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1. Introduction

This is our second paper devoted to the description and analysis of the
hyperelliptic curve method. The hyperelliptic curve method is a probabilistic
algorithm for factoring integers. It is well suited to ®nding small prime factors of
an integer and, in particular, to recognizing smooth integers, that is, integers built
from small prime numbers.

The hyperelliptic curve method is closely related to the elliptic curve method
[8]. We refer the reader to the introduction to our ®rst paper [9] for a discussion
of the provenance of the hyperelliptic curve method, its relation to the elliptic
curve method, and comparison of run times with other algorithms.

The hyperelliptic curve method uses the Jacobian varieties of curves of genus 2
over ®nite ®elds in the same way that the elliptic curve method uses elliptic
curves over ®nite ®elds. Let k be a ®nite ®eld of odd characteristic, and let q be
its cardinality. Let f 2 k�X � be a sextic or quintic polynomial with non-vanishing
discriminant. Let Cf be the smooth projective curve over k whose function ®eld is

the ®eld of fractions of k�X; Y �=�Y 2 ÿ f �, so that the genus of Cf equals 2.
Denote by Jf the Jacobian variety of Cf , and by Jf �k� the set of k-rational points
of Jf , which is a ®nite Abelian group. Since Cf has genus 2, the Riemann
Hypothesis for Abelian varieties over ®nite ®elds, proved by Weil [22], implies that

#Jf �k� 2 ��
���
q
p ÿ 1�4; � ���qp � 1�4 �;

where # denotes cardinality. So #Jf �k� resides in an interval of length ,8q3=2

centered at ,q2 as q!1. (We use the notation A�q�, B�q� as q!1 to mean
that A�q�=B�q� ! 1 as q!1.) The number of sextic and quintic polynomials
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over k with non-vanishing discriminants is ,q7 as q!1. Therefore, the assignment

f 7! #Jf �k�
has ®bres whose average size is , 1

8
q11=2 as q!1. If we restrict to quintic

polynomials then the ®bres have average size , 1
8

q9=2 as q!1.
The main results of the present paper concern the size of the ®bres over the

integers z in a subinterval of �� ���qp ÿ 1�4; � ���qp � 1�4 �. This subinterval is of the
form �q2 ÿ cq3=2; q2 � cq3=2 �, where c is positive and explicit. Excluding a small
set of values for z , we show that the size of each ®bre is not much smaller than
the average value that we just computed. Thus, the assignment f 7! #Jf �k�
distributes the polynomials f fairly evenly over a substantial subinterval of
�� ���qp ÿ 1�4; � ���qp � 1�4 �.

Our ®rst result restricts to prime ®elds and to quintic polynomials. Prime ®elds
are the only ones that arise in the analysis of the hyperelliptic curve method.
Curves Cf with quintic polynomials f are attractive to use, since their Jacobians
are particularly easy to construct and to operate in.

Theorem 1.1. Let p be a prime number with p > 8100, and let Fp denote the
prime ®eld of cardinality p. Then for all but at most p integers z in the interval

� p2 ÿ 1
2

p3=2; p2 � 1
2

p3=2 � there are at least

p9=2

24,000 ´ �log p�2 ´ �log log p�2
quintic polynomials f 2 Fp�X � with non-vanishing discriminants such that
#Jf �Fp� � z .

If we do not insist that the curves have quintic models, we can prove a result
valid for all ®nite ®elds of odd characteristic, with a smaller exceptional set. This
result is not needed for our analysis of the hyperelliptic curve method.

Theorem 1.2. Suppose that k is a ®nite ®eld, and suppose that the cardinality
q of k is odd and at least 14,400. Then for all but at most 28

���
q
p

integers z in the
interval �q2 ÿ 1

9
q3=2; q2 � 1

9
q3=2 � there are at least

q11 =2

48,000 ´ �log q�2 ´ �log log q�2
sextic polynomials f 2 k�X � with non-vanishing discriminants such that #Jf �k� � z .

No great signi®cance should be attached to the constants 24,000 and 48,000
occurring in the theorems beyond the fact that they are explicit. They are
de®nitely open to improvement.

We brie¯y explain the role that Theorem 1.1 plays in the analysis of the
hyperelliptic curve method. The success of the hyperelliptic curve method depends
on #Jf �Fp� being suf®ciently smooth ± that is, built up entirely of suf®ciently
small prime factors ± with reasonable probability when f is selected at random.
The precise sense of `suf®ciently smooth' and `reasonable probability' in our
situation is discussed in [9].

To prove that #Jf �Fp� is suf®ciently smooth with reasonable probability, one
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®rst shows that an interval of the form �xÿ cx3= 4; x� cx3= 4 � contains reasonably
many numbers that are suf®ciently smooth. Such a result is contained in our ®rst
paper, [9], in which we proved various theorems about the density of smooth
numbers in short intervals. Taking x � p2 and c � 1

2
one ®nds that the interval

� p2 ÿ 1
2

p3=2; p2 � 1
2

p3=2 � contains a fair number of suf®ciently smooth integers
z . Next one applies Theorem 1.1 to these values of z to see that there is a
reasonably large number of quintics f for which #Jf �Fp� is suf®ciently smooth.
This is the required result. For more details, and for an application of our result to
primality testing, we refer to the forthcoming third paper in this series.

Our main theorems provide only a lower bound for the number of f such that
Jf �k� has order z . For elliptic curves an upper bound of the same form ± up to
powers of logarithms ± is given in [8, Proposition 1.9]. One may believe that in
the case of hyperelliptic curves there is also an upper bound of the same form,
but the arguments that we give do not suf®ce to prove this.

Adleman and Huang [1, Chapter 4, Proposition 1] prove a result similar to
Theorem 1.2. However, their argument is restricted to prime numbers z , which
does not suf®ce for our purposes. Their result also admits a much larger set
of exceptions.

The structure of the proof of Theorems 1.1 and 1.2, and of the paper, is as
follows. In § 2 the proofs are reduced to the proof of four auxiliary propositions.
The ®rst of these (Proposition 2.1) estimates the number of f for which Cf is
isomorphic to a given curve C of genus 2. The proof is elementary, and it is given
in § 3. The second (Proposition 2.2) concerns the reconstruction of C from its
Jacobian, viewed as a principally polarized Abelian variety. The only new feature
of this result is a suf®cient condition, in terms of the Jacobian, for C to possess a
quintic model; the details are given in § 3. Our third auxiliary result (Proposition
2.3) estimates the number of two-dimensional principally polarized Abelian
varieties with a given `Weil polynomial'. The proof occupies ®ve sections. In § 4
we use the arguments of Stark [19] to obtain an effective lower bound for certain
quotients of class numbers (Proposition 4.2). In § 5 we prove the integrality of a
suitable quotient of zeta functions of ®nite rings. Combining these results, we
obtain in § 6 an effective lower bound for appropriately de®ned class numbers of
certain orders in number ®elds. Section 7 contains generalities concerning fourth
degree Weil polynomials. Once all these ingredients are available, we give the
proof of Proposition 2.3 in § 8. It is based on a result of Deligne [4] that
establishes an equivalence of categories between the category of ordinary Abelian
varieties over ®nite ®elds, and a certain category of free Z-modules with
additional structure. We also employ results of Howe [6] on the translation of the
notion of polarization of ordinary Abelian varieties under Deligne's equivalence.
Abelian varieties that are ordinary are the only ones that we use; thus, Theorems
1.1 and 1.2 remain valid if the additional condition that Jf be ordinary is imposed
on f . The ®nal result of § 2 (Proposition 2.4) asserts that for most z in our target
interval an appropriate Weil polynomial can be constructed. The proof, which is
given in § 10, is completely elementary but somewhat involved; it makes use of a
result on non-uniqueness of factorization in short intervals that is presented in § 9.
It may be of interest to pursue the latter subject for its own sake.

Fields of characteristic 2 are excluded in Theorems 1.1 and 1.2, not only
because we use models of the form y2 � f �x� for hyperelliptic curves, but also
because certain parts of our proof admit a larger set of exceptions when the
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characteristic equals 2. In § 11 we state separately some results valid in
characteristic 2.

Throughout this paper, a `curve' will mean a smooth absolutely irreducible
projective variety of dimension 1. All maps between varieties will be rational over
the base ®eld, unless the contrary is explicitly stated. All rings are supposed to be
commutative with unit element, and the unit element is supposed to be respected
by ring homomorphisms and to be contained in subrings. The group of units of a
ring R is denoted by R�. By Z we denote the ring of integers, and by Q, R and C
the ®elds of rational, real and complex numbers, respectively.

Acknowledgement. The authors thank J. Cremona, E. W. Howe, N. M. Katz,
S. Louboutin and P. Sarnak for their assistance.

2. Articulation of the proofs

Let k be a ®nite ®eld and q its cardinality. Theorems 1.1 and 1.2 are statements
about the ®bres of the map from the set of sextic or quintic polynomials over k
with non-vanishing discriminants to Z, sending f to #Jf �k�. In the present section
we write this map as the composition of four maps. We formulate auxiliary
results, to be proved in later sections, about the ®bres of each of these maps. At
the end of the section we deduce Theorems 1.1 and 1.2 from these results.

From polynomials to curves. The ®rst map goes from the set of sextic or
quintic polynomials over k with non-vanishing discriminants to the set of
isomorphism classes of curves of genus 2 over k . It is de®ned only if q is odd,
and it sends f to the curve Cf whose function ®eld is the ®eld of fractions of
k�X; Y �=�Y 2 ÿ f �; it does have genus 2, by [20, Proposition VI.2.3(b)]. If C is a
curve of genus 2 over k , then we call a sextic or quintic polynomial f a
representative of C if C > Cf .

Proposition 2.1. Let k be a ®nite ®eld of odd cardinality q, and let C be a
curve of genus 2 over k. Then the number of representatives of C equals

�q2 ÿ 1��q2 ÿ q�
#Aut C

:

Also, there exists an integer r�C� satisfying

0 < r�C�< 6; r�C� � #C�k� mod 2,

such that C has exactly

r�C��qÿ 1��q2 ÿ q�
#Aut C

and
�q� 1ÿ r�C���qÿ 1��q2 ÿ q�

#Aut C

quintic and sextic representatives, respectively.

The proof of this proposition is routine. It is given in § 3.

From curves to principally polarized Abelian varieties. A principally polarized
Abelian variety over k is a pair �A; y� consisting of an Abelian variety A over
k and a principal polarization y: A! ÆA of A over k; here ÆA denotes the dual
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Abelian variety. An isomorphism w: �A; y� ! �B; h� of principally polarized
Abelian varieties is an isomorphism w: A! B of Abelian varieties satisfying
y � Æwhw. For all these terms, see [11].

The second map goes from the set of isomorphism classes of curves of genus 2
over k to the set of isomorphism classes of principally polarized two-dimensional
Abelian varieties over k . It takes C to the pair �JC ; yC�, where JC is the Jacobian
variety of C (see [12]) and yC is the canonical principal polarization of JC

induced by the theta divisor (see [12, 6.11]).
An Abelian variety over k is called absolutely simple if it has, after base

extension to an algebraic closure of k, exactly two Abelian subvarieties, namely
f0g and the Abelian variety itself. For the de®nition of the trace of the Frobenius
endomorphism of an Abelian variety A over k we refer to [11, §§ 12 and 19].

Proposition 2.2. Let k be any ®nite ®eld, and q its cardinality. Let �A; y� be
a principally polarized absolutely simple Abelian variety of dimension 2 over k.
Then �A; y� is isomorphic to the canonically polarized Jacobian variety of some
curve C of genus 2 de®ned over k, and for any such C we have
Aut C > Aut�A; y�. If, in addition, both q and the trace of the Frobenius
endomorphism of A are odd, then any curve C of genus 2 with �JC ; yC�> �A; y�
possesses a quintic representative.

The proof of this proposition is given in § 3. The ®rst part of Proposition 2.2 is
well known.

From Abelian varieties to Weil polynomials. By a Weil q-polynomial we mean a
polynomial h 2 Z�X � of even degree, with leading coef®cient 1, all of whose
complex zeros have absolute value

���
q
p

, and which satis®es h�0� > 0 (and therefore

h�0� � q�deg h�=2). If A is an Abelian variety over k , then we denote by hA the
characteristic polynomial of the Frobenius endomorphism of A (see [11, §§ 12 and
19]); this is a Weil q-polynomial of degree 2 dim A, by [11, Theorem 19.1] (the
property hA�0� > 0 follows from hA�1� � #A�k� > 0 and the absence of zeros of hA

in the interval �0; 1�; see [11, Theorem 19.1(b) and (c)]).
The third map goes from the set of principally polarized two-dimensional

Abelian varieties over k to the set of Weil q-polynomials of degree 4. It sends
�A; y� to hA.

As we shall see in Proposition 7.1, the Weil q-polynomials of degree 4 are
exactly the polynomials h of the form

h � �X 2 � q�2 ÿ aX�X 2 � q� � bX 2;

where a and b are integers satisfying

2 ja j ���qp ÿ 4q < b < 1
4

a2 < 4q:

Moreover, a and b are uniquely determined by h. We say that such a polynomial h is
ordinary if b is not divisible by the characteristic of k, that h has odd trace if a is
odd, that h is regular if neither of the numbers a2 ÿ 4b and �b� 4q�2 ÿ 4qa2 is
an integer square (see Remark 7.6 for an interpretation of these conditions), and
we de®ne

c�h� � �a2 ÿ 4b�1=2 ´ ��b� 4q�2 ÿ 4qa2�1=2:
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By the weighted number of principally polarized Abelian varieties �A; y� in a
class S we mean

P
1=#Aut�A; y�, the sum ranging over the isomorphism classes

of pairs �A; y� in S. Note that Aut�A; y� is ®nite, by [11, Proposition 17.5(a)].

Proposition 2.3. Let k be a ®nite ®eld, and suppose that the cardinality q of
k is at least 8100. Let h be an ordinary regular Weil q-polynomial of degree 4.
Then the weighted number of principally polarized two-dimensional Abelian
varieties �A; y� over k with hA � h is at least

c�h�
95,000 ´ �log q�2 ´ �log log q�2 :

Each such A is absolutely simple, and if h has odd trace, then the trace of the
Frobenius endomorphism of any such A is odd.

The proof of Proposition 2.3 is given in § 8.

From Weil polynomials to integers. The fourth map goes from the set of Weil
q-polynomials of degree 4 to Z , and it sends h to h�1�. If A is an Abelian variety
over k , then we have hA�1� � #A�k� (see [11, Theorem 19.1(b)]). Hence the
composition of the four maps does map a sextic or quintic polynomial f 2 k�X �
with non-vanishing discriminant to #Jf �k�.

Proposition 2.4. (a) Let q > 14,400 be an odd prime power. Then for all but
at most 28

���
q
p

integers z in the interval

�q2 ÿ 1
9

q3 =2; q2 � 1
9

q3=2 �
there is an ordinary regular Weil q-polynomial h of degree 4 such that h�1� � z
and c�h�> 2q3= 2.

