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Sharpening Primes is in P for a large family of numbers.

Pedro Berrizbeitia∗

November 20, 2002

Abstract

We present algorithms that are deterministic primality tests for a large family of integers, namely,

integers n ≡ 1 (mod 4) for which an integer a is given such that the Jacobi symbol ( a

n
) = −1, and

integers n ≡ −1 (mod 4) for which an integer a is given such that ( a
n
) = ( 1−a

n
) = −1. The algorithms

we present run in 2−min(k,[2 log log n])
Õ(log n)6 time, where k = ν2(n− 1) is the exact power of 2 dividing

n − 1 when n ≡ 1 (mod 4) and k = ν2(n + 1) if n ≡ −1 (mod 4). The complexity of our algorithms

improves up to Õ(log n)4 when k ≥ [2 log log n]. We also give tests for more general family of numbers

and study their complexity.

1 Introduction

On August, 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena published an important paper titled

Primes is in P [3]. They produced an algorithm, now called the AKS algorithm, that determines whether a

given number n is prime or composite and that runs in polynomial time. This remarkable achievement gives

a positive answer to the most important question in the general theory of primality testing. In fact, they

prove that the AKS algorithm runs in Õ((logn)12) time, where Õ(f(x)) denotes O(f(x)poly(log f(x)).

In this paper we present algorithms that run faster than the AKS algorithm and are deterministic primal-

ity tests for a large family of integers, namely integers n ≡ 1 (mod 4) for which an integer a is given such

that the Jacobi symbol ( a
n
) = −1, and integers n ≡ −1 (mod 4) for which an integer a is given such that

( a
n
) = (1−a

n
) = −1. The algorithms we present run in 2−min(k,[2 log log n])Õ(log n)6 time, where k = ν2(n− 1)

is the exact power of 2 dividing n − 1 when n ≡ 1 (mod 4), and k = ν2(n + 1) if n ≡ −1 (mod 4). In

particular, the running time of our algorithms improves up to Õ(log n)4 if the value of k ≥ [2 log log n]. If

n is a large enough prime, then we show that our algorithm for the case n ≡ 1 (mod 4) runs, in the worst

case when k = 2, at least 211 times faster than the best possible running time for the AKS algorithm. This
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advantage in running time increases with the value of k. For the case n ≡ −1 (mod 4) we get the same

result using 29 instead of 211.

The first major breakthrough in the general theory of Primality Testing was achieved by Adleman,

Pomerance and Rumely in 1983 [4], who gave a deterministic primality test running in (log n)O(log log log n)

time. This algorithm was later improved and implemented by Cohen and Lenstra [8]. It is known in the

literature as the APRCL algorithm. In [3] the authors present a brief summary of the main contributions to

this general theory prior to AKS. They describe the contributions of Goldwasser and Kilian [10], of Atkin

[1], and of Adleman an Huang [2].

The theory of primality testing for restricted families of numbers had an earlier start. The first and most

famous “modern” algorithm is the Lucas-Lehmer Test [12]. It is an algorithm that runs in Õ((log n)2) time

to determine whether a Mersenne number (a number of the form 2p − 1, p prime) is prime or composite.

Proth [13] enlarged the family of numbers for which a primality test that runs in Õ((log n)2) exists. The

Proth Test applies to all numbers n such that ν2(n − 1) > (1/2) logn (by log n we always mean log to the

base 2) provided an integer a is given for which the Jacobi Symbol ( a
n
) = −1. Usually such an integer a can

easily be found using the quadratic reciprocity law; thus, the Proth test becomes deterministic for a large

proportion of, though not all the numbers n satisfying ν2(n − 1) > (1/2) logn. Later, the Lucas-Lehmer

Test was also extended to all numbers n ≡ −1 (mod 4), such that ν2(n + 1) > (1/2) logn for which an

integer a is given such that ( a
n
) = (1−a

n
) = −1. In a series of papers starting around 1970, Hugh Williams

and collaborators extended these tests to numbers satisfying νp(n ± 1) > (1/2) logn, where p is a prime,

provided there is a prime q, q ≡ 1 (mod p), such that n is not a p-th power modulo q, and gave many

concrete implementations and tables of primes. Further extensions of Williams results can be found in [7].

The book of Williams [15] is a good source for studying many of these results and the history of this subject.

Our paper links the two approaches described above: the general approach and the one for restricted

families of numbers. We still need an integer a satisfying the Jacobi Symbol condition, but we no longer

impose any condition on ν2(n− 1) or on ν2(n + 1). Thus the tests can be implemented for a set of numbers

of density arbitrarily near 1. The link is also evidenced by the fact that the complexity of the tests we give

decreases as the value of k increases.

As mentioned before, the authors of [3] were able to prove that the AKS algorithm runs in Õ((log n)12)

time, but they believe (and have strong evidence to support this belief), that it actually runs in Õ((log n)6)

time. In fact they prove that this would be the case if a widely believed conjecture on the density of the

Sophie-Germain primes is true. The main step of their algorithm (the step that determines the complexity)

consists in verifying that

(m + x)n ≡ m + xn (mod n, xr − 1)
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for m = 1 to 2
√

r log n where r is a prime with specific properties (r − 1 has a prime divisor q > 4
√

r log n

which divides the order of n modulo r). They prove such prime r exists in the interval (64(log n)2, c(log n)6)

for some constant c. They are able to prove that r < c(log n)6 by making clever use of a result in analytic

number theory on the density of primes. But they believe that such r is actually of size O(log n)2 (and prove

this under the assumption of the Sophie Germain prime density conjecture mentioned above). The lower

bound on r implies that the AKS algorithm runs in at least Õ((log n)6) when n is a prime. The upper bound

implies that it runs in at most Õ((log n)12). According to Bernstein [5] Lenstra was able to prove that in

fact such r is O(log n)4), hence proved that the complexity of AKS is at most Õ((log n)8). He also showed

that r need not be a prime, but that could be any number such that n is a primitive root modulo r.

In the case n ≡ 1 (mod 4), and assuming an integer a is given such that ( a
n
) = −1 the two key

observations in our paper are:

1. It is enough to verify

(1 + mx)n ≡ 1 + mxn (mod n, x2s − a)

where s = [2 log log n] (hence 2s < (log n)2)). Since 2s is smaller than r (in fact is it at least 64 times

smaller than r) then each of these verifications for different values of m are faster than the verification

of the analogous step in the AKS algorithm.

