
Approximate Integer Common Divisors

Nick Howgrave-Graham

IBM T.J.Watson Research Center
PO Box 704, Yorktown Heights, New York 10598, USA

nahg@watson.ibm.com

Abstract. We show that recent results of Coppersmith, Boneh, Durfee
and Howgrave-Graham actually apply in the more general setting of
(partially) approximate common divisors. This leads us to consider the
question of “fully” approximate common divisors, i.e. where both integers
are only known by approximations. We explain the lattice techniques
in both the partial and general cases. As an application of the partial
approximate common divisor algorithm we show that a cryptosystem
proposed by Okamoto actually leaks the private information directly
from the public information in polynomial time. In contrast to the partial
setting, our technique with respect to the general setting can only be
considered heuristic, since we encounter the same “proof of algebraic
independence” problem as a subset of the above authors have in previous
papers. This problem is generally considered a (hard) problem in lattice
theory, since in our case, as in previous cases, the method still works
extremely reliably in practice; indeed no counter examples have been
obtained. The results in both the partial and general settings are far
stronger than might be supposed from a continued-fraction standpoint
(the way in which the problems were attacked in the past), and the
determinant calculations admit a reasonably neat analysis.
Keywords: Greatest common divisor, approximations, Coppersmith’s
method, continued fractions, lattice attacks.

1 Introduction

When given new mathematical techniques, as is the case in [1] and [5], it is im-
portant to know the full extent to which the result can be used, mathematically,
even if this generalisation does not have immediate applications (to cryptogra-
phy, say). In this paper we will start by describing approximate common divisor
problems. Later we will show that the above results can be seen as special in-
stances of this problem, and we will describe a lattice based solution to (a version
of) the general problem. For now let us just concentrate on explaining approxi-
mate common divisor problems.

As an example, we explain this in the more specific and familiar case of
greatest common divisors. If we are given two integers a and b we can clearly
find their gcd, d say, in polynomial time. If d is in some sense large then it may be
possible to incur some additive “error” on either of the inputs a and b, or both,
and still recover this gcd. This is what we refer to as an approximate common

J.H. Silverman (Ed.): CaLC 2001, LNCS 2146, pp. 51–66, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

52 Nick Howgrave-Graham

divisor problem (ACDP); although we delay its rigorous definition to later. Of
course if there is too much error incurred on the inputs, the algorithm may well
not be able to discern the gcd d we had initially over some other approximate
divisors d′ (e.g. they may all leave residues of similar magnitude when dividing
a and b). In this sense, the problem is similar to those found in error correcting
codes.

Continuing this error correcting code analogy we can state the problem from
the standpoint of the design of the decoding algorithm, i.e. we wish to create
an algorithm which is given two inputs a0 and b0, and bounds X , Y and M for
which one is assured that d|(a0 + x0) and d|(b0 + y0) for some d > M and x0,
y0 satisfying |x0| ≤ X , |y0| ≤ Y . The output of the algorithm should be the
common divisor d, or all of the possible ones if more than one exists. We explore
the following questions: under what conditions on these variables and bounds

– is d uniquely defined, or more generally limited to polynomially many solu-
tions?

– does an algorithm exist to recover these d in polynomial time?

Without loss of generality let us assume that our inputs are ordered so that
X ≥ Y . If one of the inputs is known exactly, i.e. Y = 0, then we call this
a partially approximate common divisor problem (PACDP), and we refer to an
algorithm for its solution as a PACDP algorithm. If however neither input is
known exactly, i.e. Y > 0, then we refer to the problem as a general approximate
common divisor problem (GACDP), and an algorithm for its solution is called a
GACDP algorithm.

In section 3 we show that the results given in [1] and [5] may be seen as
special instances of a PACDP, and the techniques used therein effectively give a
PACDP algorithm.

As a motivating example of this, consider the widely appreciated result in
[1], which states that if N = pq where p ∼ q ∼ √

N , and we are given the top
half of the bits of p then one can recover the bottom half of the bits of p in
polynomial time. Notice that in effect we are given p0, such that p0 = p + x0,
for some x0 satisfying |x0| < N1/4, from which we can recover the whole of p. It
is not so widely known that the result also holds if we are given any integer p′0
such that p′0 = kp+x0 for some integer k (and the same bound on x0 as before),
i.e. we can still recover all the bits of p from this information too.

This immediately shows that Okamoto’s cryptosystem [11] leaks the private
information (the factorisation of n = p2q) from the public information (n and
u = a + bpq where a < (1/2)

√
pq) in polynomial time1, so this result can be

considered an even stonger break than that given in [14], which recovers all
plaintexts, but does not recover the secret information.