(b) Let p > 8100 be a prime number. Then for all but at most p integers z in
the interval

� p2 ÿ 1
2

p3=2; p2 � 1
2

p3=2 �
there is an ordinary regular Weil p-polynomial h of degree 4 with odd trace such
that h�1� � z and c�h�> 4p3=2.

This result is proved in § 10.

Proof of Theorem 1.2. Suppose that q is odd and that q > 14,400. Let
z 2 �q2 ÿ 1

9
q3 =2; q2 � 1

9
q3 =2 � be an integer that does not belong to the set of

cardinality at most 28
���
q
p

that is excepted in Proposition 2.4(a). It suf®ces to prove
that the conclusion of Theorem 1.2 holds for z . By the choice of z and
Proposition 2.4(a), we can choose an ordinary regular Weil q-polynomial h of
degree 4 with c�h�> 2q3=2 and h�1� � z . Applying Proposition 2.3 we ®nd that
the weighted number of principally polarized, absolutely simple two-dimensional
Abelian varieties �A; y� with hA � h is at least

2 ´ q3= 2

95,000 ´ �log q�2 ´ �log log q�2 :
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By Proposition 2.2, the same lower estimate holds for the weighted number of
curves C of genus 2, de®ned over k , with hJC

� h; here the isomorphism class of
C is counted with weight 1=#Aut C. Each such curve C has, by Proposition 2.1,
at least �qÿ 5��qÿ 1��q2 ÿ q�=#Aut C sextic representatives f . Thus the number
of sextic f 2 k�X � with hJf

� h is at least

2 ´ q3=2�qÿ 5��qÿ 1��q2 ÿ q�
95,000 ´ �log q�2 ´ �log log q�2 :

The conclusion of Theorem 1.2 now follows from the inequality

2 ´ �qÿ 5��qÿ 1��q2 ÿ q�
95,000

>
q4

48,000
for q > 14,400;

and the observation that each of the sextic polynomials f with hJf
� h satis®es

#Jf �k� � h�1� � z . This proves Theorem 1.2.

Proof of Theorem 1.1. The proof of Theorem 1.1 follows the same lines as the
proof of Theorem 1.2. One uses Proposition 2.4(b) instead of Proposition 2.4(a),
and employs only Weil polynomials that have odd trace. Likewise, when applying
Propositions 2.3, 2.2 and 2.1, one considers only Abelian varieties for which the
trace of the Frobenius endomorphism is odd, and curves that possess a quintic
representative; the last assertions of these three propositions are now invoked. This
proves Theorem 1.1.

3. Curves of genus 2 and their Jacobians

Proof of Proposition 2.1. Let k be a ®nite ®eld of odd cardinality q, and let C
be a curve of genus 2 over k . By [20, Lemma VI.2.2(b) and Proposition
VI.2.4(a)], the function ®eld k�C� of C has a unique sub®eld K with
�k�C� : K � � 2 for which there exists x 2 K with K � k�x�; and by [20,
Proposition VI.2.3(a)], there is a sextic or quintic polynomial f 2 k�x � with non-
vanishing discriminant such that k�C� � k�x; y� with y2 � f . For such f we have
C > Cf . This shows that C has at least one representative.

We shall denote the unique non-trivial automorphism of k�C� that is the
identity on K by t, and refer to it as the hyperelliptic involution.

We next investigate isomorphisms between two curves Cf and Cg of genus 2.

Write k�Cf � � k�x; y� with y2 � f �x� and k�Cg� � k�x 0; y 0 � with y 02 � g�x 0 �, and
suppose that we have an isomorphism Cf ! Cg , inducing a k-isomorphism
j: k�Cg� ! k�Cf �. The uniqueness of the sub®eld k�x� implies that j induces an

isomorphism k�x 0 � ! k�x�, so j�x 0 � � �ax� b�=�cx� d � for some a b
c d

ÿ �
in the

group GL�2; k� of invertible 2 ´ 2 matrices over k . Also, y=j� y 0 � is ®xed under
the hyperelliptic involution, so we have j� y 0 � � h�x�y for some h�x� 2 k�x��.
We have

g��ax� b�=�cx� d �� � h�x�2 f �x�;
and since g is square-free we ®nd that h�x� � e=�cx� d �3 for some e 2 k �,
and that

f �x� � eÿ2�cx� d �6g��ax� b�=�cx� d ��:
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Conversely, if the latter equality holds for a pair�
e;

�
a b

c d

��
2 k � ´ GL�2; k�;

then

x 0 7! �ax� b�=�cx� d �; y 0 7! ey=�cx� d �3

gives an isomorphism Cf ! Cg .
The group G � k � ´ GL�2; k� acts (on the right) on the set of square-free sextic

or quintic polynomials in k�X � by

g�X � ±
�

e;

�
a b

c d

��
� eÿ2�cX � d �6 ´ g��aX � b�=�cX � d ��:

By the above, we have Cf > Cg if and only if f and g belong to the same
orbit under G. Hence, if we ®x f , then the number of g for which Cf > Cg

equals #G divided by the order of the stabilizer of f in G. We have
#G � �qÿ 1� ´ �q2 ÿ 1��q2 ÿ q�. A pair

ÿ
e; a b

c d

ÿ ��
belongs to the stabilizer of f

if and only if it gives an automorphism of Cf . The pairs that give the trivial

automorphism are those that belong to the subgroup
�ÿ

a3; a 0
0 a

ÿ ��
: a 2 k �

	
of

order qÿ 1 of G. Hence the order of the stabilizer equals �qÿ 1� ´ Aut Cf . This
proves that the number of representatives of Cf equals �q2 ÿ 1��q2 ÿ q�=#Aut Cf .
Since each C is of the form Cf , this implies the ®rst assertion of Proposition 2.1.

To prove the second assertion, we let r�C� be the number of elements of C�k�
that are ®xed under t. These elements are precisely the k-rational points of C that
ramify under the map C! P1 corresponding to the ®eld extension k�C� É k�x�,
and by [20, Proposition VI.2.3(c)] they correspond to the set of zeros of f in k,
including one zero `at in®nity' if deg f � 5. From deg f < 6 it follows that
0 < r�C�< 6. Also, since the points of C�k� that are not ®xed under t come in
pairs fP; tPg, we have r�C� � #C�k� mod 2. It remains to prove the statement
about the number of quintic models.

Let us ®rst consider isomorphism classes of pairs �C; P�, where C is a curve of
genus 2 over k and P is a point on C�k� that is ®xed under t; here we call �C; P�
and �C 0; P 0 � isomorphic if there is an isomorphism C! C 0 mapping P to P 0.
When f 2 k�X � is a square-free quintic polynomial, then the rational function x on
Cf has exactly one pole on Cf , which we call Pf . We have Pf 2 Cf �k�, and Pf is
®xed under t, so the pair �Cf ; Pf � is one of the pairs under consideration.
Conversely, for every pair �C; P� there are exactly �qÿ 1��q2 ÿ q�=#Aut�C; P�
square-free quintic polynomials f in k�X � for which �C; P� is isomorphic to
�Cf ; Pf �. To prove this, one mimics the part of the proof already given, with a
few minor changes. The ®rst change is that one needs to choose the element
x 2 K such that it has a pole at P; this is possible, since the image of P in P1

belongs to P1�k�. Secondly, one should consider only isomorphisms Cf ! Cg that
map Pf to Pg , which is equivalent to the restriction c � 0 on the matrices a b

c d

ÿ �
that one works with. Since the group of those matrices has order �qÿ 1��q2 ÿ q� ,
one arrives at the formula �qÿ 1��q2 ÿ q�=#Aut�C; P� that we have just stated.

To count the number of quintic representatives one considers the map that sends
the isomorphism class of a pair �C; P� to the isomorphism class of C. Let C be a
curve of genus 2 over k . If P, P 0 2 C�k� are ®xed under t, then the pairs �C; P�
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and �C; P 0 � are isomorphic if and only if P and P 0 belong to the same orbit
under Aut C . Thus the number of quintic representatives for C equals

X
P

�qÿ 1��q2 ÿ q�
#Aut�C; P� ;

the summation ranging over a set of orbit representatives for the action of Aut C
on fP 2 C�k�: tP � Pg. We may also extend the sum to include all P 2 C�k�
with tP � P provided that each term is given a weight equal to the inverse of the
orbit size of P under Aut C . This orbit size equals �#Aut C�=#Aut�C; P�, which
yields the formula stated in Proposition 2.1. Subtracting the number of quintic
representatives from the total number of representatives one obtains the ®nal
formula in Proposition 2.1.

This proves Proposition 2.1, with the added information that r�C� is the number
of Fq-rational points of C that are ®xed under the hyperelliptic involution.

Remark. It follows from Proposition 2.1 that C has at least one quintic model
if and only if r�C� > 0, and that C has at least one sextic model unless and only
unless r�C� � q� 1. Also, the equality r�C� � q� 1 can occur only if q equals 3
or 5. It is not hard to show that in those two cases one has r�C� � q� 1 if and
only if C > Cf with f � X 5 ÿ X.

Proof of Proposition 2.2. Let A be an absolutely simple Abelian variety of
dimension 2 over Fq , with dual ÆA, and let y: A! ÆA be a principal polarization.
Let D be a positive divisor on A that is de®ned over k and belongs to the divisor
class determining y; such a divisor exists since k is ®nite (see [11, Remark
13.2]). By [11, Theorem 13.3(b)], the self-intersection number of D equals
�D; D� � 2

�����������
deg y
p � 2. A theorem of Weil [23, Satz 2] (or see [14]) implies that

this divisor is either a curve C of genus 2 or, over an algebraic closure k of k,
equal to the sum of two positive divisors. In the ®rst case, �A; y� is isomorphic to
the principally polarized Jacobian of C; in the second case, A is, over k ,
isomorphic to the product of two elliptic curves (see [23, 14]). The latter
alternative is excluded by our assumption that A be absolutely simple. Hence we
have �A; y�> �JC ; yC�.

Torelli's theorem (see [12, Corollary 12.2]) implies that C is uniquely
determined, up to isomorphism, by the property that �A; y�> �JC ; yC�. Also, the
proof of Torelli's theorem, as given in [12], shows that for every b 2 Aut�JC ; yC� there
is a unique a 2 Aut C that maps to b under the natural map Aut C! Aut�JC ; yC�
(cf. [12, Proposition 6.1]). Therefore we have Aut C > Aut�A; y�.

Next suppose that q and the trace t of the Frobenius endomorphism of A are
odd. By [12, Theorem 11.1], we have #C�k� � 1ÿ t � q, which is odd. Hence the
number r�C� from Proposition 2.1 is also odd. Therefore we have r�C�> 1, and by
Proposition 2.1 the curve possesses a quintic model. This proves Proposition 2.2.

4. Estimates for zeta functions

Let K be an algebraic number ®eld of ®nite degree n over the ®eld Q of
rational numbers. We write zK for the zeta function of K, which is de®ned on
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fs 2 C: Re s > 1g by

zK�s� �
Y

P

1

1ÿ N�P�ÿ s ;

here P ranges over the set of maximal ideals of the ring of integers of K, and
N�P� is the cardinality of the residue class ®eld of P. Denote by D the absolute
value of the discriminant of K over Q , by r1 the number of real places of K, and
by r2 the number of complex places of K. For s 2 C, Re s > 1, we de®ne

yK�s� � s�sÿ 1� ´ Ds= 2 ´

�
G�s=2�
2p s=2

�r1

´

�
G�s�
�2p�s

�r 2

´ zK �s�;

where G denotes Euler's gamma function. Note that for s 2 R with s > 1, both
zK �s� and yK �s� are real and positive.

Lemma 4.1. (a) The function yK can be analytically extended to an entire
function satisfying the functional equation yK �s� � yK �1ÿ s�.

(b) All zeros r of yK satisfy 0 < Re r < 1, and one has

y 0K �s�
yK �s�

� 1

2

X
r

�
1

sÿ r
� 1

sÿ r

�
for each s 2 C with yK �s� 6� 0; the sum ranges over all zeros r of yK , counted
with multiplicities, and it is absolutely convergent.

(c) For s 2 R with s > 1 one has

0 <
y 0K �s�
yK �s�

<
1

s
� 1

sÿ 1
� log D

2
� r1

2

�
G 0�s=2�
G�s=2� ÿ log p

�
� r2

�
G 0�s�
G�s� ÿ log�2p�

�
:

(d) If K 6�Q, then there is at most one zero b of yK that satis®es
Re b > 1ÿ �4 log D�ÿ1 and jIm bj< �4 log D�ÿ1, and if there is one then it is
real and simple.

(e) For K 6�Q and s 2 R with 1 < s < 1� 2�nÿ 1�= log D, one has

yK �s�< 2ÿ r1ÿ r 2 ´ pÿ r 2 ´

�
e ´ log D

2�nÿ 1�
�nÿ1

´
����
D
p

:

(f ) One has yK �1� � h ´ reg=w, where h and reg denote the class number and
regulator of K, respectively, and w is the number of roots of unity in K.

Proof. For (a), see [7, Chapter XIII]. For (b), see [7, Chapter XV, Theorem 3
and Chapter XVII, § 1], as well as [19, Lemma 1]. For (f ), one uses [7, Chapter
VIII, Theorem 5] and the fact that G� 1

2
� � ���

p
p

(see [24, 12.14]).
(c) From the de®nition of zK one sees that z 0K �s�=zK �s� < 0 for real s > 1.

Combining this with the de®nition of yK we ®nd the upper bound in (c). The
lower bound follows from the expression given in (b) (see [19, Lemma 3]).

(d) This is proved in [19, Lemma 3], as a consequence of (b) and (c).
(e) We follow [10, proof of Theorem 1]. For a real number s > 1 we de®ne

g�s� � s1ÿ r1ÿ r 2 ´ yQ�s�n ´

�
2 ´ G��s� 1�=2����

p
p

´ s ´ G�s=2�
�r 2

:
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The logarithm of each of the three factors on the right is convex on �1; 1�; for
the ®rst factor this is obvious, and for the last two factors it is the content of
[10, Lemma 9]. It follows that log g is convex on �1; 1�.