2. These verifications only have to be done for 2max(s−k,0) different values of m, where k = ν2(n− 1). We

will see this in detail within the proof of Theorem 3.1 and 4.1, but we point out here the crucial fact,

namely, that some of the conjugates of the monomial 1 +mxn in the corresponding finite field are also

monomials satisfying the same congruence. So, each iteration of our test produces 2min(s,k) different

monomials satisfying the congruence.

These two facts together allow us to give a more efficient primality test for those numbers and such that its

efficiency improves with the value of k up to a certain limit ([2 log log n]). For numbers n ≡ −1 (mod 4)

we were able to obtain similar results.

In Section 2 we define the notation and give some elementary but necessary results on the theory of

finite fields. In Section 3 we present the algorithm for the case n ≡ 1 (mod 4), we prove the validity of

the algorithm and study its complexity. In Section 4 we do the same for the case n ≡ −1 (mod 4). In

this case our algorithm runs around 4 times slower than the one given in the previous section, when applied

to prime numbers n of essentially the same size. In Section 5 we weaken the hypothesis given in the two

previous sections and present a test for this larger family of numbers and some applications. In Section 6

we compare our algorithms with the AKS algorithm (when such comparison is valid), and we indicate some

possible paths for future investigations. We include an explicit plausible conjecture.
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This paper is modelled after [3]. The structure is very similar. The results on the theory of finite fields

required can be found in many basic textbooks on finite fields or number theory, for example [11].

2 Preliminaries and Notation

Throughout the section p denotes an odd prime number. Let a be an integer coprime with p. The Legendre

symbol (a
p
) is defined by the formula

(

a

p

)

=

{

1 : if there is an integer x such that x2 ≡ 1( mod p)

−1 : otherwise .

This symbol has the following properties:

1. If ab is coprime with p then (ab
p

) = (a
p
)( b

p
).

2. (a
p
) ≡ a

p−1
2 (mod p).

The Legendre symbol can be extended multiplicatively to the Jacobi symbol replacing p by an odd number

m. That is, if m = p1...pk and (a, m) = 1 then ( a
m

) = ( a
p1

)....( a
pk

). The Jacobi symbol also satisfies property

(1) of the Legendre symbol above. Most important, it satisfies the well-known quadratic reciprocity law

which we now state.

Let m, n be odd and coprime numbers. Then,

1. (−1
n

) = (−1)
n−1

2

2. ( 2
n
) = (−1)

n2
−1
2 .

3. (m
n

) = ( n
m

)(−1)
m−1

2
n−1

2 .

The proof of the quadratic reciprocity law can be found in most text books in number theory. As a

reference we give [11].

Let Fp denote the finite field with p elements. For the sake of readability we recall some basic facts about

the theory of finite fields that we shall employ below. These facts can also be found in many text books in

the subject. We give [14] as a reference.

Proposition 2.1 Let K and E be finite fields containing Fp. Let q = |K| and suppose K ⊆ E. Then,

1. E has qd elements for some positive integer d.

2. E is vector space of dimension d over K (d = [E : K]).

3. E is isomorphic to K[x]/h(x) polynomial h(x) ∈ K[x] of degree d irreducible over K.
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4. Let C an algebraic closure of Fp containing E. Then E is the unique subfield of C of dimension d over

K. It is the smallest subfield of C containing a root θ of h(x).

E = K(θ) = {f(θ)|f(x) ∈ K[x], degree f(x) < d}.

5. The multiplicative group E∗ of K is cyclic of order qd − 1.

6. The Galois group G = Gal(E/K), that is, the group of automorphism of E over K, is cyclic of order

d. It is generated by the Frobenius automorphism σq defined by σq(α) = αq for all α ∈ E.

7. [E : Fp] = [E : K][K : Fp].

Now let K be a finite extension of Fp with q = |K|. Let K? be the multiplicative group and g a generator

of K?.

Lemma 2.1 For an element α of K, the following are equivalent

1. x2 − αl is irreducible over K for every odd integer l.

2. x2 − α is irreducible over K.

3. α = gt for some odd integer t.

4. α
q−1
2 = −1.

Proof

(1)⇒ (2) is trivial. Now let us prove (2)⇒ (3). Since g is a generator, then α = gt for some t. If t = 2m

then x2 − α = x2 − g2m = (x− gm)(x + gm) is reducible. (3)⇒ (4) is obtained by noticing that g
q−1
2 = −1

since g is a generator. Hence, α
q−1
2 = (−1)t = −1. Finally, to show (4)⇒ (1) suppose x2 − α is reducible.

Then, there is β ∈ K such that β2 = α. So α
q−1
2 = βq−1 = 1 which contradicts the assumption. �

Lemma 2.2 Let q = |K|. Assume q ≡ 1 (mod 4). If x2 − a is irreducible over K and θ is a root of x2 − a,

then x2 − θ is irreducible over K(θ).

Proof

Note that |K(θ)| = q2. By Lemma 2.1 it is enough to prove that θ
q2

−1
2 = −1. Note that since q ≡ 1

(mod 4) then q+1
2 = t is odd. Also, since x2 − a is irreducible over K, then a

q−1
2 = −1. Hence,

θ
q2

−1
2 = ((θ2)

q+1
2 )

q−1
2 = (−1)t = −1.

�

Corollary 2.1 If |K| = q ≡ 1 (mod 4) and a ∈ K is such that a
q−1
2 = −1, then the polynomial x2s − a is

irreducible over K for all s ≥ 1.
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Proof

Proceed inductively on s. Use Lemma 2.2 and part 7 of Proposition 2.1 �

We can now establish the following proposition

Proposition 2.2 1. If p ≡ 1 (mod 4) and (a
p
) = −1, then x2s − a is irreducible over Fp.

2. If p ≡ 3 (mod 4) and (a
p
) = (1−a

p
) = −1, then x2s − 2x2s−1

+ a is irreducible over Fp.