In section 4 we go on to consider the GACDP, and produce some new and
interesting bounds for polynomial time algorithms which (heuristically) solve
this. For ease of analysis we do restrict our attention to the case when a0 ∼ b0

1 In fact the size of a is much smaller than it need be for this attack to work.

Approximate Integer Common Divisors 53

and X ∼ Y (we call such input “equi-sized”), though similar techniques can
brought to bear in more general situations.

This general problem is thought to be very interesting to study from a math-
ematical point of view, and the lattice analysis is also considered to be quite
neat and interesting from a theoretical standpoint, however this generalisation
admittedly lacks an obvious (useful) application in either cryptography or cod-
ing theory. It is hoped that with this presentation of the problem, a use will
subsequently be found.

In section 7 we conclude with some open and fundamental questions associ-
ated with these general lattice techniques.

1.1 Presentation and Algorithm Definitions

In the remainder of this paper a and b will always denote integers which do
have a “large” common divisor, and d will be used to represent this common
divisor. The (known) approximations to a and b will be denoted by a0 and b0

respectively, and their differences by x0 = a − a0, y0 = y − y0. A real number
α ∈ (0 . . . 1) is used to indicate the quantity logb d, and α0 is used to indicate a
(known) lower bound for this quantity.

Given two integers u, v we will write u ∼ε0 v if | log2 log2 u− log2 log2 v| < ε0,
though we frequently drop the ε0 subscript, when it is clear what we mean.

We now define the algorithms to solve the ACDPs presented in this paper. We
include their bound information to fully specify the algorithms, though the proof
of these bounds, and the proof that their output is polynomially bounded, is left
to their respective sections. We start with the PACDP algorithms described in
sections 2 and 3.

Algorithm 11. The (continued fraction based) partially approximate common
divisor algorithm PACD CF, is defined thus: Its input is two integers a0, b0 such
that a0 < b0. The algorithm should output all integers d = bα

0 , α > 1/2, such
that there exists an x0 with |x0| < X = b2α−1

0 , and d divides both a0+x0 and b0,
or report that no such d exists (under the condition on X we are assured that
there are only polynomially many solutions for d).

Algorithm 12. The (lattice based) partially approximate common divisor al-
gorithm PACD L, is defined thus: Its input is two integers a0, b0, a0 < b0 and
two real numbers ε, α0 ∈ (0 . . . 1). Let us define M = bα0

0 and X = bβ0
0 where

β0 = α2
0 − ε. The algorithm should output all integers d > M such that there

exists an x0 with |x0| < X, and d divides both a0 + x0 and b0, or report that no
such d exists (under the conditions on M and X we are assured that there are
only polynomially many solutions for d).

Firstly notice that the condition a0 < b0 is not a limitation at all. Since we
know b0 exactly we may subtract any multiple of it from a0 to ensure this.

Secondly (and far more importantly) notice that there is a subtle distinction
between algorithms 11 and 12 in that in the continued fraction based algorithm

54 Nick Howgrave-Graham

α is not an input, but rather is defined in terms of any common divisor d (this
is true of the GACDP algorithms defined below too). This is preferential to the
situation with the lattice algorithms, in which it is presently necessary to state
in advance an α0 < α, and then the bound X is defined in terms of α0 rather
than α (so one would wish α0 to be very close to α to ensure X was as large as
possible).

Thirdly notice the requirement for α > 1/2 in the continued fraction tech-
niques. A major contribution of this paper is in showing that we may solve the
ACDPs for α < 1/2 too, using the lattice based methods.

Lastly notice the appearance of ε in the lattice based variants. This is because
the bound on X in these algorithms is defined asymptotically. In order to know
X explicitly we allow ε � logb0 X to be given as input to the algorithm.

We give two equi-sized (i.e. a0 ∼ b0) GACDP algorithms in the paper, one
in section 2 and one in section 4. The lattice based approach is only defined for
α < 2/3. Refer to figure 61 to see a graphical representation of the bounds from
each of the algorithms.

Algorithm 13. The (continued fraction based) equi-sized GACDP algorithm
GACD CF, is defined thus: Its input is two integers a0, b0 subject to a0 ∼ b0,
a0 < b0. The algorithm should output all integers d = bα

0 , α > 1/2 such that
there exist integers x0, y0 with |x0|, |y0| < X = bβ

0 where β = max(2α−1, 1−α),
and d divides both a0+x0 and b0+ y0, or report that no such d exists (under the
condition on X we are assured that there are only polynomially many solutions
for d).