Put j � 1� 2�nÿ 1�= log D . We claim that

g�j�< g�1� � 2ÿ r1ÿ r 2 ´ pÿ r 2 :

The equality is readily veri®ed. We prove the inequality. From Minkowski's
inequality

����
D
p

> � 1
4
p�r 2 ´ nn=n! (see [7, Chapter V, § 4]) one ®nds in a routine

manner that log
����
D
p

> 1
3
�nÿ 1�. Therefore we have j < 4, and by convexity it

follows that g�j�< max �g�1�; g�4��. Now one deduces the claim from

g�4� � 4 ´

�
yQ�4�

4

�r1� r 2

´

�
2 ´ yQ�4� ´ G�5=2����

p
p

´ 4 ´ G�2�
�r 2

� 4 ´

�
p2

60

�r1� r 2

´

�
p2

40

�r 2

<
1

2 r1� r 2
´

1

p r 2
;

except if r1 � r2 � 1. In the exceptional case K is imaginary quadratic, and one has
D > 3, j < 3, and g�j�< max�g�1�; g�3��; the inequality zQ�3�2 < zQ�2� (obtained

from the Euler product) implies then that g�3� � 3z �3�2pÿ3 < �2p�ÿ1 � g�1�. This

proves the claim.
Let s be real, s > 1. From the duplication formula [24, 12.15]

G�s=2�
2p s=2

´
G��s� 1�=2�

p �s�1�=2
� G�s�
�2p�s

for the gamma function, and from the elementary inequality zK �s�< zQ�s�n, one
sees that

yK �s� � s�sÿ 1� ´ Ds=2 ´

�
G�s=2�
2p s=2

�n

´

�
G��s� 1�=2�=p �s�1�=2

G�s=2�=�2p s=2�

�r 2

´ zK �s�

<
Ds=2

�sÿ 1�nÿ1
´

�
s�sÿ 1� ´

G�s=2�
2p s=2

´ zQ�s�
�n

´

�
2 ´ G��s� 1�=2����

p
p

´ s ´ G�s=2�
�r 2

´ s1ÿ r1ÿ r 2

� Ds=2

�sÿ 1�nÿ1
´ g�s�:

Substituting s � j, which minimizes Ds= 2=�sÿ 1�nÿ1, we ®nd that

yK �j�<
D�nÿ1�= log D ´ D1=2

�2�nÿ 1�= log D�nÿ1
´ g�j�<

�
e ´ log D

2�nÿ 1�
�nÿ1

´ D1=2 ´ 2ÿ r1ÿ r 2 ´ pÿ r 2 ;

which proves (e) for s � j. To prove (e) for 1 < s < j it now suf®ces to observe
that y 0K is positive on �1; 1�, by (c). This completes the proof of Lemma 4.1.

Combining (e) and (f ) we ®nd an upper bound for h ´ reg=w that is due to
Louboutin [10, equation (2)]. It improves an upper bound obtained by Siegel
[18, Satz 1].

We now come to the main result of this section, which in substance is due to
Stark [19]. We let h, reg, w be as in Lemma 4.1(f ), and by h�, reg� and w� we
denote the corresponding quantities for the ®eld K� appearing in Proposition 4.2.
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Likewise, we denote by D� the absolute value of the discriminant of K�
over Q .

Proposition 4.2. Let K be a totally imaginary quadratic extension of a totally
real algebraic number ®eld K� , and suppose that K does not contain a sub®eld
that is imaginary quadratic over Q. Let M be a Galois closure of K� over Q.
Write d � �K�: Q� and m � �M : Q� ´ max�1; 4=d �. Then we have

h ´ reg=w

h� ´ reg�=w�
>

1

4p ´ e21 =40 ´ �m� 1� ´

�
2�d ÿ 1�

pe ´ log D�

�dÿ1

´
1

log D
´

����
D
p�������
D�

p :

The proposition implies that

h ´ reg=w

h� ´ reg�=w�
>

�d ÿ 1�dÿ1

21:243 ´ �4:270�dÿ1 ´ �m� 1� ´

����
D
p

=
�������
D�

p
�log D��dÿ1 ´ log D

;

where m� 1 may be replaced by 5, 9 or d !� 1, according as d � 2, d � 3 or
d > 4, respectively.

Proof. For s 2 C with Re s > 1, we de®ne

L�s� � zK �s�=zK��s�;

L�s� � �D=D��s=2 ´

�
G��s� 1�=2�

p �s�1�=2

�d

´ L�s�:

The function L may be analytically extended to an entire function (see [7,
Chapter VIII and Chapter XIV]). The duplication formula quoted in the proof of
Lemma 4.1(e) implies that

yK �s� � yK��s� ´ L�s�:
It follows that L satis®es the functional equation L�s� � L�1ÿ s�.

By Lemma 4.1(f ) one has

L�1� � h ´ reg=w

h� ´ reg�=w�
:

We shall estimate this quantity from below.
From Lemma 4.1(b) one obtains

L0�s�
L�s� �

1

2

X
r

�
1

sÿ r
� 1

sÿ r

�
for each s 2 C with L�s� 6� 0, the sum ranging over all zeros r of L , counted with
multiplicities; all these zeros are also zeros of yK . Let B be the set of zeros b of
L that satisfy Re b > 1ÿ �4 log D�ÿ1 and jIm bj< �4 log D�ÿ1. By Lemma 4.1(d),
the set B is either empty or consists of a single simple real zero. We shall need:

b < 1ÿ 1

4m ´ log D
for every b 2 B;�4:3�

with m as de®ned in Proposition 4.2. We postpone the proof of this assertion until
the end of this section. It depends crucially on the assumption that K does not
contain an imaginary quadratic sub®eld.
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Let j0 � 1� �4 log D�ÿ1. If r is a zero of L that does not belong to B, then as
in the proof of [19, Lemma 2] one has

1

sÿ r
� 1

sÿ r
< 2

�
1

j0 ÿ r
� 1

j0 ÿ r

�
for every real number s with 1 < s < j0 . Therefore we have

L0�s�
L�s� <

X
r

�
1

j 0 ÿ r
� 1

j 0 ÿ r

�
�
X
b2 B

�
1

sÿ b
ÿ 2

j 0 ÿ b

�
for the same values of s, where the ®rst sum ranges over the zeros r of L . We
may include the zeros of yK� in that sum, since they give positive contributions.
Then the ®rst sum changes to 2y 0K�j 0�=yK �j 0�. Integrating from 1 to j 0 and
exponentiating one ®nds that

L�j 0�
L�1� < exp

�
2�j 0 ÿ 1� y 0K�j 0�

yK �j 0�
�

´ Eÿ1;

where we put

E �
Y
b2B

�
1ÿ b

j 0 ÿ b
´ exp

�
2

j 0 ÿ 1

j 0 ÿ b

��
:

Using the fact that L�j 0� � yK �j 0�=yK��j 0� we now obtain

L�1�> exp

�
2�1ÿ j 0�

y 0K �j 0�
yK �j 0�

�
´ yK �j 0� ´ yK��j 0�ÿ1 ´ E:

We estimate the four factors separately.
For the ®rst factor we apply Lemma 4.1(c) to s � j 0 . Since

j 0 � 1� �4 log D�ÿ1 is smaller than the unique positive zero 1:46163 . . . of G 0=G
(see [24, 12.33]), we have G 0�j 0�=G�j 0� < 0, and we ®nd that

y 0K�j 0�
yK�j 0�

< 1� 1

j 0 ÿ 1
� 1

2
log Dÿ d log�2p�:

This leads to

exp

�
2�1ÿ j 0�

y 0K �j 0�
yK �j 0�

�
> exp�ÿ2j 0� ´ D1ÿj 0 ´ �2p�2d�j 0ÿ1�

� eÿ1=4 ´
�2p�2d�j 0ÿ1�

exp�2j 0�
;

which is our estimate for the ®rst factor.
For the second factor, the de®nition of yK and the obvious inequalities

zK �j 0� > 1 and j 0 > 1 imply that

yK �j 0� > �j 0 ÿ 1� ´ Dj 0 =2 ´

�
G�j 0�
�2p�j 0

�d

�
����
D
p

�2p�d ´
e1= 8

4 log D
´

�
G�j 0�
�2p�j 0ÿ1

�d

:

Let g 8 0:5772157 denote Euler's constant (see [24, 12.1]). From the inequality

G 0�s�
G�s� >

G 0�1�
G�1� � ÿg > ÿ log 2;
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valid for s > 1 (see [24, 12.16]), one deduces that

G�j 0� � G�j 0�=G�1�> exp�ÿg�j 0 ÿ 1�� > 21ÿj 0 ;

which, since p > e, gives�
G�j 0�
�2p�j 0ÿ1

�d

>
1

�4p�d�j 0ÿ1� >
�

e

4p2

�d�j 0ÿ1�
>

exp�2j 0 ÿ 2�
�2p�2d�j 0ÿ1� :

In the last inequality we use the fact that d > 2, which follows from the
assumption that K does not contain an imaginary quadratic sub®eld. We obtain

yK �j 0� >
����
D
p

�2p�d ´ 4e15=8 ´ log D
´

exp�2j 0�
�2p�2d�j 0ÿ1� :

This is our estimate for the second factor.
For the third factor we apply Lemma 4.1(e) to the ®eld K� and

s � j 0 � 1� �4 log D�ÿ1. The condition K� 6�Q is satis®ed, and from d > 2 and
D� < D one sees that the condition j 0 < 1� 2�d ÿ 1�= log D� is satis®ed as
well. We ®nd that

yK��j 0�ÿ1 > 2d ´

�
2�d ÿ 1�
e ´ log D�

�dÿ1

´
1�������
D�

p :

The fourth factor, E, is equal to 1 if B is empty. Suppose next that B � fbg.
Applying (4.3) we see that E is at least the minimum of

�1ÿ x� exp�2�j 0 ÿ 1�=�j 0 ÿ x��=�j 0 ÿ x�
for 1ÿ �4 log D�ÿ1 < x < 1ÿ �4m log D�ÿ1 or, equivalently, the minimum of

f � y� � y exp�2=�1� y��=�1� y�
for 1=m < y < 1 (with y � �4 log D��1ÿ x�). One readily veri®es that f is
increasing on �0; 1�, so the required minimum is f �1=m�, which by m > 4 is at

least e8=5=�m� 1�. This is less than 1, so it is in both cases a lower bound for E .
Assembling the four estimates we ®nd that

L�1� >
����
D
p

�2p�d ´ 4e17= 8 ´ log D
´ 2d ´

�
2�d ÿ 1�
e ´ log D�

�dÿ1

´
1�������
D�

p ´
e8=5

m� 1
:

Rearranging the right-hand side, and applying Lemma 4.1(f ), we obtain the
inequality stated in Proposition 4.2. It remains to prove (4.3).

A discriminant formula. The proof of (4.3) makes use of a formula for
discriminants that is dif®cult to locate in the literature. Since it is also useful in
other contexts, we state and prove it in the general case of Dedekind domains.

Let A be a Dedekind domain, E its ®eld of fractions, F a ®nite separable ®eld
extension of E, and B the integral closure of A in F. We denote by DB=A the
discriminant of B over A , which is a non-zero ideal of A.

Let M be a ®nite Galois extension of E, with group G, and suppose that M is
large enough to contain an E-isomorphic copy of F. We write S for the set of
E-embeddings F!M. This is a set of cardinality �F : E �, and it is naturally acted
upon by G. Denote by C the integral closure of A in M. We assume that for each
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maximal ideal P of C the ®eld C=P is separable over A=�P Ç A�. This
assumption is satis®ed in the case of rings of integers in number ®elds, since in
that case all residue class ®elds are ®nite.

Theorem 4.4. Let the notation and hypotheses be as above, and let Ij denote
the C-ideal generated by fjcÿ c: c 2 Cg, for j 2 G. Then we have

D
�M : E �
B=A

�
Y

j2G; j 6� 1

NC =A�Ij�#fs2 S: js 6� sg;

where NC =A denotes the ideal norm from C to A.

It is only through the exponents #fs 2 S: js 6� sg that the formula given in
Theorem 4.4 depends on F. This is what accounts for its usefulness. The fact that
the formula for DB=A is independent of the choice of M can be proved directly by
means of a theorem of Herbrand (see [16, Chapter IV, Proposition 3]). One can
give a similar formula that is valid when M is an in®nite Galois extension of E; it
involves a distribution on the Galois group.

Proof. The different DC = A of C over A is given by

DC = A �
Y

j2G; j 6� 1

Ij ;

if C is a complete discrete valuation ring, this is a reformulation of [16, Chapter
IV, Proposition 4], and the general case then follows from [16, Chapter III,
Proposition 10].

Let s 2 S, and let Gs � fj 2 G: js � sg. Then Gs is the Galois group of M over
sF, and applying the formula above to the extension sF Ì M we ®nd that

DC = sB �
Y

j2 Gs ; j 6� 1

Ij :

The formula DC =A � DC = sB ´ DsB=A (see [16, Chapter III, Proposition 8]) now yields

C ´ DsB= A �
Y

j2G; j s 6� s

Ij :

Applying NC =A � NsB=A ± NC = sB and noticing that

NsB=A�NC = sB�C ´ DsB=A�� � NsB= A�DsB=A��M : sF � � D
�M : sF �
sB=A

� D
�M : E �=# S

B=A

one obtains

D
�M : E �=# S

B=A
�

Y
j2G; j s 6� s

NC = A�Ij�:

Taking the product over s 2 S we ®nd the formula stated in the theorem. This
proves Theorem 4.4.

An alternative proof of Theorem 4.4 can be derived from the theory of
conductors (see [16, Chapter VI, § 3]).

Corollary 4.5. With the same notation and hypotheses as in Theorem 4.4,

assume in addition that M is a Galois closure of F over E. Then D2
C =A divides D

�M : E �
B=A

.
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Proof. Since M is a Galois closure of F over E , the only element of G that
acts as the identity on S is the identity element of G. Hence every j 2 G with
j 6� 1 moves at least two elements of S:

#fs 2 S: js 6� sg> 2;

or, equivalently,

�M : E � ´ #fs 2 S: js 6� sg> 2 ´ #G:

We now express each of DB=A and DC =A by means of the formula given in
Theorem 4.4. The set that plays the role of S in the formula for DC = A is G itself,
on which G acts by left multiplication. For each j 2 G with j 6� 1, one has
#fs 2 G: js 6� sg � #G; so the inequality just proved implies that D

�M : E �
B=A

is
divisible by D2

C =A. This proves Corollary 4.5.

One can deduce from the proof of Corollary 4.5 that equality holds if and only
if the inertia group of any maximal ideal of C that is rami®ed over A is generated
by an element of G that acts as a transposition on S.

We now prove (4.3). With a coef®cient 16d ! instead of 4m, this result is due to
Stark [19, Lemma 9]. We indicate which change to make in his argument. By
Corollary 4.5, the discriminant of the Galois closure M of K� over Q divides

D
�M :Q�=2
� . The different of N � M ´ K over M divides the different of K over K�

(see [19, Lemma 6]), so writing Dÿ for the norm from K to Q of the latter

different, we ®nd that the discriminant of N over Q divides D
�M :Q�
� ´ D�M : K� �ÿ .

(This replaces Stark's bound Dd !.) If the ®eld N has a conjugate N 0 6� N, then
the ®eld L � N ´ N 0 equals K ´ N 0, so the different of L over N 0 divides the
different of K over K� , and one ®nds that the discriminant of L over Q divides

D
2�M :Q�
� ´ D4�M : K� �ÿ . (This replaces Stark's bound D4 d !.) From D � D2

�Dÿ and the
de®nition of m (given in Proposition 4.2) one ®nds that the discriminant of N and
the discriminant of L (if it exists) both divide Dm. With this bound, Stark's
argument leads to (4.3). This completes the proof of Proposition 4.2.