Proof

The assertion (1) is a particular case of the Corollary 2.1 since (a
p
) ≡ a

p−1
2 ≡ −1 (mod p). In order to

prove (2) let θ1 = 1 +
√

1− a. Since (1−a
p

) = −1 then Fp(θ1) has degree 2 over Fp. Hence it has p2 = q

elements, so q ≡ 1 (mod 4). Moreover,

θ
p2

−1
2

1 = (θp+1
1 )

p−1
2 = ((1 +

√
1− a)(1 −

√
1− a))

p−1
2 = a

p−1
2 = −1.

Corollary 2.1 implies that x2s−1 − θ1 is irreducible over Fp(θ1). A root θ of this polynomial satisfies,

(x2s−1 − θ1)(x
2s−1 − θp

1) = x2s − 2x2s−1

+ a

which belongs to Fp[x]. By part 7 of Proposition 2.1 it must be irreducible over Fp. �

3 Algorithm for the case n ≡ 1 (mod 4)

Throughout this section we assume that n ≡ 1 (mod 4). Let k = ν2(n − 1). So k ≥ 2. Let a be an integer

such that ( a
n
) = −1. Note for example that if n = h 2k + 1 and h 6≡ 0 (mod 3) then n is either a multiple of

3 or ( 3
n
) = −1. This is easily deduced from the quadratic reciprocity law. It follows that the algorithm that

we will present in this section is deterministic for numbers of that form. Finally let s = d2 log log ne. Note

that (log n)2 < 2s < 2(log n)2. We now describe the proposed Algorithm.

Algorithm 1

Input n, a: n ≡ 1 (mod 4), ( a
n
) = −1.

Let k = ν2(n− 1), s = d2 log log ne.

1. Verify properties of the Legendre Symbol and Proth’s Theorem.

(a) Let A = a
n−1

2k . If A2k−1 6≡ −1 (mod n), output composite.

(b) If k > (1/2) logn, output prime.

2. Verify n is not a perfect power.

If n = de for some positive integers d and e with e > 1, output composite.
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3. Generate a set S of cardinality 2max(s−k,0)

m = 1,S = {1},S′ = {1}.

While (|S| < 2max(s−k,0)){

While (m2k

(mod n) ∈ S′){

m← m + 1

}.

If m > |S|2k + 1, output composite.

If (m, n) > 1, output composite.

If (m2k − s′, n) > 1 for some s′ ∈ S′, output composite.

S ← S
⋃

{m}.

S′ ← S′ ⋃{m2k

(mod n)}
}.

4. For all m ∈ S.

If (1 + mx)n 6≡ (1 + mxn) mod (n, x2s − a), output composite.

Output prime.

Theorem 3.1 The algorithm above returns prime if and only if n is prime (as long as n > 100).

Theorem 3.2 The running time of the algorithm is Õ(2−min(s,k)(log n)6). Note that this is Õ((log n)6) if

k = 2 and is Õ((log n)4) if k ≥ s.

The rest of this section is devoted to the proof of these theorems. We do this in a similar way as is done

in [3], through the proofs of a series of lemmas.

Lemma 3.1 If n is prime (n > 100), the algorithm returns prime.

Proof

Step (1a) of the algorithm can not return composite because of property 2 of the Legendre symbol.

Step (2) can not return composite because n is not a perfect power.

Next we show Step (3) does not return composite. First note that if k ≥ s then the algorithm does not

enter the first while loop, hence Step (3) cannot return composite in this case. So we may assume k < s. In

this case the algorithm generates the set S, that is, a sequence of integers mi with i = 1, ..., 2s−k. m1 = 1.

Since n is prime, the number of solutions of x2k

= 1 in Fn is at most 2k (in fact it is exactly 2k since the

distinct powers of A are solutions of this equation). It follows that m2 ≤ 2k + 1. Inductively, using this

same reasoning we deduce that mt ≤ (t − 1)2k + 1. Note that t − 1 is the cardinality of the set S at that

stage of the algorithm. It follows that under the assumption that n is prime, m > |S|2k + 1 cannot occur.

7



It also follows that each mi ≤ (2s−k − 1)2k + 1 < 2s < 2(log n)2 < n (this last inequality certainly occurs

if n > 100). Hence, in the algorithm (m, n) > 1 cannot occur. Finally, since m2k

i 6≡ m2k

j (mod n) for all

j < i, then (m2k − s′, n) > 1 cannot occur. This concludes the analysis for Step (3).

Since (1 + mx)n ≡ 1 + mxn (mod n) then (1 + mx)n ≡ 1 + mxn (mod (n, x2s − a)), so Step (4) does not

return composite. �

We assume from now on that the output of the algorithm is prime.

Lemma 3.2 Suppose that the algorithm has passed step (1a), that is, it has verified A2k−1 ≡ −1 (mod n).

Then, we have

1. ν2(d− 1) ≥ k for all divisors of n.

2. There is a prime divisor p of m for which ν2(p− 1) = k. For such prime p, (a
p
) = −1.

Proof

1. It is enough to prove it for prime divisors d of n. The hypothesis implies A2k−1 ≡ −1 (mod d), whence

ordd(A) = 2k, so ν2(d− 1) ≥ k.

2. If every prime divisor q of n were to satisfy ν2(q − 1) > k, then so would the product, that is, n. Let

p a prime divisor of n satisfying ν2(p− 1) = k = ν2(n− 1). Let t = p−1
2k . Note that t is odd. Hence

(
A

p
) ≡ A

p−1
2 ≡ (At)2

k−1 ≡ (−1)t ≡ −1 (mod p).

Since A = a
n−1

2k and n−1
2k is odd, then we get the result. �

Lemma 3.3 If the algorithm output prime at Step (1b) then n is prime.

Proof

This follows Proth’s Theorem [13]. Let us recall its statement: if ν2(n− 1) > (1/2) logn and ( a
n
) = −1, then

n is prime if and only if a
n−1

2 ≡ −1 (mod n). �

Now we assume n has passed Step (1b) (so k ≤ 1/2 logn). We let p be a prime divisor of n satisfying

ν2(p−1) = k = ν2(n−1). Since (a
p
) = −1, then by Proposition 2.2, the polynomial x2s−a is irreducible over

Fp. Let θ be a root of the polynomial in an algebraic closure C of Fp, let K = Fp(θ) and K? its multiplicative

group. Every α ∈ K? is α = f(θ) for some (unique) non-zero polynomial f(x) ∈ Fp[x] of degree t < 2s.

