk]’ + P.
22 If ki/ <0 thenQ,K_/ <~ ka]’ - P.
23 P« P/2.
3. Q« Y iQi.
4. Return Q).

Consider the case = 2. The expected running time of Algorithm 4.14 is then approximately
(1/3)t A’ + tH. If affine coordinates are used, then a point halving costs approximatglyile
a point addition costs® + V since thei-representation oP must be converted to affine with
one field multiplication. It follows that the field operation count with affine coordinates is approxi-
mately(8/3)tM + (1/3)tV. However, ifQ is stored in projective coordinates, then a point addition
requires M. The field operation count of a mixed-coordinate Algorithm 4.14 with= 2 is then
approximately BM + 2M + I).

Algorithm 4.15 is a left-to-right method. Point halving occurs on @liceumulatorQ, whence
projective coordinates cannot be used. The expected running time is approxiciately2* —2 —
DA + (t/(w+ DA +tH).

Algorithm 4.15 Halve-and-addv-NAF (left-to-right) method for point multiplication
INPUT: Window widthw, NAF,,(2'k modn) = 3I_ok'2', P € (G).
OuTPUT: kP. (Notetk = k{/2' + -+ k_;/2+k modn.)
1. ComputeP =iP, fori €{1,3,5,...,2%v~1—1}.
2. Q<O.
3. Fori from 0 tot do
3.1 Q< Q2.
3.2 Ifk > 0thenQ <~ Q + P
3.3 Ifk <0thenQ «Q — Py
4. ReturgQ).

4.4 Analysis

In comparison to methods based on doubling, point halving looks best iytidris small andk P

is to be computed foP not known in advance. In applications, the operatioRsandk P +1Q with

P known in advance are also of interest, and this section provides comparative results. The concrete
examples used are the NIST random curves Byes andF»233 (known as B-163 and B-233, resp.),
although the general conclusions apply more widely.

Example 4.16 Table 5 provides an operation count comparison between double-and-add and halve-
and-add methods for the NIST random curve digss. For the field operations, the assumption is
thatl /M = 8 and that a field division has colst+ M.

The basic NAF halving method is expected to outperformuitildAF doubling methods. How-
ever, the halving method has 46 field elements of precomputation. In contrast, Algorithm 4.12 with
w = 4 (which runs in approximately the same time as with= 5) requires only 6 field elements of
extra storage.

21

Storage Point Field operationd (= 2M, | /M = 8)
Method (field elts) operations affine projective
NAF, doubling 0
(Algorithm 4.12)
NAF, halving
(Algorithm 4.14)
?A"I\é%ﬁ'tﬁr%“ﬁ“l”z@; 14 [D4+7A1+163D+27A 198M+V)=1982 87M-+8V+I= 959
4-NAF, halving 55
(Algorithm 4.14)
5-NAF, halving
(Algorithm 4.15)

163D+54A 217(M+V)=2173 108M+1=1097

46 163H +54A 435M+54V= 924 81M+I= 825

[3D+6A]+163H +30A — 671IM+21= 687

60 [D+7AJ+163H+27A° 388M+35V= 705 —

Table 5: Point and field operation counts for pointltiplication for the NIST radom curve oveif2163,
Halving uses 30 field elements of precomputation in solviAgr X = ¢, and 16 elements for square root.
A = A+ M, the cost of a point addition when one of tigits is inA-representation. Field operation counts
assume that a divisiovi costsl + M.

The left-to-rightw-NAF halving method requires that the accumulator be in affine coordinates,
and point additions have cosM2+ V (since a conversion frork-representation is required). For
sufficiently largel /M, the right-to-left algorithm will be preferred; in the example, Algorithm 4.14
with w = 2 will outperform Algorithm 4.15 at roughly/M = 11. Table 6 gives timings on an
Intel Pentium Ill. Only general-purpose registers are used, and all code is in C except for a one-line
assembler fragment for computing polynomial degree during inversion. The observed inversion to
multiplicationratio isl /M =~ 8. On this platform, field division is fastest by performing an inversion
and multiplication;i.e.V = | + M.