5. Zeta functions for ®nite rings

For a positive integer n , the size of the unit group �Z=nZ�� is not much
smaller than the size of the full ring Z=nZ . More precisely, we have
#�Z=nZ�� > n ´ eÿg�o�1�= log log n for n!1 (see [5, Theorem 328] and
Remark 5.10 below). In the proof of Proposition 2.3 we shall need similar
information for other ®nite rings. The natural tool for obtaining sharp results is
the theory of zeta functions for ®nite rings, to which the present section is
devoted. Ultimately, these results are responsible for the factor �log log q�2
appearing in the estimate of Proposition 2.3. The reader who is satis®ed with the
higher power �log log q�6 can skip most of this section (cf. Remark 6.5).

We recall that rings in this paper are assumed to be commutative with unit
element, and that the latter is supposed to be respected by ring homomorphisms
and to belong to subrings.

Let A be a ®nite ring. Following [17], we de®ne the zeta function zA of A by

zA�s� �
Y
M

1

1ÿ #�A=M �ÿ s ;
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where M ranges over the set of maximal ideals of A and s is a complex variable.
Using the fact that A is isomorphic to the product of its localizations AM (see
[2, Theorem 8.7]), we ®nd the special value

zA�1� �
#A

#A�
;�5:1�

which explains the relevance of zeta functions for our purpose. The nilradical
nil A of A is equal to the intersection of all maximal ideals (see [2, Corollary
8.2]); so the reduced ring Ared � A=nil A is given by Ared �

Q
M A=M. Clearly,

we have

zA � zAred
:�5:2�

One easily proves the functional equation

zA�ÿs� � �ÿ1�t ´ �#Ared�ÿ s ´ zA�s�;
where t denotes the number of maximal ideals of A, which leads to another
special value:

zA�ÿ1� � �ÿ1�t ´ �#A�red�ÿ1:�5:3�
For a prime number l , let Al be the localization of A at l. Writing A as the
product of the rings Al , with l ranging over the set of all prime numbers, one
readily ®nds the Euler product

zA�s� �
Y

l

1

Pl�lÿ s� ;�5:4�

where Pl is a polynomial with integer coef®cients and constant term 1. One also
®nds that all zeros of Pl are roots of unity (the Riemann hypothesis), and that the
degree dl of Pl is determined by

#Ared �
Y

l

l d l :

For all but ®nitely many l one has dl � 0 and Pl � 1. Substituting s � 1 we ®nd that

#A�

#A
�
Y

l

Pl�l ÿ1�>
Y

l

�
1ÿ 1

l

�d l

;�5:5�

which one can also easily prove without using zeta functions.
As we just saw, 1=zA�s� has an Euler product in which the l th factor is a

polynomial in lÿ s. It is not hard to show that the same is true for zB�s�=zA�s� ,
where B is any subring of A. We shall prove the following more general result.

Theorem 5.6. Let A be a ®nite ring, let B and C be subrings of A, and put
D � B Ç C. Then we can write

zB�s�zC �s�
zA�s�zD�s�

�
Y

l prime

Ql�lÿ s�;

where Ql is a polynomial with integer coef®cients, all of whose zeros are roots of
unity, with constant term 1, and with degree deg Ql determined by

#�Ared =�Bred � Cred�� �
Y

l

l deg Q l :
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Note that Bred and Cred may be viewed as subrings of Ared ; by Bred � Cred we
mean the additive subgroup they generate.

Taking C � B one recovers the earlier statement about zB�s�=zA�s�. It is not
generally true that, for subrings B, C, E of A, the alternating product

zB�s�zC�s�zE�s�zB Ç C Ç E�s�
zA�s�zB Ç C �s�zB Ç E�s�zC Ç E�s�

has the same general shape; a counterexample is provided by A � Fl ´ Fl ´ Fl,
where l is any prime number, with B, C and E equal to the three subrings of A of
order l 2 .

Proof of Theorem 5.6. Writing A as the product of the rings Al we
immediately reduce to the case in which A � Al for a single prime number l.
Let this now be assumed. Next we shall replace A by Ared, and B and C by their
images Bred and Cred in Ared. This replacement is justi®ed by (5.2) and the equality

Dred � Bred Ç Cred�5:7�
(inside Ared), which we proceed to prove. The inclusion Ì is obvious. To prove É,
suppose that b 2 B and c 2 C have the same image x in Ared. One readily shows that

bl � cl mod �bÿ c�nil A, and, inductively, that bl n � cl n

mod �bÿ c��nil A�nÿ1 for all
positive integers n. Now choose n so large that �nil A�n � 0. Then it follows that

bl n � cl n

, which is an element of B Ç C � D. Choosing, in addition, n to be
divisible by the degree of each ®eld A=M over Fl , one sees that this element of
D maps to x in Ared. Hence we have x 2 Dred. This proves (5.7).

We may, and do, now assume that A � Al � Ared , so that A is a product of
®nite ®elds of the same characteristic l, and likewise for the three subrings. From
(5.4) it is clear that zB�s�zC �s�=�zA�s�zD�s�� is of the form Ql�lÿ s� for some
rational function Ql . We shall prove that Ql is actually a polynomial. Evidently,
we can write Ql � f =g, where f and g are polynomials with integer coef®cients
without common factor and with constant coef®cients equal to 1. Since f and g
are coprime over the ®eld of rational numbers, we can ®nd polynomials u and v
with integer coef®cients such that uf � vg � N for some positive integer N .

Applying (5.3) to A, B, C and D, and using the fact that D� � B� Ç C �,
we obtain

Ql�l� �
zB�ÿ1�zC �ÿ1�
zA�ÿ1�zD�ÿ1� � 6

#A� ´ #D�

#B� ´ #C �
� 6#�A�=�B� ´ C ���:

This shows that the rational function Ql assumes an integer value at l.
Let r be any prime number for which l r > #A, and let h 2 Fl �X � be an

irreducible polynomial of degree r. For any Fl-algebra R, write temporarily
R 0 � R�X �=hR�X �. The choice of r implies that h is still irreducible over any
residue class ®eld A=M of A, so each of the rings �A=M �0 is again a ®eld, and
A 0 is the product of these ®elds. A straightforward computation now shows that
zA 0 �s� � zA�rs�. Since we also have l r > #B, the corresponding statement for B is
true as well, and likewise for C and D. Also, we may view B 0 and C 0 as subrings
of A0, with intersection D 0. Hence, applying what we proved above, we ®nd that
Ql�l r� is an integer.

We have shown that the rational function Ql � f =g assumes integer values at
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in®nitely many points l r. For each of them, g�l r� divides f �l r �, and therefore it
divides u�l r� f �l r� � v�l r �g�l r� � N as well. Thus, the polynomial g is bounded
on an in®nite set of integers. This implies that g is constant, and in fact we have
g � 1 since its constant term is 1. It follows that Ql � f is a polynomial.

The remaining assertions of the theorem are now immediate. In particular, the
statement about deg Ql is obtained from the equality

#�Ared =�Bred � Cred�� �
#Ared ´ #Dred

#Bred ´ #Cred

;

which follows from (5.7). This completes the proof of Theorem 5.6.

Remark. A more conceptual proof of the fact that Ql is a polynomial may be
sketched as follows. Let l be ®xed, and let K be an algebraic closure of Fl . Write
SA for the ®nite set of ring homomorphisms A! K . The Frobenius automorphism
of K induces a permutation of SA and therefore an automorphism f of the
complex vector space CSA . One shows that the characteristic polynomial of f is
equal to Pl . Next, using the fact proven above that Dred � Bred Ç Cred , one shows
that there is an exact sequence

0! CSD ! CSB � CSC ! CSA

of complex vector spaces, the maps respecting the action of f. Now, to prove that
Ql is a polynomial, one observes that it is in fact the characteristic polynomial of
the induced action of f on the cokernel of the rightmost map.

Corollary 5.8. Let A, B, C and D be as in Theorem 5.6, and let d be a non-
negative integer such that the ®nite abelian group A=B can be generated by d
elements. Then we have

#A�=#C �

#B�=#D�
>

#A=#C

#B=#D
´
Y

l j # �A= C�

�
1ÿ 1

l

�d

;

where l ranges over primes.

Proof. Let Ql be as in Theorem 5.6. For any complex root of unity h and any
prime number l we have j1ÿ h= l j> 1ÿ 1= l. Therefore we haveY

l

Ql�lÿ1�>
Y

l

�
1ÿ 1

l

�deg Q l

:

If l does not divide the order of A=C, then it does not divide the order of its
homomorphic image Ared =�Bred � Cred� either; so then we have deg Ql � 0. The
group Ared =�Bred � Cred� is a homomorphic image of A=B, so it can be generated
by d elements. It is also of square-free exponent, because Ared is a product of
®elds. Therefore #�Ared =�Bred � Cred�� divides

Q
l d, the product ranging over the

primes dividing its order. This implies that deg Ql < d for all l, and one obtains
Corollary 5.8 from the inequality above and (5.1).

By means of the same argument one proves the upper bound

#A�=#C �

#B�=#D�
<

#A=#C

#B=#D
´
Y

l j # �A= C�

�
1� 1

l

�d

:
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The following lemma provides an explicit bound for the product appearing in
Corollary 5.8.

Lemma 5.9. Let P be a ®nite set of prime numbers. Then we haveY
l2P

�
1ÿ 1

l

�
>

� ���
5
p

´ log log max

�Y
l2P

l; 6000

��ÿ1

:

Proof. If the cardinality of P is a given number k , then the product�
log log max

�Y
l2P

l; 6000

��
´
Y
l2P

�
1ÿ 1

l

�
is minimal when P consists of the ®rst k primes. Hence, for the proof of Lemma
5.9 we may assume that P is the set of prime numbers less than or equal to x for
some x > 1. According to [13, 3.16 and 3.30] we have

log
Y
l < x

l > x ´

�
1ÿ 1

log x

�
for x > 41;

Y
l < x

�
1ÿ 1

l

�ÿ1

< eg ´

�
�log x� � 1

log x

�
for x > 1;

where l ranges over primes and g 8 0:5772157 denotes Euler's constant. These
inequalities and a small computation imply that for x > 79 we have�

log log
Y
l < x

l

�
´
Y
l < x

�
1ÿ 1

l

�
> 1

2
:

Explicit computation for small x shows that this inequality holds in fact for
x > 37, and that the conclusion of the lemma is valid for all x. This completes the
proof of Lemma 5.9.

Remark 5.10. It is clear from the proof that the conclusion of the lemma
holds with eg � o�1� as #P!1 in place of

���
5
p

. We have eg 8 1:7810724.

6. The order of a Picard group

Let K be an algebraic number ®eld, and let O be its ring of algebraic integers.
Let R be an order in K, that is, a subring R of O for which the index �O : R� of
additive groups is ®nite. By D�R� we denote the discriminant of R over Z , by
Pic R the group of classes of invertible ideals of R, and by h�R� the order of

Pic R. The regulator of R is denoted by reg R, the torsion subgroup of R� by m�R�,
and the order of m�R� by w�R�. We write bZ for the pro®nite completion of Z, andbA for A
Z

bZ when A is a ring. One readily proves that the index �bO� : bR�� of
multiplicative groups is ®nite; in fact, it is equal to ��O=F�� : �R=F��� for any
non-zero O-ideal F that is contained in R (for example, F � �O : R�O). By a

formula of Dedekind, the number h�R� ´ reg R=�w�R� ´ �bO� : bR��� is the same for
all orders R in K, so in fact

h�R� ´ reg R

w�R� ´ �bO� : bR�� � h�O� ´ regO

w�O� ;�6:1�

see [15, Theorem 3.7 and Corollary 4.6].
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Next assume that K is a totally imaginary quadratic extension of a totally real
®eld K� . We denote the non-trivial K�-automorphism of K by an overhead bar.
The degree of K� over Q is denoted by d, and the ring of integers of K� by O�.
We assume that R � R, and we put R� � R Ç O� . Let K�q 0 be the multi-
plicative group of totally positive elements of K� . We de®ne the group Pic� R to
consist of equivalence classes of pairs �I; b�, where I Ì K is an invertible R-ideal
and b 2 K�q 0 is such that I I � bR; here we de®ne two such pairs �I; b� and
�J; g� to be equivalent if there exists a 2 K � with aI � J and aab � g. The
group multiplication in Pic� R is de®ned by �I; b� ´ �I 0; b 0 � � �I I 0; bb 0 �.

Theorem 6.2. With the notation and hypotheses as above, assume moreover
that K does not contain an imaginary quadratic sub®eld. Let d be the product of
the prime numbers dividing �O : R�. Then Pic� R is a ®nite group of order at least

�d ÿ 1�dÿ1 ´ w�R� ´
�������������jD�R�jp

=
��������������
D�R��

p
m 0 ´ �log D�O���dÿ1 ´ log jD�O�j ´ �20 log log maxfd; 6000g�d

where m 0 equals 25, 45 or 5d !� 5, according as d � 2, d � 3, or d > 4.

The proof of Theorem 6.2 is preceded by two auxiliary results. We keep the
notation and hypotheses as above; the special condition on K in Theorem 6.2 is
not needed in Lemmas 6.3 and 6.4.

We denote by Pic� R� the group of strict equivalence classes of invertible
R�-ideals, where I and J are called strictly equivalent if there exists a 2 K�q 0

such that I � aJ. We write N for the norm map K! K� de®ned by N�x� � xx,
and for several maps that it induces. One of these maps is the map
Pic R! Pic� R� ; to see that it is de®ned it suf®ces to observe that the groups

Pic R and Pic� R� may be identi®ed with bK �=�bR�K �� and bK ��=�bR��K�q 0�
respectively, the notation b being as above.

Lemma 6.3. The group Pic� R is ®nite of order

#C ´
w�R�

2d
´

h�O� ´ regO ´ w�O��
h�O�� ´ regO� ´ w�O� ´

�bO� : bR��
�bO�� : bR��� ;

where C denotes the cokernel of the map N: Pic R! Pic� R� .

Proof. Write R��q 0 � R� Ç K�q 0. The map Pic� R! Pic R sending the class
of �I; b� to the class of I gives rise to an exact sequence

1! R��q 0 =NR� ! Pic� R! Pic Rÿ!N Pic� R� ! C! 1:

It follows that Pic� R is ®nite of order #C ´ h�R� ´ #�R��q 0 =NR��=#Pic�R� . The
exact sequence

1! R��q 0! R�� ! K ��=K�q 0! Pic� R� ! Pic R� ! 1;

in which the middle group has order 2d , implies that

#Pic� R� � 2dh�R��=#�R��=R��q 0�;
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so we ®nd that

#Pic� R � #C ´
h�R�

h�R��
´
#�R��=NR��

2d
:

From #�R��=R�2
� � � 2d it follows that the last factor on the right equals the

inverse of the order of the group NR�=R�2
� . Since m�R� is the kernel of

N: R� ! R�� , there is an exact sequence

1! m�R�R�� ! R� ÿ!N NR�=R�2
� ! 1:

Hence we have 2d=#�R��=NR�� � #�NR�=R�2
� � � �R� : m�R�R���, and this is

equal to the regulator of the subgroup m�R�R�� of R� divided by reg R. The

former regulator equals 2dÿ1 reg R� , the factor 2dÿ1 coming from K being totally
complex and K� being totally real. Thus we obtain

#Pic� R � #C ´
1

2dÿ1
´

h�R� ´ reg R

h�R�� ´ reg R�
:

Now apply Dedekind's formula (6.1), both to R and to R�, and use the fact that
w�R�� � 2, to conclude the proof of Lemma 6.3.