Let m be an integer. We denote by rm the multiplicative homomorphism of K? consisting in raising to the

m-th power. We denote by σm the linear map of K defined by σm(α) = f(θm), where f(x) is the unique

polynomial mentioned above.

Lemma 3.4 For an integer m the following are equivalent:
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1. θm is a root of irrθ(x) = x2s − a.

2. am = a (in Fp).

3. σm(h(θ)) = h(θm) for all h(x) ∈ Fp[x].

4. σm ∈ Gal(K/Fp).

Proof

That (1) implies (2) is clear since (θm)2
s

= am. To see that (2) implies (3) write h(x) = f(x)+(x2s−a)p(x)

where f(x) has degree less than 2s. By definition of σm we have

σm(h(θ)) = f(θm) = h(θm)− (am − a)p(θm) = h(θm).

To prove that (3) implies (4) note that since σm is clearly a linear map over Fp we only have to prove it

is multiplicative, and this is trivial. Finally, (4) implies (1) is also evident: just note that σm(θ) = θm is a

conjugate of θ over Fp, hence, it must be a root of irrθ(x).

�

In particular, since an ≡ a (mod n), this lemma implies that σn ∈ Gal(K/Fp), so it must be a power of

the Frobenius automorphism σi
p = σpi . The idea will be to show that, under certain conditions that are met

if the algorithm outputs prime in its last step, this implies that n = pi. We still need quite a few observations

before reaching that conclusion.

Write n = pld. Then, from an = a and apl

= a it is easy to deduce that ad = a. So σd is also an

automorphism. Moreover, so is σdipj for all i, j ≥ 0. More generally if m1 and m2 satisfy the equivalent

conditions of the previous lemma then so does m1m2 and it is also easy to verify that σm1m2 = σm1 ◦ σm2 .

Similarly, if m1 and m1m2 satisfy these conditions, then so does m2. On the other hand, if m satisfies

any of the equivalent conditions of the previous lemma then the product σmr−m is also a multiplicative

homomorphism of K? since it is a product of homomorphisms. It follows that

Gm = Kerσmr−m = {f(θ) ∈ K?|f(θm) = f(θ)m}

is a subgroup of K?, hence cyclic generated by, say, gm(θ). We now study the properties of these cyclic

groups.

Lemma 3.5 Suppose m1 and m2 satisfy any of the equivalent conditions of lemma 3.4, then:

1. For all i ≥ 0, Gp = K?.

2. Gm1 ∩Gm2 ⊆ Gm1m2 .

3. |Gmi | divides m2s

i − 1. In particular (mi, |Gmi |) = 1.

9



4. Gm1m2 ∩Gm1 ⊆ Gm2 .

Proof

1. That G1 = K? is trivial. Let α ∈ K? then σpi(α) = σi
p(α) = αpi

, since σp is the Frobenious

automorphism.

2. Let α ∈ Gm1 ∩Gm2 . Then, σm1(α) = αm1 and σm2(α) = αm2 . It follows that

σm1m2(α) = σm1(σm2(α)) = σm1(α
m2) = (σm1(α))m2 = (αm1)m2 = αm1m2 .

This implies α ∈ Gm1m2 .

3. Let α be a generator of Gmi . By part 2 of this lemma α belongs to Gm2s
i

. On the other hand, since

σmi is an automorphism of K then σ2s

mi
= identity. So αm2s

i = σm2s
i

(α) = σ2s

mi
(α) = id(α) = α. So

αm2s

i −1 = 1. Hence |Gmi | = ord(α) divides m2s

i − 1. In particular (mi, |Gmi |) = 1.

4. Let α ∈ Gm1m2 ∩Gm1 . Then

(αm2)m1 = αm1m2 = σm2(σm1 (α)) = σm2(α
m1 ) = (σm2(α))m1

so (αm2)m1 = (σm2(α))m1 . By the previous item of this lemma there is an integer t such that tm1 ≡ 1

(mod |Gm1 |). Raising to this t we obtain (αm2)m1t = (σm2(α))m1t. Note that σm2(α) has the same

order than α. Hence αm2 = σm2(α). �

Write n = pld where d is coprime with p. We use the previous lemma to obtain the following result.

Corollary 3.1 For all i, j ≥ 1, Gn ⊆ GpiGdj .

Proof

Gn = Gdpl = Gdpl ∩Gpl ⊆ Gd ⊆ Gdi = Gdi ∩Gpj ⊆ Gdipj . �

Corollary 3.2 (Analogous to Lemma 4.6 in [3]). If m1 and m2 satisfy any of the equivalent conditions of

lemma 3.4, then σm1 = σm2 implies |Gm1 ∩Gm2 | divides m1 −m2.

Proof

Let α ∈ Gm1 ∩ Gm2 . Then αm1 = σm1(α) = σm2(α) = αm2 , thus αm1−m2 = 1. Since, Gm1 ∩ Gm2 is a

cyclic group, then |Gm1 ∩Gm2 | divides m1 −m2. �

The following lemma is very important because it shows how to obtain 2min(k,s) monomials in Gn from

one iteration in Step 4 of the algorithm. This is the reason why the complexity of the algorithm improves

as k grows.
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Lemma 3.6 1. Suppose k < s. If for some integer m, we have (1 + mθ) ∈ Gn, then (1 + mAiθ) ∈ Gm

for i = 1, 2, ..., 2k.

2. Suppose k ≥ s. Let B = A2k−s

. If (1 + θ) ∈ Gn, then (1 + Biθ) ∈ Gn for i = 1, 2, ..., 2s.

Proof

1. Recall Gn is a group, so (1+mθ) ∈ Gn implies (1+mθ)pi

= (1+mθpi

) ∈ Gn. The elements θpi

are the

Galois conjugates of θ in Fp[θ]. Since θ2s

= A, then the conjugates are of the form θζ, where ζ2s

= 1.

Since k ≤ s every Ai satisfies (Ai)2
s

= 1. So the Ai are among the possible values for ζ. In particular,

(1 + mAiθ) ∈ Gn.

2. Same as in (1) by noting that B is a primitive 2s-th root of 1 in Fp �

Lemma 3.7 If the algorithm ouputs prime at Step 4, then |Gn| ≥ 22s

.