The timing for solvingx? + x = c in 183 is with a routine that uses an 8-word table to
assist in processing for oddi, reducing the number of conditional expressions. (Branch mispre-
diction penalties are a significant factor in the implementation.) On some platforms, incremental
improvements in halving may be obtained by using a larger table of precomputation in the square
root routine. Improvements in the routine to sokfe+ x = ¢ were observed with limited use of
assembly-language coding (essentially to improve on register allocation).

For point multiplicatiork P whereP is not known in advance, the example case in Table 5 pre-
dicts that use of halving gives roughly 25% improvement over a similar method based on doubling,
whenl| /M = 8. (On the test platform in Table 6, the observed improvement was 29% for B-163.)
The improvement is less than the 39% estimate in [19], where the comparison was based on the
use of methods similar to Algorithms 4.12 and Algorithm 4.14 with= 2 andl/M = 3. The
small ratio favours halving—if Table 5 is modified to useM = 3, then the predicted improvement
using Algorithm 4.14 over Algorithm 4.12 witty = 2 matches that in [19]. The trinomial Fp233
also favours halving, in part because the cost of finding a square root is significantly less than the
estimate used to obtain Table 5.

The comparison is unbalanced in terms of storage required, since halving was permitted 39-46
field elements of precomputation for solvirg + x = ¢ and finding square roots. The amount of
storage in the square root routine (fne3) can be reduced at tolerable cost to halving; significant
storage (e.g., 30 elements) for solvixRH+ x = c appears to be essential. In addition to the routines
specific to halving, most of the support for methods based on doubling will be required, giving some
code expansion.

Random curves versus Koblitz curves The t-adic methods on Koblitz curves [39] (curves defined
overlFy) share strategy with halving in the sense that point doubling iscepl by a less-expensive
operation. In the Koblitz curve case, the mment is the Frobenius map (x, y) — (X2, y?),

an inexpensive operation compared to field multiplication. Point multiplication on Koblitz curves

22

Algorithm B-163 B-233]

Field operations

multiplication (width-4 comb [25], with reduction) 1.32 2.28
inversion (Alg. 3.1) 1055 18.75
square root 0 28
solvex? + x = ¢ 8F 1.1M
Curve operations

double (projective) 6.40 104
halve (Alg 4.3) 3.08 3.95
Point multiplication kP (andom point)

NAF, halving (Alg 4.14, mixed coords) 1262 2674
4-NAF, halving (Alg 4.14, mixed coords) 1062 215(
5-NAF, halving (Alg 4.15, affine coords) 1046 220(
5-NAF, doubling (Alg 4.12, mixed coords) 1477 337%
Point multiplication kP+1Q

6-NAF interleaved with 5-NAF, halving (affine coords) 1431 3100
6-NAF interleaved with 5-NAF, doubling (mixed coords) 1769 4075

16 elements of precomputatioRExample 4.11.€30 elements of precomputation.
d39 elements of precomputation.

Table 6: Curve and field timings (in sec) for the NIST curves B-163 and B-233 on an 800 MHz Intel Pen-
tium Ill, using general-purpose registers only. Multipledam elements are used, to obtain realistic branch-
misprediction penalties in routines such as solve. The Intel compiler version 6 was used on Linux 2.2.

usingr-adic methods will be faster than those based on halving, with approximate c$t fiven
by

t
(272 -1+ ?)A +1 - (cost ofr)
w

when using a width t-adic NAF in a scheme similar to that described by Algorithm 4.12. To
compare with Table 5, assume that mixed coordinates are wsed5, and that field squaring has
approximate cosM /6. In this case, the operation count is approximatelyN7Significantly less
than the 68® required by the halving method.