Lemma 6.4. Let d be as in the statement of Theorem 6.2. Then we have

�bO� : bR��
�bO�� : bR���>

������������������������
D�R�=D�O�p

=
������������������������������
D�R��=D�O��

p
� ���5p ´ log log maxfd; 6000g�d :

Proof. Let F � �O : R�O, which is an O-ideal contained in R. Likewise,
F� �F Ç O� is an O�-ideal contained in R Ç O� � R� . Let A be the ®nite ring
O=F, and denote its subrings O�=F� and R=F by B and C, respectively. Then
the ring D � B Ç C is given by D � R�=F�. The expression on the left in
Lemma 6.4 is now equal to #A� ´ #D�=�#B� ´ #C ��, so we can apply Corollary
5.8; note that A=B can be generated by d elements, since it is a homomorphic
image of the group O=O� . We ®nd that

�bO� : bR��
�bO�� : bR���>

#A=#C

#B=#D
´
Y

l j # �A=C�

�
1ÿ 1

l

�d

;

with l ranging over prime numbers. By Lemma 5.9, the product appearing on the

right is bounded below by � ���5p ´ log log maxfd; 6000g�ÿd. We have

#A=#C � �O : R� �
������������������������
D�R�=D�O�

q
;

and likewise #B=#D � ������������������������������
D�R��=D�O��

p
. This proves Lemma 6.4.

Remark 6.5. The weaker lower bound with denominator

�
���
5
p

´ log log maxfd; 6000g�3 d

is much easier to obtain. It suf®ces to apply (5.5) to A and D and to use the
trivial upper bounds #B� < #B and #C � < #C.

Proof of Theorem 6.2. We apply the formula of Lemma 6.3. The factor #C is
obviously at least 1. For the last two factors we use the lower bounds provided by
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Proposition 4.2 and Lemma 6.4. Noting that

21:243

4:270
< 5; 5�m� 1�< m 0; 2 ´ 4:270 ´

���
5
p

< 20;

we obtain Theorem 6.2.

7. Fourth degree Weil polynomials

In this section we denote by q a power of a prime number. We shall study the
set of Weil q-polynomials of degree 4, as de®ned in § 2. For a; b 2 Z , we de®ne
ha; b 2 Z�X � by

ha; b � �X 2 � q�2 ÿ aX�X 2 � q� � bX 2:

Proposition 7.1. The map sending �a; b� to ha; b is a bijection from the set of
pairs of integers a, b satisfying

2ja j ���qp ÿ 4q < b < 1
4

a2 < 4q

to the set of Weil q-polynomials of degree 4. The polynomial ha; b has a real zero

if and only if �b� 4q�2 ÿ 4qa2 � 0. If ha; b is ordinary then it does not have a
real zero.

Proof. First we show that ha; b is a Weil polynomial whenever a and b satisfy
the stated inequalities. From a2 ÿ 4b > 0 it follows that there are real numbers j
and t such that X 2 ÿ aX � b � �X ÿ j��X ÿ t�. The inequality 2ja j ���qp ÿ 4q < b
implies that �62

���
q
p �2 ÿ a�62

���
q
p � � b > 0, and so

�2 ���
q
p ÿ j��2 ���

q
p ÿ t�> 0; �2 ���

q
p � j��2 ���

q
p � t�> 0:

If j > 2
���
q
p

then the ®rst inequality implies that t > 2
���
q
p

, which contradicts
jt � b < 4q. Likewise, j < ÿ2

���
q
p

contradicts the second inequality. Therefore we
have jjj< 2

���
q
p

, and by symmetry jtj< 2
���
q
p

. This implies that there are complex
numbers p and r of absolute value

���
q
p

such that X 2 ÿ jX � q � �X ÿ p��X ÿ p�
and X 2 ÿ tX � q � �X ÿ r��X ÿ r�. From j � t � a and jt � b it follows that

�X ÿ p��X ÿ p��X ÿ r��X ÿ r� � �X 2 ÿ jX � q��X 2 ÿ tX � q� � ha;b;

so that ha; b is a Weil polynomial of degree 4.
Conversely, suppose that h is a Weil polynomial of degree 4. From h�0� � q2 it

follows that each real zero of h has even multiplicity, so there are complex
numbers p and r of absolute value

���
q
p

such that

h � �X ÿ p��X ÿ p��X ÿ r��X ÿ r�:
Let j � p� p and t � r� r. These are real numbers of absolute value at most
2
���
q
p

, and putting a � j � t and b � jt we have

h � �X 2 ÿ tX � q��X 2 ÿ jX � q� � �X 2 � q�2 ÿ aX�X 2 � q� � bX 2:

Since the coef®cients of h at X 3 and X 2 are equal to ÿa and 2q� b, respectively,
we have a; b 2 Z, and a, b is the unique pair of integers with h � ha; b .

Because j and t are in the closed interval �ÿ2
���
q
p

; 2
���
q
p �, we have

4qÿ 4a
���
q
p � b � �2 ���

q
p ÿ j��2 ���

q
p ÿ t�> 0
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and

4q� 4a
���
q
p � b � �2 ���

q
p � j��2 ���

q
p � t�> 0;

so b > 2ja j ���qp ÿ 4q. We have also

b � jt < 1
4
�j � t�2 � 1

4
a2

and
1
4

a2 � 1
4
�j � t�2 < 1

4
�4 ���

q
p �2 � 4q:

The polynomial ha; b has a real zero if and only if j or t is in f2 ���
q
p

; ÿ 2
���
q
p g.

This is equivalent to one of 62
���
q
p

being a zero of X 2 ÿ aX � b, which occurs if
and only if �b� 4q�2 ÿ 4qa2 � 0. This cannot happen if gcd�b; q� � 1, that is, if
h is ordinary.

This proves Proposition 7.1.

Proposition 7.2. Let h � ha; b be a Weil q-polynomial of degree 4. Then h is
irreducible over Q if and only if a2 ÿ 4b is not an integer square and
�b� 4q�2 ÿ 4qa2 6� 0.

Proof. The condition �b� 4q�2 ÿ 4qa2 6� 0 is equivalent to h not having a
real zero. Since the numbers 6

���
q
p

have degree at most 2 over Q , this condition
is satis®ed if h is irreducible. Hence we may, in the proof of Proposition 7.2,
assume that h does not have a real zero.

As in the proof of Proposition 7.1, we denote by p a complex zero of h, and
we put j � p� p. From p � q=p we see that j 2Q�p�. Since p is not real and
p2 ÿ jp� q � 0, we have �Q�p� : Q�j�� � 2. Hence the irreducibility of h over
Q, which is equivalent to �Q�p� : Q� � 4, is also equivalent to �Q�j� : Q� � 2.

Since j is a zero of X 2 ÿ aX � b this is the case if and only if a2 ÿ 4b is not an
integer square. This proves Proposition 7.2.

In the rest of this section we let h � ha; b be a Weil q-polynomial of degree 4
that is irreducible over Q . We denote by p a zero of h in some extension ®eld of
Q, and we put K � Q�p�. This is an algebraic number ®eld of degree 4 over Q ,
and it has an automorphism of order 2 for which p � q=p. The ®eld K is a
totally imaginary quadratic extension of the real quadratic number ®eld
K� � Q�p� p�, and generates the Galois group of K over K� . As in the
previous section, we write O for the ring of integers of K and O� for the ring of
integers of K� . Moreover, we put R � Z�p; p�, which is an order in K , and
R� � Z�p� p�, which is an order in K� . The hypothesis R � R of § 6 is clearly
satis®ed, and from R � R��p� � R� � R�p one sees that R� is indeed equal to
the ring R Ç O� that we called R� in § 6.

Proposition 7.3. With the notation and hypotheses as above, let Tr denote
the trace function K!Q, and let r and r denote zeros of h, different from p and
p, in some extension ®eld of K. Then the element i � �pÿ p��p� pÿ rÿ r�
belongs to R, and for r 2 R one has Tr�rR� Ì Z if and only if r 2 Riÿ1.

Proof. From p� p� r� r � a it follows that r� r 2 R, so i 2 R. Next, let
Tr 0: K! K� and Tr�: K� !Q denote the relative traces. A quick computation,
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which is based on R � R� � R�p, shows that for r in R one has Tr 0�rR� Ì R� if
and only if r 2 R�pÿ p�ÿ1. Likewise, from R� � Z� Z ´ �p� p� one deduces
that for r 0 2 R� one has Tr��r 0R�� Ì Z if and only if r 0 2 R��p� pÿ rÿ r�ÿ1.
Combining these two facts with the formula Tr � Tr� ± Tr 0 and with the
R�-linearity of Tr 0 one ®nds the last assertion of Proposition 7.3. This proves
Proposition 7.3.

Proposition 7.4. In addition to the notation and hypotheses above, let the
function D be as in § 6, let d, as in Theorem 6.2, be the product of the prime
numbers dividing �O : R�, and put

c�h� � �a2 ÿ 4b�1= 2 ´ ��b� 4q�2 ÿ 4qa2�1=2

as in § 2. Then we have

0 < D�O��< D�R�� � a2 ÿ 4b < 16q;

0 < D�O�< D�R� � ��b� 4q�2 ÿ 4qa2� ´ D�R��2 < 256q4 � �4q�4;

d < c�h� �
�����������
D�R�

p
=
��������������
D�R��

p
<

32

3
���
3
p ´ q3=2:

Proof. We may assume that K is a sub®eld of the ®eld of complex numbers.
Let r, j and t be as in the proof of Proposition 7.1. Since the irreducible
polynomial of j over Q is X 2 ÿ aX � b, the discriminant of the ring R� � Z�j�
equals a2 ÿ 4b. This equals �j ÿ t�2, so it belongs to the open interval �0; 16q�.
From D�R�� � �O� : R��2D�O�� we obtain 0 < D�O��< D�R��.

We have D�O� > 0 since K has an even number of complex places, and

D�R� � �O : R�2D�O�> D�O�. The irreducible polynomial of p over K� is

X 2 ÿ jX � q, and its discriminant �pÿ p�2 � j 2 ÿ 4q equals the discriminant of
the R�-basis 1, p for R . By an easy computation, the norm map K� !Q sends

this discriminant to �b� 4q�2 ÿ 4qa2; so using the Z-basis 1, j, p, jp for R
one ®nds that D�R� � ��b� 4q�2 ÿ 4qa2� ´ D�R��2. One obtains the inequality

D�R�< 256q4 by maximizing ��b� 4q�2 ÿ 4qa2� ´ �a2 ÿ 4b�2 as a function of
real variables a and b over the domain described by the inequalities in Proposition
7.1; the maximum is assumed at a � 0, b � ÿ2q.

The equality c�h� � �����������
D�R�p

=
��������������
D�R��

p
follows immediately. To obtain the

stated upper bound for c�h�, one maximizes c�h�2 as a function of real variables
a and b over the domain described by the inequalities in Proposition 7.1; the
maximum is assumed for a � 0, b � ÿ 4

3
q.

It remains to prove the upper bound for d. From

�O : R� � �O : O��p�� ´ �O��p� : R��p�� � �O : O��p�� ´ �O� : R��2

it follows that the square of each prime l dividing �O : R� divides one of the
numbers D�O��p��=D�O� and D�R��. We have

D�O��p��
D�O� � ��b� 4q�2 ÿ 4qa2� ´ D�O��2

D�O� ;

and this divides �b� 4q�2 ÿ 4qa2 because D�O� is divisible by D�O��2. Therefore
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we have

d2 < ��b� 4q�2 ÿ 4qa2� ´ D�R�� � c�h�2:
This proves Proposition 7.4.

Proposition 7.5. With the notation and hypotheses as above, the ®eld K

contains an imaginary quadratic sub®eld if and only if �b� 4q�2 ÿ 4qa2 is an
integer square.

Proof. Clearly K contains an imaginary quadratic sub®eld if and only if the
Galois group G of a normal closure of K over Q is isomorphic to the Klein four
group. Let G be viewed as a transitive permutation group of the four zeros of h.
Since K is a tower of two quadratic extensions, the order of G divides 8.
Inspecting the symmetric group of degree 4, one sees that a transitive subgroup of
order dividing 8 is isomorphic to the Klein four group if and only if it consists of
even permutations only. We conclude that K has an imaginary quadratic sub®eld
if and only if its discriminant over Q is a square. By the formula for D�R� in
Proposition 7.4, this discriminant equals �b� 4q�2 ÿ 4qa2 (modulo Q�2). This
proves Proposition 7.5.

Remark 7.6. In § 2, we de®ned h to be regular if neither of a2 ÿ 4b and
�b� 4q�2 ÿ 4qa2 is an integer square. From Propositions 7.2 and 7.5 we see that
h is regular if and only if the ring Q�X �=�h� is a ®eld that does not have an
imaginary quadratic sub®eld.

The notation Pic� R and w�R� in the following result was introduced in § 6.

Proposition 7.7. Let the notation and hypotheses be as in Proposition 7.4,
and assume moreover that h is regular. Then we have

#Pic� R

w�R� >
c�h�

95,000 ´ �log q�2 ´ �log log q�2
whenever q > 8100.

Proof. By Proposition 7.5, the ®eld K does not contain an imaginary quadratic
sub®eld. Hence we can apply Theorem 6.2 with d � 2. Using the equalities and
inequalities given in Proposition 7.4 we obtain

#Pic� R

w�R� >
c�h�

40,000 ´ �log log maxf32�q=3�3=2; 6000g�2 ´ log�16q� ´ log�4q� :

Applying the inequalities

32

3
���
3
p ´ q3=2 > 6000;

95,000

40,000
´

�log q�2
log�4q� ´ log�16q� ´

�
log log q

log log�32�q=3�3=2�

�2

> 1;

which are valid for q > 8100, we arrive at Proposition 7.7.

In the ®nal results of this section we make the additional assumption that h
be ordinary.
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Proposition 7.8. Let h be an ordinary regular Weil polynomial of degree 4,
let p be a zero of h in an extension ®eld of Q, and let K � Q�p�. Then for every
positive integer n one has K � Q�pn�.

Proof. From

�p� p�2 ÿ a�p� p� � ÿb; pp � q; gcd�b; q� � 1

it follows that p and p generate the unit ideal of R. Therefore, for any positive
integer n , the elements pn and pn generate the unit ideal as well. Since they are
not units, that implies in particular that they are distinct: pn 6� pn. Therefore pn

does not belong to K� , and Q�pn� is not contained in K� . But since K does, by
Proposition 7.5, not have an imaginary quadratic sub®eld, every proper sub®eld of
K is contained in K� . It follows that Q�pn� must be equal to all of K . This
proves Proposition 7.8.

Proposition 7.9. Let h be an ordinary regular Weil polynomial of degree 4,
and let p and r be zeros of h in an extension ®eld of Q. Then we have r 6� p if
and only if the ®eld Q�p; r� has an exponential valuation v for which v�p� > 0,
v�r� > 0, and v�q� > 0.