Proof

Assume first that k < s. Again we denote by mi, with i = 1, . . . , 2s−k, the sequence of elements of the set

S generated by the algorithm in Step (3). We claim that miA
j for i = 1, 2, . . . , 2s−k and j = 1, . . . , 2k are

all different and non-zero in Fp. To see this recall that A has order 2k in Fp. Hence Aj is non zero in Fp for

all j and they are all different for j = 1, . . . , 2k. The algorithm verifies (mi, n) = 1. Hence, the miA
j are

all non zero in Fp. Assume miA
j = mi′A

j′ in Fp. Raising to the 2kth power we get m2k

i = m2k

i′ in Fp, but

since the algorithm verified that m2k

i −m2k

i′ is coprime with n, then we must have i = i′ whence we deduce

that j = j′. So we have 2s different non-zero elements of Fp. Denote them by tr for r = 1, . . . , 2s. The

algorithm verifies that (1 + miθ) ∈ Gn for each i = 1, 2, . . . , 2s−k. It follows from the previous lemma that

(1 + trθ) ∈ Gn for r = 1, 2, . . . , 2s.

If, on the other hand, k > s, then the algorithm verifies that (1+ θ) ∈ Gn, and, again, using the previous

lemma, we get (1 + Brθ) ∈ Gn for r = 1, 2, . . . , 2s. So in both cases we obtain 2s different monomials in Gn.

To simplify we always denote these (1 + trθ) ∈ Gn for r = 1, 2, . . . , 2s. Since Gn is a group it contains the

set T defined as

T =

{

2s
∏

r=1

(1 + trθ)
εr | εr ∈ Z

+,
∑

εr < 2s

}

.

Every element of T is of the form f(θ) for some f(x) of degree less than 2s. Since all tr are different in

Fp then the polynomials f(x) corresponding to different choices of εi are different in Fp[x]. Since the degrees

are less than 2s, then the corresponding elements of S are different.

T contains properly the set

T1 =

{

2s
∏

r=1

(1 + trθ)
εr | εr ∈ {0, 1},

∑

εr < 2s

}

11



with cardinality 22s − 1. Hence, T has at least 22s

. Therefore |Gn| ≥ 22s

. �

We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1

It remains to prove that if the algorithm outputs prime in the last step, then n is prime. Assume n has

more than one prime divisor. Hence, n = pld where (d, p) = 1 and d > 1. We know that σpidj ∈ Gal(K/Fp)

for all i, j ≥ 0. Since Gal(K/Fp) has order 2s it follows from the pigeon hole principle that there exist two

different pairs (i1, j1) and (i2, j2) with 0 ≤ i1, j1, i2, j2 ≤ [
√

2s] such that σpi1dj1 = σpi2dj2 . It follows from

Corollary 3.2 that

|Gpi1dj1 ∩Gpi2dj2 | divides pi1dj1 − pi2dj2 .

Hence, from Corollary3.1 we obtain

|Gn| divides pi1dj1 − pi2dj2 .

Note that pi1dj1 − pi2dj2 < n[
√

2s] ≤ n
√

2s
. Also note that from s = d2 log log ne one can easily deduce that

22s

> n
√

2s
. It follows from Lemma 3.7 that |Gn| > n

√
2s

. So we obtain pi1dj1 = pi2dj2 . But this is not

possible because p and d are coprime and (i1, j1) 6= (i2, j2). Hence d = 1. So, n = pl. Since n passed Step 2

of the algorithm (n is not a perfect power) we conclude l = 1, so n = p �

Analysis of Complexity. Proof of Theorem 3.2

Step 1 involves the calculation of a
n−1

2 (mod n) which takes Õ((log n)2) time using the fast Fourier

transform.

Step 2, as in [3] takes Õ((log n)3).

Step 3. If k ≥ s the algorithm does not enter the while loop, so in this case this step has no cost.

When k < s, every integer m that the algorithm deals with is less than 2s. For each of these integers m,

it computes m2k

(mod n). It follows that the algorithm calculates m2k

for at most 2s different values of

m (in practice much less than this). This involves k2s ≤ s2s modular multiplications (multiplications mod

n). Using the fast Fourier transform these computations take at most Õ((log n)3). On the other hand, the

algorithm in this Step computes less than 22(s−k) gcd’s. This takes 22(s−k)Õ((log n)) = 2−2kÕ((log n)5) time.

Step 4: This is the part of the computation that will determine the complexity of the algorithm. It

involves 2max(s−k,0) iterations, where by iteration we mean the computation of (1 + mix)n mod (n, x2s − a).

Using fast exponentiation each iteration takes at most 2 logn multiplications in the field K. Using the fast

12



Fourier transform each of these involves O(2ss) modular multiplications, and likewise each of these takes

Õ(log n) time. We must add that the reduction modulo x2s −a is necessary after multiplications of elements

in K, but these are done with 2s modular multiplications, which does not affect complexity. So each iteration

takes Õ((log n)4). Hence this step takes

2max(s−k,0) Õ((log n)4) = 2−min(s,k) Õ((log n)6),

and so does the algorithm. �

4 Algorithm for n ≡ −1 (mod 4)

Throughout this section we assume that n ≡ −1 (mod 4), and k = ν2(n + 1). In particular k ≥ 2. We

assume that an integer a is given such that ( a
n
) = (1−a

n
) = −1. Note for example that if n = h2k − 1 and

h 6≡ 0 (mod 3) then n is either a multiple of 3 or ( 3
n
) = (1−3

n
) = −1. This is easily deduced from the

quadratic reciprocity law. It follows that the algorithm presented in this section is deterministic for numbers

of that form. Further we let t = d2 log log ne+ 1, noting that t = s + 1. Hence 2 (log n)2 < 2t < 4 (log n)2.

We now describe the proposed Algorithm.

Algorithm 2

Input n, a: n ≡ −1 (mod 4), ( a
n
) = (1−a

n
) = −1.

Compute k = ν2(n + 1), t = d2 log log ne+ 1.

1. Verify properties of the Legendre Symbol, the Frobenius automorphism and Lucas-type Theorem.

(a) If a
n−1

2 6≡ −1 (mod n), output composite.

(b) If (1 +
√

1− a)n 6≡ 1−
√

1− a (mod n) output composite.

(c) If k > 1/2 logn output prime.

2. Verify n is not a perfect power.

If n = de for some positive integer e, output composite.