Known point versus unknown point In the case thaP is known in advance (e.g., signhature gen-
eration in ECDSA) and storage is available for precomputation, halving loses some of its perfor-
mance advantages. For our case, and for relatively modest amounts of storage, the single-table
comb method [12, Algorithm 17] is among the fastest and can be used to obtain meaningful opera-
tion count comparisons. The multiplikris splitintow > 2 rows, and then columns are processed

left to right; a total of 22 — 1 points of precomputation are required. The operation countsFor

using methods based on doubling and halving are approximately

t v —1 t v —1
—(D+ A) and E(HJF 0

w w
respectively. In contrast to the random point case, roughly half the operations are point additions.
Note that the method based on doubling may use mixed-coordinate arithmetic (in whidb ease
4M, A = 8M, and there is a final conversion to affine), while the method based on halving must
work in affine coordinates (withi = 2M and A’ = V 4+ 2M). If V = | + M, then values of
andw of practical interest give a threshaldM between 7 and 8, above which the method based on
doubling is expected to be superior (e.g., #0e= 4 andt = 163, the threshold is roughly4).

A),

Simultaneous multiple point multiplication In ECDSA signature verification, the computation-
ally expensive step is a calculati&® +1Q where onlyP is known in advance. The times in Table 6
for kP + 1Q use an interleaving method [9, 27] with widthNAFs. Given widthav; andwy, the

23

pointsi P for oddi < 2¥1~1andiQ for oddi < 2*2~1 are computed; sinck is known in advance,
the precomputation involving® may be stored for repeated use. The expansions,Né&¥ and
NAF,,, (1) are processed jointly, left to right, with a single double or halving ofdbeumulator at
each stage. The expected operatioart for the method based on doubling is approximately

)Al

where the precomputation involvirg is not included. (The expected count for the method using
halving can be estimated by a similar formula; however, a more precise estimate must distinguish
the case where consecutive additions occur, since the cASttis/ + M rather than 2.)

In the example case presented in Table 6, the interleaving meth&dPfarl Q with halving is
superior to the method based on doubling, although the difference is less pronounced than in the case
of arandom point multiplicatiok P, due to the larger number of point additions relative to halvings.
Note that the interleaving method cannot be efficiently converted to a right-to-left algorithm (where
w1 = wp = 2), since the halving or doubling operation would be required on two poirgackt
step. For sufficiently large/ M, the method based on doubling will be superior; in the example, this
occurs at roughly /M = 11.7.

1 n 1
wi+1 w41

[(wz >2)- D+ (2”272 -~ 1)A] +t[D + (

Constrained environments For workstations (e.g., the example platforms based on the SPARC
and Pentium), the memory consumption of the algorithms and supporting routines described in
this paper is relatively modest. Exceeding processor cache size may be a serious concern in some
routines, but the memory consumed by a few dozen field elements may be inconsequential. The
analysis is more complicated if there are significant memory constraints.

Point multiplication methods based on halving require most of the support used in methods based
on doubling, and there are also the routines for solxfygx = c and finding square roots. It appears
that a significant number of field elements of precomputation (e.g., 21-30f@} are necessary
for halving to be efficient. In comparison, the method of Montgomery point multiplication [24] can
be coded compactly, requiring storage for only a few temporary field elements, and has running time
approximately 6M (which is competitive with Algorithm 4.12 with optimal).

For IFo163, the field-dependent precomputation specific to halving includes 30 field elements for
solvingx? + x = ¢, 16 elements for square root, and 8 words to reduce the number of conditionals
in solvingx? + x = c; there is also a 256-byte table supporting extraction of even and odd bits of a
word. For a fixed field, these tables are static. If dynamic storage is the principal constraint and the
platform provides (fast) access to a sufficientoamt of static data, then methods based on halving
use roughly the same amount of the scarce resource as methods based on doubling.