Proof. As we saw in the proof of Proposition 7.8, the elements p and p
generate the unit ideal of R, and so there is no exponential valuation v of Q�p�
with v�p� > 0 and v�p� > 0. This proves the `if' part. For the `only if ' part, we
assume that r 6� p. Suppose that p and r are coprime in the ring of algebraic
integers O 0 of Q�p; r�. Since r divides pp � q, it must divide p. Then p=r is an
algebraic integer all of whose conjugates in the complex plane have absolute
value 1, so it is a root of unity. Then we have rn � pn for some positive integer
n, while r 6� p. Hence the total number of conjugates of pn is smaller than 4.
This contradicts Proposition 7.8. It follows that O 0 has a maximal ideal that
contains both p and r. Then it contains q � pp as well. This maximal ideal gives
rise to an exponential valuation v of Q�r; p� with v�p� > 0, v�r� > 0, and
v�q� > 0, as required. This proves Proposition 7.9.

8. Abelian surfaces with a given Weil polynomial

In this section we prove Proposition 2.3. We denote by k a ®nite ®eld, by q its
cardinality, by p its characteristic, and by k an algebraic closure of k. An Abelian
variety A over k is called ordinary if the number of elements of the group A�k� of
order dividing p equals pdim A. By Q p we denote the ®eld of p-adic numbers.

We recall Deligne's description, given in [4], of the category of ordinary
Abelian varieties over k , and the corresponding description of their polarizations
given by Howe [6].

By a Deligne q-module, or brie¯y a Deligne module, we mean a pair �T ; F� ,
where T is a ®nitely generated free Z-module and F is an endomorphism of T
satisfying the following conditions:

(a) the endomorphism of T 
Z Q induced by F is semi-simple, in the sense
that H�F� � 0 for some square-free polynomial H 2Q�X �, and all

eigenvalues of F in C have absolute value q1=2;
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(b) at least half of the zeros of the characteristic polynomial of F in an
algebraic closure of Q p , counting multiplicities, are p-adic units;

(c) there is an endomorphism V of T such that FV � q.

If �T ; F� and �T 0; F 0 � are Deligne modules, then a morphism from �T ; F� to
�T 0; F 0 � is a group homomorphism w: T ! T 0 such that w ± F � F 0 ± w.

Every Deligne module �T ; F� has a dual Deligne module � ÆT ; ÆF�, de®ned by
ÆT � Hom�T ; Z� and � ÆFu��t� � u�V t� for u 2 ÆT and t 2 T . Any morphism w: �T ; F�!
�T 0; F 0 � of Deligne modules induces a dual morphism Æw: � ÆT 0; ÆF 0 � ! � ÆT ; ÆF �, by
Æw�u��t� � u�w�t�� for u 2 ÆT 0 and t 2 T .

For any Deligne module �T ; F�, the subring R � Z�F; V � of the algebra of
endomorphisms of �T ; F� that is generated by F and V has the following two
properties: ®rst, its additive group is ®nitely generated and free as a Z-module;
and second, R
Z Q is a product of ®nitely many totally imaginary algebraic
number ®elds, each of which is a quadratic extension of a totally real number
®eld. Let, generally, R be a ring satisfying these two conditions. By a CM-type for
R we mean a set F of ring homomorphisms f: R! C with the property that for
each ring homomorphism w: R! C there exist a unique element f 2 F and a
unique element c of the Galois group of C over R such that w � c ± f. If F is a
CM-type for R , then an element i 2 R is called F-positive if for each f 2 F the
number f�i�= i is real and positive; here i 2 C denotes a ®xed square root of ÿ1.
Such elements i exist for every F.

With this terminology, we call a morphism l: �T ; F� ! � ÆT ; ÆF� a polarization of
�T ; F� with respect to a CM-type F for R � Z�F; V � , if the Z-bilinear map
T ´ T ! Z that sends �s; t� to l�t��is� is symmetric and positive de®nite. (This
does not depend on the choice of i; cf. [6, (4.10)]. The other conditions
mentioned in [6, (4.10)] are automatic.) A polarization l is called principal if it is
an isomorphism �T ; F� ! � ÆT ; ÆF�. By a principally polarized Deligne module we
mean a pair consisting of a Deligne module �T ; F� and a principal polarization l
of �T ; F�; this notion is relative to a choice of F.

Let W denote the ring of Witt vectors over k . It is isomorphic to the completion of
the ring of integers of a maximal unrami®ed extension of Q p . Denote by Q the
algebraic closure of Q inside C. For a ring homomorphism e: W ! C, we let ve be
the unique exponential valuation on Q that extends the valuation on Q Ç e�W �
coming from W , normalized so that ve� p� � 1. For any e and any ring R � Z�F; V �
as considered above, the set Fe � ff: R! C: ve�f�F�� > 0g is a CM-type for R .

Theorem 8.1. For each ring homomorphism e: W ! C there exists a category
equivalence D � De; k from the category of ordinary Abelian varieties over k to
the category of Deligne q-modules, such that for every ordinary Abelian variety A
over k, with D�A� � �T ; F�, the following is true:

(a) the characteristic polynomial of F on T equals the characteristic polynomial
hA of the Frobenius endomorphism of A;

(b) if ÆA is the Abelian variety over k that is dual to A, then ÆA is ordinary, and
there is an identi®cation D� ÆA� � � ÆT ; ÆF�, functorial in A, with the property
that a morphism y: A! ÆA is a polarization, or a principal polarization, if
and only if the map D�y�: �T ; F� ! � ÆT ; ÆF� is a polarization, or a principal
polarization, respectively, with respect to Fe;
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(c) if l is a ®nite extension of k inside k, then De; l�A
k l� is the Deligne
q �l : k �-module �T ; F �l : k ��.

Proof. The construction of D and the proof that it is an equivalence of
categories can be found in [4]. Properties (a) and (c) are clear from the
construction. For (b) we refer to [6, § 4]; the functoriality statement, which means
that D� Æf � � D� f �Æ for any morphism f of Abelian varieties, is obtained from
[6, proof of (4.5)] combined with [11, Lemma 16.2(b)]. This proves Theorem 8.1.

In the following result, we use the notation Pic� and w introduced in § 6. For
the meaning of `weighted number', see § 2.

Proposition 8.2. Let h be an ordinary regular Weil polynomial of degree 4,
and let R � Z�p; p� be as de®ned before Proposition 7.3. Then the weighted
number of principally polarized two-dimensional Abelian varieties �A; y� over k
with hA � h is at least �#Pic� R�=w�R�.

Proof. There is no harm in assuming that R is actually a subring of C. More
speci®cally, among the two complex zeros of h with positive imaginary part, we
let p be the one that has the largest real part. Of the two complex zeros of h
different from p and p, let r be the one with negative imaginary part. The fourth
zero is then r. We de®ne i � �pÿ p��p� pÿ rÿ r� 2 R as in Proposition 7.3.
Let the set F consist of the inclusion map R! C and the map R! C that maps
p to r and p to r; the existence of the latter map follows from the irreducibility
of h. The set F is clearly a CM-type for R , and the labeling of the zeros of h
implies that i is F-positive. Since r 6� p, there is by Proposition 7.9 an
exponential valuation v of Q�p; r� such that v�p� > 0, v�r� > 0, and v� p� > 0,
and we can normalize v so that v� p� � 1. We may extend v to a valuation of Q,
which we likewise denote by v, and extend the inclusion of Q into C to an
embedding of its completion Qv with respect to v into C. Composing that
embedding with a continuous embedding W !Qv we obtain an embedding
W ! C, which we call e. The construction of e implies that ve equals v. Also, the
de®nition of F and the choice of v imply that F � Fe .

The group Pic� R was de®ned, in § 6, to consist of equivalence classes of pairs
�I; b�, where I is an invertible R-ideal in the ®eld K of fractions of R, and where
b 2 K�q 0 is such that I I � bR. We show that each such pair �I ; b� gives rise to
a principally polarized Deligne module. First, denoting the map I! I sending x to
px simply by p, we claim that �I; p� is a Deligne module. Namely, from
I 
Z Q > K one sees that the characteristic polynomial of p on I equals h. Since
h is irreducible, this implies property (a) in the de®nition of Deligne modules.
From the `if '-part of Proposition 7.9 we obtain (b), and to prove (c) we let V be
the map sending x to px. Next we claim that there is an isomorphism
l: �I; p� ! � ÆI; Æp� with

l�t��s� � Tr�st�bi�ÿ1�;�8:3�
where Tr denotes the trace map K!Q. To prove this we ®rst note that by the
non-degeneracy of the trace map there is, for each group homomorphism
u: I!Q, a unique element a 2 K such that for all s 2 I one has u�s� � Tr�sa�.
Let u and a be such. Then u�I� is a subset of Z if and only if Tr�aI � Ì Z . This
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is equivalent to aI Ì Riÿ1, by Proposition 7.3, and to a 2 I ÿ1iÿ1 � I�bi�ÿ1.
Thus, for each t 2 I the map l�t�: I!Q de®ned by (8.3) takes values in Z , and
each group homomorphism I! Z is of the form l�t� for a unique t 2 I. It follows
that l is an isomorphism from I to ÆI � Hom�I; Z�. We have l�pt��s� � l�t��ps�,
so l is actually a morphism, and hence an isomorphism, of Deligne modules.
Finally, we claim that l is a polarization, and hence a principal polarization, of
�I; p�. This is equivalent to the expression l�t��is� � Tr�st=b� being symmetric
and positive de®nite as a function of s and t, which follows from b 2 K�q 0.

This concludes the construction of a principally polarized Deligne module
��I; p�; l�, starting from a pair �I; b�. Let �J; g� be a second such pair, giving
rise to a principally polarized Deligne module ��J; p�; m�. We investigate all
isomorphisms of principally polarized Deligne modules ��I; p�; l� ! ��J; p�; m�,
that is, group isomorphisms j: I! J with jp � pj that satisfy l�t��s� � m�jt��js�
for all t; s 2 I, or, equivalently, l � Æjmj. The group isomorphisms j: I! J
respecting the action of p are given by x 7! ax, where a 2 K satis®es aI � J. The
condition l�t��s� � m�jt��js� amounts to

Tr�st�bi�ÿ1� � Tr�asat�gi�ÿ1� for all s; t 2 I;

which is equivalent to aab � g. This implies, ®rst, that two pairs �I; b�, �J; g�
give rise to isomorphic principally polarized Deligne modules if and only if they
de®ne the same element of Pic� R; so the number of isomorphism classes of
principally polarized Deligne modules obtained in this way is equal to #Pic� R.
Secondly, we ®nd that the automorphism group of each ��I; p�; l� may be
identi®ed with the group of all a 2 K � satisfying aI � I and aa � 1. Clearly any
root of unity a in R satis®es these conditions; and no other element a 2 K � does,
since the ®rst condition implies that aR � aI I =b � I I =b � R, so a 2 R�, while
the second condition gives a 2 ker�N: R� ! R��� � m�R�. The conclusion is that
each ��I; p�; l� has exactly w�R� automorphisms.

We conclude that the `weighted number' of principally polarized Deligne
modules that we constructed equals �#Pic� R�=w�R�. The notion of isomorphism
of principally polarized Deligne modules that we just used corresponds, under the
category equivalence of Theorem 8.1, to the notion of isomorphism of principally
polarized Abelian varieties, by Theorem 8.1(b). Thus, the weighted number of
principally polarized Abelian varieties �A; y� over k that we obtain is also
�#Pic� R�=w�R�. As we saw above, the characteristic polynomial of p on each I
equals h, so by Theorem 8.1(a) each of these A satis®es hA � h. This proves
Proposition 8.2.

Proof of Proposition 2.3. The ®rst assertion of Proposition 2.3 follows from
Propositions 8.2 and 7.7. For the last two assertions, let A be any Abelian variety
over k with hA � h. Then A is ordinary, by [4, § 2]. To prove that A is absolutely
simple, let B be a non-zero Abelian subvariety of A
k l, for some ®nite extension
l of k in k; it will suf®ce to prove that B � A
k l. Let n � �l : k�. By Theorem
8.1(c) and 8.1(a), the Weil polynomial of A
k l over l is the characteristic
polynomial of F n on T , where D�A� � �T ; F�. Its complex zeros, counting
multiplicities, are the n th powers of the complex zeros of h. Proposition 7.8 now
implies that the Weil polynomial of A
k l over l is irreducible over Q . Therefore
the Weil polynomial of B over l , which divides the Weil polynomial of A
k l, is
actually equal to it. Hence B has the same dimension as A
k l, and therefore
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B � A
k l, as desired. To prove the last assertion of Proposition 2.3, it suf®ces to
remark that the trace of the Frobenius automorphism of A, as de®ned in [11], is
equal to the trace of hA , as de®ned in § 2. This proves Proposition 2.3.

9. Non-uniqueness of factorization in short intervals

In the present section we prove the following result.

Proposition 9.1. Let q be an integer with q > 1. Then there are fewer than
6 ´

���
q
p � 11 integers z for which there exist integers r, s, t and u in the interval

�� ���qp ÿ 1�2; � ���qp � 1�2� with z � rs � tu and fr; sg 6� ft; ug.
In § 10 we shall use Proposition 9.1 in the proof of Proposition 2.4(a). The

present section can be skipped by readers who are interested in Proposition 2.4(b)
only; the latter result suf®ces both for our smoothness test and for the application
to primality testing alluded to in the introduction.

We deduce Proposition 9.1 from a general result on positive integer solutions to
the equation rs � tu that lie in a short interval �L ; U �. If the length U ÿ L of the
interval is at most 2

���
L
p

, then all solutions are trivial in the sense that fr; sg � ft; ug
(see Remark 9.3). In the proof of Proposition 9.1 we shall take U � � ���qp � 1�2 and
L � � ���qp ÿ 1�2; then U ÿ L is a little larger, but it is still O� ���Lp �. In that case the
number of non-trivial solutions is O� ���Lp � (see Remark 9.3).

The number of integers z as in Proposition 9.1 is actually equal to
�l� o�1�� ´

���
q
p

for q!1, where l is given by

l � 4 log�2�
���
3
p
� � 6 log�1�

���
2
p
� � 10

3
log 3ÿ 2

���
3
p ÿ 3

���
2
p ÿ 10

3
8 3:178038436:

This can be shown by an elaboration of our argument.
We denote by �x� the greatest integer not exceeding x.

Lemma 9.2. Let U and L be real numbers with U > L > 0, and let
S � fx 2 Z: L < x < Ug. Then the following is true.

(a) The number M�L ; U � of triples r, s, t in S for which rs � t 2 and r > t
satis®es

M�L ; U �<
X

d

�
Md

2

�
< �

����
U
p
ÿ

���
L
p
�2 ´ � 3

2
�maxflog� ����U

p ÿ ���
L
p �; 0g�;

the sum ranging over the positive integers d with d < � ����U
p ÿ ���

L
p �2, where

Md � �
����������
U =d
p ÿ ���������

L=d
p � 1�.