3. Finding a sequence of mi
′s.

For m = 1 to 2max(t−k,0)

If (m, n) > 1, output composite.

4. Finding elements in Gn.

For m = 1 to 2max(t−k−1,0)

13



If (1 + mx)n 6≡ (1 + mxn) (mod n, x2t+1 − 2x2t

+ a) output composite.

output prime

Theorem 4.1 The algorithm above returns prime if and only if n is prime (assuming n > 25).

Theorem 4.2 The running time of the algorithm is Õ(2−min(s,k)(log n)6).

The proofs of these results are analogous to the theorems in the previous section. However, in many

occasions, the analogy is not immediate. In these cases, we will go over the necessary lemmas and give

detailed proofs.

Lemma 4.1 If n is prime, the algorithm returns prime.

Proof

Step 1 cannot output composite: in the first place because of the properties of the Legendre Symbol, and

secondly because of the properties of the Frobenius automorphism. The rest proceeds as in the case n ≡ 1

(mod 4), except that in Step 3 we only need n > 25 to make sure that 2max(t−k,0) < n. �

We assume now that the output of the algorithm is prime.

Lemma 4.2 Let n, a, 1 − a as in the input of the algorithm, and k = ν2(n + 1). Suppose a
n−1

2 ≡ −1

(mod n) and that (1 +
√

1− a)n ≡ 1−
√

1− a (mod n). Then,

1. Every prime divisor q of n satisfies either

(a) q ≡ 1 (mod 2k+1) or

(b) q ≡ −1 (mod 2k)

It satisfies (a) if and only if (1−a
q

) = (a
q
) = 1.

It satisfies (b) if and only if (1−a
q

) = (a
q
) = −1.

2. There exists a prime divisor p of n such that ν2(p+1) = ν2(n+1) = k. For such p, (1−a
p

) = (a
p
) = −1.

Proof

1. Let q be a prime divisor of n. We first note that (a
q
) = 1 if and only if q ≡ 1 (mod 4). Recall n−1

2 is

odd. Hence (a
q
) = (a

q
)

n−1
2 = (−1

q
) = (−1)

q−1
2 .

Next we show that (1 +
√

1− a)
n2

−1
2 ≡ −1 (mod n). This is true since

(1 +
√

1− a)
n2

−1
2 = ((1 +

√
1− a)n+1)

n−1
2 = ((1 −

√
1− a)(1 +

√
1− a))

n−1
2 = a

n−1
2 ≡ −1 (mod n).

Now suppose (1−a
q

) = 1. Then, Fq(
√

1− a) = Fq. Since (1 +
√

1− a)
n2

−1
2 ≡ −1 (mod n) then

(1 +
√

1− a)
n2

−1
2 = −1 in Fq. But ν2(n + 1) = k implies ν2(n

2 − 1) = k + 1. So the element

14



(1 +
√

1− a)
n2

−1

2k+1 has order 2k+1 in Fq so q ≡ 1 (mod 2k+1). In particular, (a
q
) = 1 by our first

remark.

Suppose now that (1−a
q

) = −1. Then Fq(
√

1− a) = F has q2 elements. Again, (1+
√

1− a)
n2

−1
2 = −1

in F , so

(1 +
√

1− a)
n2

−1
2 =

(

(1 +
√

1− a)n−1
)

n+1
2 =

(

1−
√

1− a

1 +
√

1 + a

)

n+1
2

= −1.

Note that in Fq(
√

1− a), the element β = (1−
√

1−a

1+
√

1+a
) = (1 +

√
1− a)q−1 lies in the unique subgroup of

F ? of order q + 1. β
n+1

2k has order 2k so q ≡ −1 (mod 2k). Also, (a
q
) = −1 by our first remark.

2. Since (1−a
n

) = −1 then there must be a prime divisor of n such that (1−a
q

) = −1. So q ≡ −1 (mod 2k).

If all primes satisfying (1−a
q

) = −1 satisfy q ≡ −1 (mod 2k+1), then by part 1, n would satisfy n ≡ ±1

(mod 2k+1). But, ν2(n + 1) = k implies this is not possible. So there is p/n such that ν2(p + 1) = k.

For such p, which is congruent to −1 (mod 4), we must have (a
p
) = −1. Hence, we also must have

(1−a
p

) = −1 since we just proved that (1−a
p

) = 1 implies (a
p
) = 1 �

Corollary 4.1 If the algorithm outputs prime in Step 1c, then n is prime.

Proof

This is a small variation of the statement of a Lucas-type theorem. In any case, it is deduced easily from

the previous lemma by noting that k > 1/2 logn is the same as 2k >
√

n, so the possible prime divisors are

too large. �

Assume now that n passed Step 1 of the algorithm and let p the prime divisor of n for which ν2(p+1) = k.

We let F = Fp(
√

1− a) and K = Fp(θ) where θ is a root of the polynomial x2t+1 − 2x2t

+ a = irrθ(x) which

is irreducible by Proposition 2.2. We also note that K = F (θ) and θ is a root of x2t − (1 +
√

1− a) or

x2t − (1 −
√

1− a), which are both irreducible over F . For simplicity we will assume θ is a root of the first

of these two polynomials. The roots of the other one are also roots of irrθ(x). Let σm defined as in the

previous section by σm(f(θ)) = f(θm) when deg f(x) < 2s. We need this lemma:

Lemma 4.3 For an integer m the following are equivalent:

1. θm is a root of irrθ(x) = x2t+1 − 2x2t

+ a.

2. (1 +
√

1− a)m = 1±
√

1− a in F .

3. σm(h(θ)) = h(θm) for all h(x) ∈ Fp[x].

4. σm ∈ Gal(K/Fp).

15



We skip the proof as it is quite similar to that of lemma 3.4 of previous section.

When σm is an automorphism we let

Gm = {α ∈ K : σm(α) = αm}.

Then Gm is a cyclic subgroup of K?. Now write n = pld, where p and d are coprime. As in the previous

section, we can use the above lemma to show that σdipj ∈ Gal(K/Fp) for all i, j ≥ 0. Moreover we carry

over Lemma 3.5, Corollary 3.1 and Corollary 3.2 in the new environment.

Let

α = (1 +
√

1− a)
n2

−1

2k+1 .