Constraints on code and data size for field routines are likely to affect the inversion to multi-
plication ratio. (Squaring would also be affected if the static 8-t0-16 expansion table of size 512
bytes must be shortened.) The scenario of interest here is where static storage is relatively abun-
dant but dynamic memory is scarce. If the 15 elements of data-dependent precomputation in the
width-4 comb method must be reduced, then a reasonable choice is a right-to-left comb, requiring
only a single field element (and some temporary storage comparable to thatin-=thé comb),
with performance degradation by a factor between 2 and 3. The penalty for inversion in the case
that code size is limited is more difficult to estimate. (On the Pentium, for example, the Euclidean
Algorithm 3.1 with limited code expansion incurs only small penalty relative to the times in Table
4.) Constraints which give a smallef M will favor affine coordinates and halving methods.

In summary, methods based on halving are likely to retain their advantages in the constrained
case over methods based on doubling, under the assumption that a threshold amount of static storage
is available for solvinge® + x = c. The advantages would in fact extend to the known-point case
if constraints limit the number of points of precomputation. However, if processor speed is also
limited, then there is a strong incentive to use Koblitz curves, provided that the cost of support for
r-adic NAFs is not prohibitive.

24

Conclusions

Point multiplication methods based on halving are straightforward to implement, although some
extra static storage (per field) is required over methods based on doubling. The performance ad-
vantage of halving methods is clearest in the case of point multiplicktfowhereP is not known

in advance, and smaller inversion to multiplication ratios generally favour halving. Algorithm 4.14
partially addresses the challenge presented in Knudsen [19] to derive “an efficient halving algorithm
for projective coordinates.” While the algorithm does not provide halving on a projective point, it
does illustrate an efficient windowing method with halving and projective coordinates, especially
applicable in the case of largef M.

The analysis in [19] gives halving methods a 39% advantage for the unknown point case, under
the assumption thdt/M =~ 3. The results in Section 3 suggest that this ratio is too optimistic on
common SPARC and Pentium platforms, where the fastest timed gMe> 8. The larger ratio re-
duces the advantage to approximately 25% in the unknown-point case under a similar andtysis; if
is known in advance and storage for a modest amount of precomputation is available, then methods
based on halving are inferior. F&P + IQ where onlyP is known in advance, the differences be-
tween methods based on halving and methods based on doubling are smaller, with halving methods
faster for ratiod /M commonly reported.

Our analysis using windowing methods estimates that point multiplication with halving is about
29% faster than doubling-based methods, under the assumptions that a field division costs roughly
the same as inversion followed by multiplicatidn~ 8M, andH ~ 2M. In our experiments on
an Intel Pentium Ill, we obtainetl ~ 2.3M for B-163 andH ~ 1.7M for B-233, and the cor-
responding observed improvements in point multiplication times were 29% and 36%, respectively.
For simultaneous point multiplication under similar assumptions, the analysis gives halving-based
methods a 15% edge over those based on doubling. Experimentally, we observed improvements of
19% and 24% for B-163 and B-233, respectively.

Our work has focused on methods using relatively modest amounts of precomputation. How-
ever, the routines for solving quadratic equations benefit from per-field precomputation and are
fundamental to the performance of halving-based methods. A practical comparison under more
generous memory ceilings would be of interest.

Finally, it should be noted that methods based on halving will be significantly slowet thdit
methods for Koblitz curves. However, the halving methods apply to all curves, and findiagia
NAF for a givenk involves some extra code [39].

Acknowledgments

We are indebted to Erik Knudsen and Richard Schroeppel for numerous suggestions improving this
paper.

References

[1] Advanced Micro DevicesAMD-K6 Processor Multimedia Technolagyublication 20726,
http://www.amd.com, 2000.

[2] Kazumaro Aoki and Helger Lipmaa, Fast implementation of AES candidateisd AES
Candidate Conferencepages 106-120, New York, 13—-14 April 2000. Available via http:
/lcsrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm.

[3] Daniel J. Bernstein, A software implementation of NIST P-224. The 5th Workshop on Ellip-
tic Curve Cryptography (ECC 2001), October 29-31, 2001, University of Waterloo, Canada.
Slides available via http://www.cacr.math.uwaterloo.ca.

25

[4] Certicom Corporation, ECC Challenge, http://www.certicom.com/researchledtenge.
html, 2000.