(b) The number N�L ; U � of quadruples r, s, t, u in S for which rs � tu and
r > maxft; ug satis®es

N�L ; U �<
X
a; b

�2�bÿ a� � 1�

´
�

1� 1

b

��������������������������������������
�
����
U
p
ÿ

���
L
p
�2 ÿ ab

q ��������������������������������������
�
����
U
p
�

���
L
p
�2 ÿ ab

q �
< 2�U ÿ L��

����
U
p
ÿ

���
L
p
�2�1�maxflog�

����
U
p
ÿ

���
L
p
�; 0g�

� 2�
����
U
p
ÿ

���
L
p
�4;

135a hyperelliptic smoothness test, ii



the sum ranging over all pairs of positive integers a, b with a < b and
ab < � ����U

p ÿ ���
L
p �2.

Remark 9.3. The sums appearing in (a) and (b) are empty when U < � ���Lp � 1�2;

so in that case there are no non-trivial solutions to rs � tu in S. If U ÿ L � O� ���Lp �,
then

����
U
p ÿ ���

L
p � O�1�, so by (b) the number of non-trivial solutions is O� ���Lp �, and

by (a) the number of non-trivial solutions with t � u is O�1�.
Proof of Lemma 9.2. (a) Let r, s and t in S satisfy rs � t 2 and r > t, and put

d � gcd�r; s�. Then there are coprime positive integers a and b with a > b and
r � a2d and s � b2d . Hence, if for each positive integer d we denote by Nd the
number of positive integers c with c2d 2 S, then we have

M�L ; U�<
X
d > 1

�
Nd

2

�
:

We have Nd < Md , where Md is as in the statement of the lemma. For

d > � ����U
p ÿ ���

L
p �2 one has Md � 1 so�

Md

2

�
� 0:

This proves the ®rst inequality in (a). The second, which will not be used in the
sequel, follows from the inequalitiesX

d

1

d
< 1�maxflog T ; 0g;

X
d

1���
d
p < 2

����
T
p

for any T > 0, where d ranges over the positive integers less than or equal to T .
(b) Let r, s, t and u in S satisfy rs � tu and r > maxft; ug. De®ne

y � gcd�s; u�, x � s=y and x 0 � u=y. Then we have gcd�x; x 0 � � 1, so from
rx � rs=y � tu=y � tx 0 it follows that x divides t. Therefore we have t � xy 0 and
r � x 0y 0 for some integer y 0 . From r > maxft; ug we see that x 0 > x and y 0 > y; so
we can write x 0 � x� a and y 0 � y� b with positive integers a and b. The
quadruple r, s, t, u can now be expressed in x, y, a, b:

r � �x� a�� y� b�; s � xy; t � x� y� b�; u � �x� a�y:
Hence N�L ; U � is at most the number of quadruples of positive integers x, y, a,
b satisfying

L < xy; �x� a�� y� b�< U:

(In fact, one easily proves that N�L ; U � equals the number of such quadruples
satisfying gcd�x; a� � 1, but we shall not use the latter condition.)

For each pair a; b of positive integers, let Ra; b denote the plane region

Ra; b � f�x; y� 2 R2: x > 0; y > 0; L < xy; �x� a�� y� b�< Ug:
Writing Na; b � #�Ra; b Ç Z2�, we may express the result just proved by

N�L ; U �<
P

a; b Na; b , the sum ranging over all pairs of positive integers a; b.
Since we have evidently Na; b � Nb; a, we may rewrite this as

N�L ; U �<
X
a� b

Na; b � 2
X
a< b

Na; b ;�9:4�

the sums still ranging over pairs of positive integers.
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Let a and b be positive integers for which Ra; b is non-empty, and let
�x; y� 2 Ra; b. Then we have ab < �x� a�� y� b�< U. To obtain a better upper
bound for ab, we remark that L=x < y < U =�x� a� ÿ b, so that we have

bx2 � �Lÿ U � ab�x� La < 0:

This implies that the zeros r1 and r2 of the quadratic polynomial
bz2 � �Lÿ U � ab�z� La are real, with r1 < r2 (say), and that x lies between
them: r1 < x < r2 . The discriminant D�a; b� of the polynomial, which is given by

D�a; b� � �Lÿ U � ab�2 ÿ 4Lab � ��
����
U
p
ÿ

���
L
p
�2 ÿ ab� ´ ��

����
U
p
�

���
L
p
�2 ÿ ab�;

is equal to b2 ´ �r2 ÿ r1�2 and therefore non-negative. Since we know already that
ab < U < � ����U

p � ���
L
p �2, this implies that ab < � ����U

p ÿ ���
L
p �2. It follows that the

sum in (9.4) may be restricted to those pairs a; b for which we have
ab < � ����U

p ÿ ���
L
p �2.

We claim that for any of these pairs a; b we have

Na;b <

�
1�

���������������
D�a; b�p

b

�
� Na; b�1:�9:5�

For each �x; y� 2 Ra; b , the number x lies in the interval �r1; r2 � of length���������������
D�a; b�p

=b, and the number of integers in this interval is at most the term in
square brackets in (9.5). Hence, to prove (9.5), it suf®ces to show the following: if
x is any integer, then the number of integers y with �x; y� 2 Ra;b is at most 1
more than the number of integers y with �x; y� 2 Ra; b�1. This is clear if no

integer y exists with �x; y� 2 Ra; b. In the other case, let y 0 be the smallest integer
with �x; y 0 � 2 Ra; b. Then the de®nition of Ra; b immediately implies that for any
integer y > y 0 with �x; y� 2 Ra; b one has �x; yÿ 1� 2 Ra; b�1. This proves (9.5).

Repeatedly applying (9.5) one ®nds that

Na; b <
X

b 0

�
1�

�����������������
D�a; b 0 �p

b 0

�
;

the sum ranging over all integers b 0 > b with ab 0 < � ����U
p ÿ ���

L
p �2. Substituting

this inequality in (9.4), and collecting terms, we obtain

N�L ; U �<
X
a; b

�2�bÿ a� � 1� ´

�
1�

���������������
D�a; b�p

b

�
;

the sum ranging over all pairs of positive integers a; b with a < b and

ab < � ����U
p ÿ ���

L
p �2. By our formula for D�a; b�, this is the same as the ®rst

inequality in (b). The proof of the second inequality in (b), which will not be
used in the sequel, is elementary, and left to the reader. This proves Lemma 9.2.

Proof of Proposition 9.1. The number of integers z as in the statement of
Proposition 9.1 is at most the number of quadruples of integers r, s, t, u with

rs � tu; � ���qp � 1�2 > r > t > u > s > � ���qp ÿ 1�2:
That number is, in the notation of Lemma 9.2, equal to 1

2
�M�L ; U � � N�L ; U ��,

where L � � ���qp ÿ 1�2 and U � � ���qp � 1�2. We have � ����U
p ÿ ���

L
p �2 � 4, so

the sum in Lemma 9.2(a) ranges over 1 < d < 4, and it gives

M�L ; U �< 3� 1� 1� 1 � 6:
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The sum in Lemma 9.2(b) ranges over �a; b� 2 f�1; 1�; �1; 2�; �1; 3�; �1; 4�; �2; 2�g.
We have � ����U

p � ���
L
p �2 � 4q, and so we ®nd that

N�L ; U �< �1�
���
3
p

´
��������������
4qÿ 1

p
� � 3�1� 1

2

���
2
p

´
��������������
4qÿ 2
p � � 5�1� 1

3

��������������
4qÿ 3
p ��7�1

< 17� �2
���
3
p
� 3

���
2
p
� 10

3
� ´

���
q
p

< 265
24

���
q
p � 17 < 12

���
q
p � 16:

It follows that 1
2
�M�L ; U � � N�L ; U �� < 6

���
q
p � 11, as required. This proves

Proposition 9.1.

10. Constructing Weil polynomials

In this section we prove Proposition 2.4.
In Proposition 7.1 we described all Weil q-polynomials of degree 4 in terms of

two integer parameters a and b that satisfy certain inequalities. Writing these
inequalities in terms of a � a=

���
q
p

and b � b=q, we get a region W that is
independent of q:

W � f�a; b� 2 R2: jaj< 4; 2ja j ÿ 4 < b < 1
4
a2g:

Figure 10.1 provides a picture of W .

The evaluation map h 7! h�1� may be illustrated on this picture. If h � ha; b is
an ordinary Weil q-polynomial then we have

h�1� � �q� 1�2 ÿ a�q� 1� � b:

If one ®xes h�1�, one obtains a relation between a and b that determines a line of
slope q� 1 in the �a; b�-plane; in the �a; b�-plane the slope is �q� 1�= ���

q
p

. More
precisely, two integer vectors �a; b� give rise to the same value for h�1� if
and only if they differ by an integer multiple of the vector �1; q� 1� , and if
and only if the corresponding vectors �a; b� differ by an integer multiple of

138 h. w. lenstra jr , j. pila and carl pomerance

Figure 10.1. The sets W, V and W � 4v ( for q � 101).



v � �1=
���
q
p

; 1� 1=q�. The intersection of W � 4v with W consists of the single
point 4v� �0; ÿ4� � �4=

���
q
p

; 4=q�, which lies on the parabolic piece of the
boundary of W (see Figure 10.1). Since two Abelian varieties over a ®nite ®eld
are isogenous if and only if they have the same Weil polynomial (see [21,
Theorem 1(c)]), it follows that for any ®nite ®eld k and any integer z there are at
most ®ve isogeny classes of Abelian varieties A over k for which #A�k� � z; and
at most four if the single value z � �#k ÿ 1�2 is excluded, or if only Abelian
varieties A for which hA has no real zero are considered (for example, ordinary
Abelian varieties; see Proposition 7.1).

Proposition 2.4 asserts that, for most z in a certain range, there is at least one
suitable Weil polynomial h with h�1� � z. Here `suitable' means that h is ordinary
and regular, that, in the case of Proposition 2.4(b), the trace of h is odd, and that
c�h� is appropriately large. The latter condition is equivalent to the corresponding
point �a; b� not being close to the boundary of W .

Lemma 10.2. For any prime power q the following is true.

(a) The number of ordinary Weil q-polynomials h � ha; b for which a 6� 0 and
�b� 4q�2 ÿ 4qa2 is an integer square is less than 14

���
q
p

.

(b) The number of ordinary Weil q-polynomials h � ha; b for which a is odd
and �b� 4q�2 ÿ 4qa2 is an integer square is less than 4

���
q
p � 2.

(c) If ha; b is an ordinary Weil q-polynomial for which �b� 4q�2 ÿ 4qa2 is an
integer square, and both q and a are even, then one has a � 0 or
a2 ÿ 4b � 0.

Proof. (a) Suppose that h � ha; b is an ordinary Weil q-polynomial with a 6� 0,

and that �b� 4q�2 ÿ 4qa2 � c2 for some integer c . Then we have c2 � b2 mod
4q. Since h is ordinary, we have gcd�b; q� � 1, and hence we have, both for q
even and for q odd, that c�6b mod 2q. Changing the sign of c, if necessary, we
may assume that c� b� b� 4q mod 2q, so that we may write

c � b� 4qÿ 2kq

for some integer k . From the inequalities b� 4q > 0 and

0 < 4qa2 � �b� 4q�2 ÿ �b� 4qÿ 2kq�2 � 4kq�b� 4qÿ kq�
we see that k > 0, and that

b � a2

k
� �k ÿ 4�q:

Hence h is determined by a and k. The inequality b < 1
4

a2 from Proposition 7.1
may be rewritten as �k ÿ 4��k ÿ a2=�4q��< 0, so k lies in the closed interval

with endpoints 4 and a2=�4q�; we have a2=�4q�< 4, so we obtain

a2=�4q�< k < 4:

It follows that k 2 f1; 2; 3; 4g. For each of these values of k we have
0 < ja j< 2

�����
kq
p

. Also, since b is an integer, a is divisible by k when k � 2 or 3,
and a is divisible by 2 when k � 4. So for k � 1; 2; 3; 4 we have respectively

2�2 ���
q
p �; 2�

������
2q

p
�; 2�2

���������
q=3

p
�; 2�2 ���

q
p �
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possibilities for a , where �x� denotes the largest integer not exceeding x. Assertion
(a) now follows because 4� 2

���
2
p � 4=

���
3
p � 4 8 13:137828 < 14.

(b) Next let a be odd. Then we have a 6� 0, so we can apply the above. Since
k divides a2, it is odd as well, so we have k � 1 or 3. For these values we
have respectively

2� ���qp � 1
2
�; 2�

���������
q=3

p
� 1

2
�

possibilities for a . We have 2� 2=
���
3
p

8 3:154701 < 4, and (b) follows.
(c) Finally, let q and a be even, and suppose that a 6� 0. Since ha; b is ordinary

and q is even, the number b is odd. From �a2=k� � �k ÿ 4�q � b� 1 mod 2 and
a� 0 mod 2 it follows that k � 4 and that b � 1

4
a2.

This proves Lemma 10.2.

We de®ne the function C on W by

C�a; b� � �a2 ÿ 4b� ´ ��b� 4�2 ÿ 4a2�:
If h � ha; b is a Weil polynomial of degree 4, corresponding to the point

�a; b� � �a=
���
q
p

; b=q� of W , then we have c�h� � C�a; b�1=2 ´ q3=2.

Lemma 10.3. Let a0 , b1 and b2 be real numbers with a0 > 0, and let W0 be
the region

W0 � f�a; b� 2 R2: ja j< a0 ; b1 < b < b2g:
Suppose that W0 Ì W. Then the minimum of C on W0 is assumed at one of the
points �0; b1�, �0; b2�, �a0 ; b1� and �a0 ; b2�.

Proof. First let b be ®xed, with b1 < b < b2 . Then C�a; b� is a quadratic
function of a2 with a negative leading coef®cient. The minimum of any quadratic
function with a negative leading coef®cient on any compact interval is assumed at

one of the endpoints; in our case, at a2 � 0 or at a2 � a2
0 . It follows that the

minimum value of C�a; b� for ®xed b and ja j< a0 is one of C�0; b� and
C�a0 ; b�. Next ®x a 2 f0; a0g, and consider C�a; b� as a function of b. It is a
cubic in b, with a negative leading coef®cient, and its zeros are ÿ4ÿ 2a,
ÿ4� 2a, and 1

4
a2. These zeros satisfy ÿ4ÿ 2a <ÿ4� 2a < 1

4
a2. Since W0 lies

inside W , we have ÿ4� 2a < b < 1
4
a2, and on that interval C�a; b� is ®rst

increasing and next decreasing. One deduces that the minimum value of C�a; b�
is assumed at one of the endpoints b1 and b2. This proves Lemma 10.3.