We have the following lemma analogous to Lemma 3.6.

Lemma 4.4 Let β = α2max(k+1−t,0)

. If (1 + mθ) ∈ Gn for some m 6= 0 in Fp, then (1 + mβiθ) ∈ Gn for

i = 1, . . . , 2min(k+1,t).

Proof

Proceed as in Lemma 3.7, since the conjugates of θ over the field F are of the form θζ where ζ2t

= 1.

The powers of β are among the latter. �

Next we estimate the size of Gn.

Lemma 4.5 If the algorithm outputs prime in the last step then |Gn| > 22t

.

Proof

The algorithm verifies that every integer less than 2max(t−k,0) is coprime with n, hence they are all dif-

ferent and non-zero in Fp. Let γij = miβ
j for i = 1, 2, . . . , 2max(t−k−1,0) and j = 1, 2, . . . , 2min(k+1,t). There

are 2t γij
′s. We claim they are all different and non-zero in F . Suppose miβ

j = mi′β
j′ . Then mi

mi′
= βj′−j .

Since the only powers of β ∈ Fp are 2min(k+1,t) and 2min(k,t−1) (the other powers of β are in F − Fp we get:

either βj = βj′ , in which case mi = mi′ leading to i = i′, or βj−j′ = −1, in which case mi = −mi′ . But

then we have mi + mi′ = 0 in Fp. Since mi + mi′ < 2max(t−k,0) and the algorithm verified in Step 3 that

these were coprime with n we get our claim. Next, since the algorithm verified that (1 +miθ) ∈ Gn for each

i, it follows from the previous lemma that each of the (1 + γijθ) ∈ Gn. Therefore Gn contains 2t different

monomials over F , and, as in the previous Section, we get the result. �

Proof of Theorem 4.1

Again this proceeds along the lines of the proof of Theorem 3.1. The only difference is that now Gal(K/Fp)

has order 2t+1 and Gn has at least 22t

elements. The fact that 22t

> n
√

2t+1
is easily derived from 22s

> n
√

2s
,

keeping in mind that t = s + 1. �
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Remark 4.1 Note that if b, c are given integers such that ( b2+c2

n
) = −1 then a = (bc−1)2 + 1 satisfies

( a
n
) = (1−a

n
) = −1. This is easy to verify noting that (−1

n
) = −1 since n ≡ −1 (mod 4). Alternatively,

one could replace the polynomial in the algorithm by the polynomial x2t+1 − 2bx2t

+ (b2 + c2), which is also

irreducible in Fp under the assumption (b2 + c2)
n−1

2 ≡ −1 (mod n) and (x + iy)n ≡ (x− iy) (mod n).

Remark 4.2 We note that the same polynomial used in the algorithm of this Section could have been used

in the algorithm of the previous section, that is, for numbers n ≡ 1 (mod 4), with no additional hypothesis

on a. To see this, notice that if ( a
n
) = −1 and (1−a

n
) = 1 then (a−1

n
) = −1 and

(
1− a−1

n
) = (

−a−1(1− a)

n
) = (

a−1

n
) = −1.

So the pair a, 1−a is achieved at most at the cost of computing a−1. Hence, by Proposition 2.2 the polynomial

x2t+1 − 2x2t − a is irreducible. However the algorithm we presented for numbers n ≡ 1 (mod 4) runs about

four times faster than the other one. This is so, even though the number of iterations performed by both

algorithms is the same, since the degree of the polynomial used in this Section is four times the degree of the

polynomial used in the previous one.

Analysis of Complexity: Proof of Theorem 4.2

The proof is similar to the proof of Theorem 3.2. We note that the cost of Step (3) is Õ((log n)3),

which is less than the cost of Step (3) of the Algorithm in the previous section, because the number of gcd’s

computed is much less in this algorithm. However, that does not improve complexity of the algorithm since

it is Step (4) the Step that determines its complexity. In the previous remark we compared the speed of

the two algorithms given in this paper. This comparison cannot be deduced from the notation used in the

statement of the theorem, which is standard notation. �

5 Weakly Conditioned and Unconditioned tests

5.1 The case n ≡ 1 (mod 4)

Let n ≡ 1 (mod 4). Let k = µ2(n − 1), so k ≥ 2. This time we assume integers a and u are given,

1 ≤ u ≤ k such that a
n−1
2u ≡ −1 (mod n). Note that u = 1 is the case we dealt with in Section 3. At the

other end, when u = k there is always such an a, namely a = −1. Hence we will refer to the case u = k as

the unconditional case. We will produce a deterministic primality test for all such numbers. The complexity

of the primality test we will give will depend also on u. The optimal performance occurs when u = 1 and

the worst case is u = k.

We note that if n = h2k+1 is prime, and h 6≡ 0 (mod 5) then either 5
n−1

2 ≡ −1 (mod n) or 5
n−1

4 ≡ −1

(mod n) or n is a multiple of 5. This can be deduced from the law of biquadratic reciprocity. This fact

was used in [6] to produce a deterministic primality test for numbers of that form provided k > 1/2 logn.

17



Combining this observation with the one made at the beginning of Section 3. We deduce that every number

of the form n = h2k +1, h 6≡ 0 (mod 15) is either a multiple of 3 or 5 or can be tested using a = 3 or a = 5

and u = 1 or u = 2.

Again we let s = d2 log log ne. We now present the algorithm in the form of a theorem.

Theorem 5.1 Let n ≡ 1 (mod 4). Let k = ν2(n−1). Let s = d2 log log ne. Let a and u integers, 1 ≤ u ≤ k

and such that a
n−1
2u ≡ −1 (mod n). Let S be a set of integers, |S| = 2max(s−k+2(u−1),0) such that for any

pair m, m′ of different elements of S, (m2k+1−u − m′2k+1−u

, n) = 1 and such that every element of S is

coprime with m. Suppose also that for every m ∈ S we have (1 + mx)n ≡ (1 + mxn) mod (n, x2s+2(u−1) − a)

and that n is not a perfect power. Then, n is prime.

Proof (Sketch)

Let r = s + u − 1. Let f(x) = x2s+2(u−1) − a = x2r+u−1 − a. We enumerate some facts without a proof

that can be deduced as in Section 3.