[5] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem and J. Vandewalle, A fast software
implementation for arithmetic operations @F(2"). Advances in Cryptology—ASIACRYPT
'96, Lecture Notes in Computer Science 1163:65-76, 1996.

[6] E. De Win, S. Mister, B. Preneel and M. Wiener, On the performance of signature schemes
based on elliptic curveg\gorithmic Number Theory—ANTSslLlecture Notes in Computer
Science 1423:252-266, 1998.

[7] FIPS 186-2, Digital Signature Standard (DSS). Federal Information Processing Standards Pub-
lication 186-2, National Institute of Standards and Technology, 2000.

[8] Richard GerberThe Software Optimization Cookbodhktel Press, 2002.

[9] R. Gallant, R. Lambert and S. Vanstone, Faster point multiplication on elliptic curves with ef-
ficient endomorphismgidvances in Cryptology—CRYPTO 200Q&cture Notes in Computer
Science 2139:190-200, 2001.

[10] GNU Multiple Precision Library (GMP), http://www.swox.com/gmp/.

[11] J. Goodman and A. Chandrakasan, An energy efficient reconfigurable public-key cryptogra-
phy processor architectur€ryptographic Hardware and Embedded Systems—CHES, 2000
Lecture Notes in Computer Science 1965:175-190, 2000.

[12] D. Hankerson, J. dpez and A. Menezes, Software implementationllyftéc curve cryptog-
raphy over binary field<Cryptographic Hardware and Embedded Systems—CHES, 2@80
ture Notes in Computer Science 1965:1-24, 2000.

[13] D. Hankerson, A. Menezes, and S. Vanstdbeide to Elliptic Curve Cryptographyspringer-
Verlag, 2003.

[14] Robert Harley, Elliptic Curve Discrete Logarithms Project. http://pauillac.inriakfatley/
ecdl/, 2000.

[15] Intel Corporation (with contributing authors David Bistry, Carole Delong, Dr. Mickey Gutman,
Michael Julier, Michael Keith, Lawrence M. Mennemeier, Millind Mittal, Alex D. Peleg, and
Dr. Uri Weiser),The Complete Guide to MMX Technolod§cGraw-Hill, 1997.

[16] Intel Corporation]A-32 Intel Architecture Software Developer's Manusblume 1: Basic
Architecture. Number 245470-007, http://developer.intel.com, 2002.

[17] Intel Corporation|ntel Pentium 4 and Intel Xeon Processor Optimization Reference Manual
Number 248966-04, http://developer.intel.com, 2001.

[18] B. Kaliski and Y. Yin, Storage-efficient finite field basis conversi@elected Areas in
Cryptography—SAC '98 ecture Notes in Computer Science 1556:81-93, 1999.

[19] E. Knudsen, Elliptic scalar multiplication using point halvingdvances in Cryptology—
ASIACRYPT '99Lecture Notes in Computer Science 1716:135-149, 1999.

[20] E. Knudsen, personal communication, August 2003.

[21] D. Knuth, The Art of Computer Programming—Seminumerical Algorithiaglison-Wesley,
3rd edition, 1998.

[22] C. Lim and H. Hwang, Speeding up elliptic scalar multiplication with precomputaltidor-
mation Security and Cryptology—ICISC’9%cture Notes in Computer Science 1787:102—
119, 2000.

[23] J. Lopez and R. Dahab, Improved algorithms for elliptic curve arithmet@®mi2"). Selected
Areas in Cryptography—SAC '9Becture Notes in Computer Science 1556:201-212, 1999.

26

[24] J. Lopez and R. Dahab, Fast multiplication on elliptic curves &€¢2™) without precompu-
tation. Cryptographic Hardware and Embedded Systems—CHES ®&&ure Notes in Com-
puter Science 1717:316-327, 1999.

[25] J. Lopez and R. Dahab, High-speed software multiplicatiofgn. Progress in Cryptology—
INDOCRYPT 2000_ecture Notes in Computer Science 1977:203-212, 2000.