Proof of Proposition 2.4(b). Let p be a prime number with p > 8100. De®ne

a0 � maxfa 2 Z: a odd, a < 14
27

���
p
p g; b0 � minfb 2 Z: b >ÿ 1

3
pg:

Then we have

14
27

���
p
p ÿ 2 < a0 < 14

27

���
p
p

; ÿ 1
3

p < b0 < ÿ 1
3

p� 1:�10:4�
Put

Y � fa 2 Z: ja j< a0 ; a oddg; Z � fb 2 Z: b0 ÿ 2pÿ 1 < b < b0g;
X � Y ´ Z :
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We begin by showing that for all �a; b� 2 X we have c�ha; b�> 4p3=2. Since we
have p > 8100, the points �a=

���
p
p

; b=p� corresponding to �a; b� 2 X all lie within
the region

V � f�a; b� 2 R2: ja j< 14
17
; ÿ 1

3
ÿ 2ÿ 1

8100
< b <ÿ 1

3
� 1

8100
g

(see Figure 10.1). One easily checks that V Ì W . Applying Lemma 10.3 to V , we
®nd that the minimum of C on V is equal to the value of C at one of the points

�0; ÿ 1
3
ÿ 2ÿ 1

8100
�; �0; ÿ 1

3
� 1

8100
�; � 14

17
; ÿ 1

3
ÿ 2ÿ 1

8100
�; � 14

27
; ÿ 1

3
� 1

8100
�:

These values are computed to be at least 16, so we have C > 16 on V .
From c�ha; b� � C�a=

���
p
p

; b=p�1=2 ´ p3=2 it now follows that c�ha; b�> 4p3=2 for
�a; b� 2 X , as asserted.

We next show that the values ha; b�1� for �a; b� 2 X include all integers in the
interval � p2 ÿ 1

2
p3=2; p2 � 1

2
p3 =2 �. From ha; b�1� � � p� 1�2 ÿ a� p� 1� � b one

sees that

ha; b�1� ÿ ha�2; b�1� � 2� p� 1�:
Since Z consists of 2� p� 1� consecutive integers, and

Y � fÿa0 ; ÿa0 � 2; . . . ; a0 ÿ 2; a0g;
it follows that the assignment �a; b� 7! ha; b�1� gives a bijection of X with the set
of integers in the interval

�� p� 1�2 ÿ a0� p� 1� � b0 ÿ 2pÿ 1; � p� 1�2 � a0� p� 1� � b0�:
Using the inequalities (10.4) and

���
p
p

> 90 we ®nd that this interval contains the
interval � p2 ÿ 1

2
p3=2; p2 � 1

2
p3= 2 �. Hence for each integer z in the latter interval

there exists a unique Weil p-polynomial ha; b with �a; b� 2 X and ha; b�1� � z . As

we proved above, all these ha; b satisfy c�ha; b�> 4p3 =2. Also, they have odd
trace, since a is odd for all �a; b� 2 X.

It remains to consider the values z for which the corresponding Weil polynomial
ha; b fails to be ordinary and regular. The number of such z is at most the number
of pairs �a; b� 2 X satisfying at least one of the following conditions:

(10.5) b is divisible by p,

(10.6) a2 ÿ 4b is an integer square,

(10.7) �b� 4p�2 ÿ 4pa2 is an integer square.

To ®nish the proof of Proposition 2.4(b) it suf®ces to show that there are at most
p such pairs.

If (10.5) holds then we have b � ÿp or b � ÿ2p, and the number of �a; b� 2 X
for which this occurs is

2 ´ #Y � 4 ´ � 7
27

���
p
p � 1

2
�< 28

27

���
p
p � 2:

Suppose that (10.6) holds, so that a2 ÿ 4b � d 2 for some positive integer d .
The inequalities ja j< 14

27

���
p
p

and ÿ 7
3

pÿ 1 < b < ÿ 1
3

p� 1 valid for �a; b� 2 X

imply that 4
3

pÿ 4 < d 2 < 7000
729

p� 4. With p > 8100 it follows that
23
20

���
p
p

< d < 31
10

���
p
p

, so that d lies in an interval of length less than 2� ���pp ÿ 1�.
Also, we have d � a� 1 mod 2, so there are at most

���
p
p

possible values for d .
Since a and d determine b, it follows that the number of pairs for which (10.6)
occurs is at most

���
p
p

´ #Y <
���
p
p

´ � 14
27

���
p
p � 1�.
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Finally, Lemma 10.2(b) implies that (10.7) occurs for at most 4
���
p
p � 2

pairs �a; b�.
Thus the total number of pairs �a; b� 2 X satisfying (10.5), (10.6) or (10.7) is at

most 14
27

p� �6� 1
27
� ���pp � 4, which is less than p since p > 8100. This proves

Proposition 2.4(b).

Lemma 10.8. Let q be a power of a prime number. Then for all but at most
6
���
q
p � 11 integers z there exists at most one fourth degree Weil q-polynomial ha; b

for which a2 ÿ 4b is an integer square and ha; b�1� � z .

Proof. Let z be an integer. Suppose that ha; b�1� � z and that a2 ÿ 4b is an integer
square. Then the numbers j and t from the proof of Proposition 7.1 are integers in the
closed interval �ÿ2

���
q
p

; 2
���
q
p �. We have ha; b � �X 2 ÿ jX � q� ´ �X 2 ÿ tX � q�; so

z � ha; b�1� has the factorization z � �1ÿ j � q� ´ �1ÿ t� q� into integers in the

interval �� ���qp ÿ 1�2; � ���qp � 1�2 �. A second such Weil polynomial gives rise to a
different set fj; tg and hence to a different factorization of z . By Proposition 9.1,
this occurs for at most 6

���
q
p � 11 values of z . This proves Lemma 10.8.

Proof of Proposition 2.4(a). The proof follows the same general lines as the
proof of Proposition 2.4(b), with some additional complications.

Let q be a power of an odd prime number p, and assume that q > 14,400. De®ne

a1 � maxfa 2 Z: a < 1
8

���
q
p ÿ 1g; b1 � minfb 2 Z: b >ÿ 4

3
q� 2g:

Then we have

1
8

���
q
p ÿ 2 < a1 < 1

8

���
q
p ÿ 1; ÿ 4

3
q� 2 < b1 < ÿ 4

3
q� 3:�10:9�

Put

Y1 � fa 2 Z: ja j< a1g; Z1 � fb 2 Z: b1 ÿ q < b < b1g;
X1 � Y1 ´ Z1 ;

X2 � f�a� 1; b� q� 1�: �a; b� 2 X1g; X3 � f�aÿ 1; bÿ qÿ 1�: �a; b� 2 X1g;
X0 � X1 È X2 È X3 :

We begin by showing that for all �a; b� 2 X0 we have c�ha; b�> 2q3=2. All

pairs �a; b� 2 X0 satisfy ja j< 1
8

���
q
p

and ÿ 10
3

q� 1 < b < ÿ 1
3

q� 4. Since we have
q > 14,400, the points �a=

���
q
p

; b=q� corresponding to �a; b� 2 X0 all lie within the
region

V0 � f�a; b� 2 R2: ja j< 1
8
; ÿ 10

3
< b <ÿ 1

3
� 4

14;400
g:

One easily checks that V0 Ì W . Applying Lemma 10.3, we ®nd that the minimum
of C on V0 is equal to the value of C at one of the points

�0; ÿ 10
3
�; �0; ÿ 1

3
� 4

14;400
�; � 1

8
; ÿ 10

3
�; � 1

8
; ÿ 1

3
� 4

14;400
�:

These values are computed to be at least 4, so we have C > 4 on V0 . From

c�ha; b� � C�a=
���
q
p

; b=q�1= 2 ´ q3=2 it now follows that c�ha; b�> 2q3=2 for
�a; b� 2 X0 , as asserted.

We next study the map X0! Z sending �a; b� to ha; b�1�. Since Z1 consists of
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q� 1 consecutive integers, one shows, as in the proof of Proposition 2.4(b), that
this map induces a bijection of X1 with the set of integers in the interval

I � ��q� 1�2 ÿ a1�q� 1� � b1 ÿ q; �q� 1�2 � a1�q� 1� � b1�:
Since one has ha; b�1� � ha�1; b�q�1�1�, the map also induces bijections
X2! I Ç Z and X3! I Ç Z .

The inequalities (10.9) and
���
q
p

> 120 imply that I contains the interval

�q2 ÿ 1
9

q3 =2; q2 � 1
9

q3 =2 �. Hence for each integer z in the latter interval there are
three pairs �a; b� 2 X0 for which ha; b�1� � z , and these three pairs take the form

�a 0 ÿ 1; b 0 ÿ qÿ 1�; �a 0; b 0 �; �a 0 � 1; b 0 � q� 1�:
As we proved above, all these ha; b satisfy c�ha; b�> 2q3=2.

It remains to consider the values z for which none of the corresponding
polynomials ha; b is ordinary and regular. For such z , each of the three pairs
�a; b� 2 X0 with ha; b�1� � z satis®es at least one of the following conditions:

(10.10) b is divisible by p,

(10.11) a2 ÿ 4b is an integer square,

(10.12) �b� 4q�2 ÿ 4qa2 is an integer square, and a 6� 0,

(10.13) a � 0.

To ®nish the proof of Proposition 2.4(a) it suf®ces to show that there are at most
28

���
q
p

values of z with this property.

Since p is an odd prime dividing q, at most one of the three integers
b 0 ÿ qÿ 1, b 0 and b 0 � q� 1 is divisible by p, for any integer b 0 . Hence for each
z at most one of the pairs �a; b� satis®es (10.10).

Lemma 10.8 implies that for each z with fewer than 6
���
q
p � 11 exceptions, at

most one pair �a; b� satis®es (10.11).
By Lemma 10.2, for each z with at most 14

���
q
p

exceptions, it is true that not a
single pair �a; b� satis®es (10.12).

Since at most one of a 0 ÿ 1, a 0, a 0 � 1 equals 0, there is for each z at most one
pair �a; b� satisfying (10.13).

We conclude that the only problematic values of z are those for which one of
the corresponding pairs �a 0 ÿ 1; b 0 ÿ qÿ 1�, �a 0; b 0 �, �a 0 � 1; b 0 � q� 1� satis®es
(10.10), another one satis®es (10.11), and the remaining one satis®es (10.13). We
shall show that this occurs for at most 22

3

���
q
p

values of z . This will ®nish the proof
of Proposition 2.4(a), since we have 6

���
q
p � 11� 14

���
q
p � 22

3

���
q
p

< 28
���
q
p

.
Let z , a 0 and b 0 have the properties just described. Since one of a 0 ÿ 1, a 0,

a 0 � 1 equals 0, we have ja 0 j< 1. Then for each of the other two pairs �a; b� we
have a 2 fÿ2; ÿ1; 1; 2g. Let now �a; b� be the pair that satis®es (10.11), so that
a2 ÿ 4b � d 2 for some integer d > 0. The inequality ÿ 10

3
q� 1 < b < 0 that is

valid in X0 implies that 0 < d 2 < 40
3

q; so the number of possibilities for d is at

most
��������������
40q=3

p
, which is less than 11

3

���
q
p

. Once we know d, the value for a is
determined up to sign by the conditions a 2 fÿ2; ÿ1; 1; 2g and a� d mod 2, and
the value for b is determined by b � 1

4
�a2 ÿ d 2�. That gives at most 22

3

���
q
p

pairs
�a; b�, and consequently at most 22

3

���
q
p

values for z � ha; b�1�, as required.
This completes the proof of Proposition 2.4(a).
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11. Characteristic 2

Our main theorems exclude ®elds of characteristic 2, not only because they
make assertions about models of the form y2 � f �x� for hyperelliptic curves, but
also because our result on the map from the set of Weil polynomials to Z admits
a larger exceptional set in characteristic 2. Here we state a result about
isomorphism classes of curves valid in characteristic 2. We begin with a suitable
replacement for Proposition 2.4.

Proposition 11.1. Let q > 14,400 be a power of 2. Then for all but at most
10
9

q integers z in the interval

�q2 ÿ 1
9

q3=2; q2 � 1
9

q3=2 �
there is an ordinary regular Weil q-polynomial h of degree 4 with c�h�> 2q3=2

and h�1� � z.

Proof. Let q > 14,400 be a power of 2. De®ne a1, X1, X2 and X0 as in the
proof of Proposition 2.4(a), and put

X4 � X1 È X2 :

As in the proof of Proposition 2.4(a), one deduces from q > 14,400 that for each

integer z in the interval �q2 ÿ 1
9

q3=2; q2 � 1
9

q3=2 � there are two pairs �a; b� 2 X4

such that ha; b�1� � z , and that these two pairs take the form

�a 0; b 0 �; �a 0 � 1; b 0 � q� 1�:
Precisely one of b 0, b 0 � q� 1 is odd. Therefore for each z in the target interval
there is a unique �a; b� 2 X4 such that ha; b is ordinary and ha; b�1� � z .

The inequality c�ha; b�> 2q3=2 holds for all �a; b� 2 X4 , by the same
computation as in the proof of Proposition 2.4(a), since X4 Ì X0 .

It remains to estimate the number of integers z for which the corresponding
polynomial ha; b is not regular. This is at most the number of pairs �a; b� 2 X4

with b odd that satisfy one of the following conditions:

(11.2) a2 ÿ 4b is an integer square,

(11.3) �b� 4q�2 ÿ 4qa2 is an integer square, a 6� 0, and a2 ÿ 4b 6� 0,

(11.4) a � 0.

It suf®ces to show that there are at most 10
9

q such pairs.
Let �a; b� be a pair satisfying (11.2), so that a2 ÿ 4b � d 2 for a non-negative

integer d . Since b is odd, we have d � 0 mod 2 and a� d � 2 mod 4. From
�a; b� 2 X4 one deduces that

4
3

qÿ 16 < d 2 < 1795
192

qÿ 8:

It follows that 23
20

���
q
p

< d < 31
10

���
q
p

; so d belongs to an interval of length at most
2� ���qp ÿ 1�. Since d is even, this leaves at most

���
q
p

possible values for d . For
given d, the value of a is restricted by ÿa1 < a < a1 � 1 and a� d � 2 mod 4;
the number of possibilities for a is therefore at most 1

4
�2a1 � 4�, which is at most

1
16

���
q
p � 1

2
. Since a and d determine b, we conclude that the number of pairs

�a; b� 2 X4 with b odd for which (11.2) holds is at most
���
q
p

´ � 1
16

���
q
p � 1

2
�, which

equals 1
16

q� 1
2

���
q
p

.
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By Lemma 10.2(b), (c), there are fewer than 4
���
q
p � 2 pairs �a; b� 2 X4 with b

odd for which (11.3) holds.
Finally, the number of pairs satisfying (11.4) is the number of possible values

for b that are odd, which equals q� 1.
The total number of z that must be excluded is therefore less than

1
16

q� 1
2

���
q
p � 4

���
q
p � 2� q� 1 < 10

9
q. This completes the proof of Proposition 11.1.

Theorem 11.5. Suppose that q > 14,400 is a power of 2, and that k is a ®nite
®eld of cardinality q. Then for all but at most 10

9
q integers z in the interval

�q2 ÿ 1
9

q3=2; q2 � 1
9

q3=2 �;
the weighted number of curves C of genus 2 over k with #JC �k� � z is at least

q3= 2

47,500 ´ �log q�2 ´ �log log q�2 ;

here the isomorphism class of C is counted with weight 1=#Aut C.

Proof. Combine Proposition 11.1, Proposition 2.3 and Proposition 2.2. This
proves Theorem 11.5.
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