1. The equation a
n−1
2u ≡ −1 (mod n) implies that every prime divisor q of n satisfies ν2(q−1) ≥ k−u+1.

2. There is a prime p dividing n such that ν2(p− 1) ≤ k.

Let p be such a prime and θ a root of f(x) in an algebraic closure of Fp.

3. 2r ≤ [K : Fp] ≤ 2r+u−1

4. σn ∈ Gal (K/Fp). Gn is a cyclic subgroup of K?.

Suppose n = pld.

5. σd ∈ Gal (K/Fp). Gn ⊆ Gpidj for all i, j ≥ 0.

6. There are integers i1, j1, i2, j2 such that 0 ≤ i1, j1, i2, j2 ≤
√

2n+u−1, (i1, j1) 6= (i2, j2) and such that

σpi1dj1 = σpi2dj2

7. |Gn|/pi1dj1 − pi2dj2 .

8. From the fact 22s

> n
√

2s
it is easily deduced that for all v ≥ 0, 22s+v

> n
√

2s+2v
. In particular,

22r

> n
√

2r+u−1
.

9. From the fact (1 + mθ) ∈ Gn for all m ∈ S we deduce as in Section 3 that Gn contains 2r different

monomials over Fp. Hence, |Gn| ≥ 22r

.

10. From items 6, 7, 8, 9 can be deduced that d = 1 so n = pl.

11. Since n is not a non trivial perfect power n = p. �

Corollary 5.1 If n, k, a, u are as in the previous theorem then the primality of n can be determined in

22(u−1)2max(s+2(u−1)−k,0)Õ((log n)4) time.
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Proof

As in the analysis of complexity of the previous sections. �

To be more precise about this result let Au the algorithm associated to Theorem 5.1 and C(Au) its

complexity. Corollary 5.1 implies that C(Au) ≈ 24(u−1)C(A1) if k ≤ 2s and C(Au) ≈ 22(u−1)C(A1) if

k ≥ 2s+2(u−1).

Even more precise, C(Au) ≈ 24(u−1)2−min(max(k−s,0),2(u−1))C(A1).

Note also that in the unconditioned case (u = k) the complexity is 24(k−1)Õ((log n)6) which is polynomial

time only for values of k not too large.

5.2 The case n ≡ −1 (mod 4)

Similarly when n ≡ −1 (mod 4) we have the following theorems, that we state without proof since the

details are very similar to the previous results.

Theorem 5.2 Let n ≡ −1 (mod 4). Let k = ν2(n + 1). Let s = d2 log log ne and t = s + 1. Let α ∈ Z[i]

and u a positive integer, 1 ≤ u ≤ k + 1 and such that α
n2

−1
2u ≡ −1 (mod n). Suppose that every positive

integer less or equal than 2max(s−k+2(u−1),0)+1 is coprime with n.

Suppose also that for every m ≤ 2max(s−k+2(u−1),0) we have (1+mx)n ≡ (1+mxn) mod (n, x2t+2u−1 −α)

and that n is not a perfect power. Then, n is prime.

Corollary 5.2 If n, k, α, u are as in the previous theorem then the primality of n can be determined in

22u2max(s+2(u−1)−k,0)Õ((log n)4) time. In other words, if we call these tests Bu, then C(Bu) ≈ 4C(Au).

Remark 5.1 In each of the Theorems 3.1, 3.2, 4.1, 4.2, 5.1, 5.2, and Corollaries 5.1, 5.2, we claim that s

can be replaced by [2 log log n] (and t by [2 log log n] + 1). In fact, s can be replaced by the minimum positive

integer s such that |Gn| > n2s/2

. That s ≤ d2 log log ne was achieved using the fact that Gn contains properly

the set T1 whose cardinality is 22s − 1. But actually Gn contains the larger set T whose cardinality is the

combinatorial number
(

2s+1 − 1

2s

)

=
1

2

(

2s+1

2s

)

.

Using Stirling’s formula with error, see for instance [9], it is easy to prove that |Gn| > 22s+1− s
2−3.

The smallest integer for which 22s+1− s
2−3 > n2s/2

is the smallest integer for which 2
s
2+1 > log n+s/2+3.

Since we know s/2 ≤ dlog log ne then s is at most the smallest value for which

s/2 + 1 > log(log n + dlog log ne+ 3). (1)

It follows that s = [2 log log n] or maybe even [2 log log n]− 1.

The algorithm should start by verifying which of the values satisfies (1) since each reduction in the value

of s in one unit improves around four times the speed of the algorithm.
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6 Conclusions and Conjecture

In practice, it is clearly desirable to apply algorithm 1 of Section 3 or algorithm 2 of Section 4 when possible.

In the worst case ν2(n−1) = k = 2), algorithm 1 runs at least 211 times faster than the best possible running

time of the AKS algorithm for primes n large enough. Hence, the worst case of algorithm 2 runs 29 times

faster than the best possible case of AKS. This occurs because the main step of Algorithm 1 executes at

most 2s−2 ≤ (log n)2

4 iterations, each of which consist in multiplying polynomials of degree at most (log n)2.

In contrast, in the best possible case AKS executes 8(log n)2 multiplications of polynomials of degree at least

64(logn)2. When k is large the difference in the performance improves dramatically.

For implementation, if no integer a satisfying ( a
n
) = −1 is known a priori, then a search for such an a

within a reasonable range should be implemented. In addition, if this fails to produce such an a, then a

search for a small value of u would be useful.

It is to be remarked that when the value of k is small, the running time for these tests is still large.

This indicates that it may be reasonable to develop analogous tests for numbers n with large νm(nf − 1) for

reasonably small f .

Note that if k > 1
2 log n then the algorithms 1 and 2 run in Õ(log n)2 time. Also, while k increases from

2 to [2 log log n] the running time improves up to Õ(log n)4. But when k varies from [2 log log n] to [12 log n]

there is no more improvement in the speed of our algorithm. Here we believe one should attempt to sharpen

the algorithms because the order of the group Gn can be proven to increase together with k, in such a way

that it forces s, the smallest solution of |Gn| > n2s/2

, to decrease. To be precise we formulate the following

conjecture, which we hope to prove in the near future.

Conjecture. Algorithm 1 and 2 can be modified in such a way that while k increases from 2 to (1/2) logn

the complexity of both algorithms decreases from Õ(log n)6 to Õ(log n)2.
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