[26] A. Menezes, P. van Oorschot, and S. Vanstdtandbook of Applied Cryptograph RC
Press, 1996.

[27] B. Moller, Algorithms for multi-exponentiatiorselected Areas in Cryptography—SAC 2001
Lecture Notes in Computer Science 2259:165-180, 2001.

[28] B. Mbller, Improved techniques for fast exponentiation. In P. Lee and C. Lim,leftsrmation
Security and Cryptology (ICISC) 2002ecture Notes in Computer Science 2587:298-312,
2003.

[29] S. Moore, Using streaming SIMD extensions (SSE?2) to perform big multiplications. Applica-
tion Note AP-941, Intel Corporation, 2000. Version 2.0, Order Number 248606-001.

[30] P. Ning and Y. Yin, Efficient software implementation for finite field multiplication in normal
basis.Information and Communications Security 20Q&cture Notes in Computer Science
2229:177-189, 2001.

[31] A. Reyhani-Masoleh and M. A. Hasan, Fast normal basis multiplication using general purpose
processors (extended abstra8tlected Areas in Cryptography—SAC 200dcture Notes in
Computer Science 2259:230-244,2001.

[32] R. Schroeppel, Elliptic curve point halving wins big. 2nd Midwest Arithmetical Geometry in
Cryptography Workshop, Urbana, lllinois, November 2000.

[33] R. Schroeppel, Elliptic curve point ambiguity resolution apparatus and method. International
Application Number PCT/US00/31014, filed 9 November 2000, publication humber WO
01/35573 A1, 17 May 2001.

[34] R. Schroeppel, Automatically solving equations in finite fields. US Patent Application No.
09/834,363, filed 12 April 2001, publication number US 2002/0055962 A1, 9 May 2002.

[35] R. Schroeppel, personal communication, October 2003.

[36] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller and T. Draelos, A low-power design for an
elliptic curve digital signature chigCryptographic Hardware and Embedded Systems—CHES
2002 Lecture Notes in Computer Science 2523:366—380, 2002.

[37] R. Schroeppel, H. Orman, S. O’'Malley, and O. Spatscheck, Fast key exchange with elliptic
curve systemsAdvances in Cryptology—CRYPTO ;9%cture Notes in Computer Science
963:43-56, 1995.

[38] S. Chang Shantz, From Euclid’s GCD to Montgomery multiplication to the great divide. SML
Technical Report SMLI TR-2001-95, Sun Microsystems Laboratories, 2001.

[39] J. Solinas, Efficient arithmetic on Koblitz curvd3esigns, Codes and Cryptograph9:195—
249, 2000.

Appendix
In the projective coordinatesopez-Dahab [23], the projective poitX : Y : Z), Z # 0, corre-
sponds to the affine poiX/Z, Y/Z?). The projective form of the elliptic curve equatigh+xy =

x3+ax?+bis
Y24 XYZ=X3Z +ax?z2+bZz%

27

The point at infinity corresponds ta : 0 : 0), while the negative ofX : Y : Z)is(X : X+Y : 2).
The doublg X3 : Y3: Z3) of (X1: Y1 : Z1) is given by

Z3 < X2.Z2, X3« Xj+b-Z1, Ys<bZ} Zz+ X3-(@Zz+ Y2 +bZ).
The mixed-coordinate suiiXs : Y3 : Z3) of (X1 : Y1 : Z1) and(X2 : Y2 : 1) is given by

A<Y2-Z24Yy, B« Xp-Z1+ X1, C<2Z;-B, D« B2.(C+aZzd,
Z3<C2 E<«<A-C, X3« A2+ D+E, F<« Xg+Xy-2Z3,
G« (X2+Y2)-Z2, Ys< (E+Z3)-F+G.

If a € {0, 1}, then doubling in projective coordinates requires 4 field multiplications, and addition
(with mixed coordinates) requires 8 multiplications [23, 22].

28