Algorithm 14. The (lattice based) equi-sized GACDP algorithm GACD L, is
defined thus: Its input is two integers a0, b0 subject to a0 ∼ b0, a0 < b0, and
two real numbers ε, α0 ∈ (0 . . . 2/3). Let us define M = bα0

0 and X = bβ0
0 where

β0 = 1 − (1/2)α0 − √
1− α0 − (1/2)α2

0 − ε. The algorithm should output all
integers d > M such that there exist integers x0, y0 with |x0|, |y0| < X, and
d divides both a0 + x0 and b0 + y0, or report that it is unlikely that such a d
exists (under the conditions on M and X we are assured that there are only
polynomially many solutions for d).

As the above definitions mention, the number of common divisors d is poly-
nomially bounded when the conditions of the algorithms are met. If one wishes
to use the algorithms as encoding/decoding algorithms, and so require a unique
output from the algorithms, then one should ensure that the “aimed for” solution
is substantially below the algorithm bounds, meaning that it is highly (exponen-
tially) unlikely that any of the other (polynomially many) common divisors will
be confused with it.

Notice that since algorithm GACD L is heuristic, it is possible that a d exists
which meets the conditions of the algorithm, but it is not found. In order to
give an indication of the probability of this event happening one can refer to the
results in Table 1. As can be seen there, no such occurances were detected, and
so such events are considered to be extremely rare.

Approximate Integer Common Divisors 55

2 A Continued Fraction Approach

One way to approach solving the ACDPs is to consider the sensitivity of the
Euclidean algorithm to additive error of its inputs. This can be studied via
the use of coninued fractions, as explained in [6]. One of the many places such
an analysis was found useful was in [15], when attacking RSA with a small
decrypting exponent, and we look at this further in section 5.

The main results that are useful in this analysis are the following:

Theorem 21. Let ρ be any real number, and let gi/hi, i = 1 . . . m denote the
(poynomially many) approximants to ρ during the continued fraction approxi-
mation.

For all i = 1 . . . m we have that∣∣∣∣ρ − gi

hi

∣∣∣∣ <
1
h2

i

.

Moreover for every pair of integers s, t such that
∣∣∣ρ − s

t

∣∣∣ <
1
2t2

then the ratio s/t will occur as one of the approximants gj/hj for some j ∈
(1 . . . m).

To see how this applies to creating an ACDP algorithm, let us recall the
input to the continued fraction based algorithms, namely two integers a0 and
b0, a0 < b0, and we search for common divisors d = bα

0 that divide both a0 + x0

and b0 + y0 (y0 = 0 in the PACDP).
In this section we will assume that x0 and y0 are such that |x0|, |y0| < bβ

0 ,
and show the dependence of β on α so that the continued fraction approach is
assured of finding the common divisors d. We will see that the basic algorithm is
essentially the same for PACD CF and GACD CF, i.e. the fact that we know y0 = 0
will only help limit the number of d, not the approach used to find them.

Let a′ and b′ denote (a0 + x0)/d and (b0 + y0)/d respectively, so clearly the
sizes of a′ and b′ are bounded by |a′|, |b′| < b1−α

0 . Also notice that

a0

b0
=

a0 + x0

b0 + y0
+

a0y0 − b0x0

b0(b0 + y0)
=

a′

b′
+

a0y0 − b0x0

b0(b0 + y0)

so we have ∣∣∣∣a0

b0
− a′

b′

∣∣∣∣ = |a0y0 − b0x0|
b0(b0 + y0)

< bβ−1
0

This means that by producing the continued fraction approximation of ρ =
a0/b0, we will obtain a′/b′ whenever bβ−1

0 < 1/(2(b′)2). Since we are primarily
concerned with large a0 and b0 we choose to ignore constant terms like 2, and
by using the fact that |b′| < b1−α

0 we see that this inequality holds whenever
β − 1 < 2(α − 1), or β < 2α − 1 as anticipated by the algorithm definitions.

56 Nick Howgrave-Graham

Thus for both PACD CF and GACD CF the algorithm essentially comes down to
calculating the continued fractions approximation of a0/b0; the only difference
between these two algorithms is what is then outputted as the common divisors d.

Let us first concentrate on PACD CF, and let gi/hi denote the (polynomially
many) approximants in the continued fraction approximation of a0/b0. If d = bα

0

divides both a0 + x0 and b0 and |x0| < X = b2α−1
0 we know a0/b0 is one of

these approximants. It remains to test each of them to see if hi divides b0; if
it does then we output d = b0/hi as a common divisor. Note that for all such
approximants we are assured that |x0| < X since x0 = a0 − dg < b0/h2 = b2α−1

0 .
This proves the existence of algorithm PACD CF.
We now turn our attention to algorithm GACD CF. The first stage is exactly

the same, i.e. we again consider the (polynomially many) approximants gi/hi,
however now hi need not divide b0. Instead we find the integer k (which will
correspond to our common divisor d) which minimises the max-norm of the vec-
tor k(gi, hi)− (a0, b0) = (x0, y0). Again we are assured that for all approximants
|x0|, |y0| < X = b2α−1

0 .
However consider (x′

0, y′
0) = (k + l)(gi, hi)− (a0, b0) = (x0, y0) + l(gi, hi) for

some integer l. If it is the case that |lgi|, |lhi| < X as well, then this will mean
(k + i) for all i = 0 . . . l satisfy the properties of the common divisors d, and
shoud be outputted by the algorithm. Since hi = b1−α

0 there are b3α−2
0 choices

for l, which becomes exponential for α > 2/3.
In order to limit ourselves to polynomially many d we define X = bβ

0 where
β = min(2α − 1, 1 − α), which ensures there is (exactly) one common divisor
d associated with each continued fraction approximant gi/hi. This proves the
existence of algorithm GACD CF.

Readers who are reminded of Wiener’s attack on RSA by this analysis should
consult section 5.

Even though it is known that the continued fraction analysis is optimal for
the Euclidean algorithm, we do obtain better bounds for the PACDP and the
GACDP in the next sections. This is because we are not restricted to using the
Euclidean algorithm to find the common divisors d, but rather we can make use
of higher dimensional lattices, as originally done in [1].

3 Using Lattices to Solve PACDP

Essentially there is nothing new to do in this section, except point out that the
techniques previously used to solve divisibility problems, e.g. [1] and [5], actually
apply to the more general case of PACDPs.

To do this we will concentrate on the approach taken in [5] (because of the
simpler analysis), which we sum up briefly below (primarily so that we can draw
similarities with the method described in section 4). The reader is encouraged
to consult the original paper for complete details of this method.

The algorithm was originally used to factor integers of the form N = prq.
In this section we will restrict our attention to r = 1, though we note that the

Approximate Integer Common Divisors 57

techniques still work for larger r (which would be analagous to ACDPs such that
one of the inputs is near a power of the common divisor d).

A key observation in [5] is that if we have m polynomials pi(x) ∈ Z[x],
and we are assured that for some integer x0 we have pi(x0) = 0 mod t for all
i = 1 . . . m, then any (polynomial) linear combination of these polynomials, i.e.
r(x) =

∑m
i=1 ui(x)pi(x) also has the property that r(x0) = 0 mod t.

The trick is to find a polynomial r(x) of this form, which is “small” when
evaluated at all the “small” integers. Let r(x) = r0 + r1x+ . . .+ rhxh. One way
to ensure that |r(x)| ≤ hXh when evaluated at any x such that |x| < X is to
make the ri satisfy |ri|X i ≤ Xh. This is the approach we shall take, and we shall
use lattice reduction algorithms to generate these coefficients.

Notice that if t were such that t > hXh and x0 were such that |x0| < X ,
then the integer r(x0) which must be a multiple of t, but cannot be as large as t,
must therefore equal 0. By finding all the roots of the equation r(x) = 0 over the
integers we therefore find all possible x0 for which the pi(x0) = 0 mod t when
|x0| < (t/h)1/h.

To see the relevance of this with the PACDP, notice that in the PACDP we
are effectively given two polynomials2 q1(x) = a0 + x and q2(x) = b0, and told
that d > M = bα0

0 divides both q1(x0) and q2(x0) for some |x0| < X = bβ0
0 . As

in the previous section we will work out the conditions on β0 (in terms of α0)
for us to be assured of finding such common divisors d.

Rather than just consider q1(x) and q2(x) directly we will calculate r(x) by
considering the polynomials pi(x) = q1(x)u−iq2(x)i for some fixed integer u and
i = 0 . . . u. Let h be the degree of the polynomial r(x) we are trying to produce.
We will see later how the optimal choice of h is related to u, but for the moment
just notice that pi(x0) = 0 mod du for i = 0 . . . u.

In order to find the desired polynomial r(x) and to work out the size of
its coefficients we must describe the lattice we build. To this end we show an
example below with h = 4 and u = 2.

b2
0 0 0 0 0

b0a0 b0X 0 0 0
a2
0 2a0X X2 0 0
0 a2

0X 2a0X
2 X3 0

0 0 a2
0X2 2a0X3 X4

The reason that we build the lattice generated by the rows of this type of
matrix, is that each of the first u+1 rows corresponds to one of the polynomials
pi(x), where the coefficient of xj is placed into the (j + 1)th column multiplied
with Xj = bjβ0

0 . Notice that with this representation the integer matrix opera-
tions respect polynomial addition.

The remaining h−u−1 rows effectively allow for a polynomial multiple of the
relation (a0+x)u (polynomial multiples of the other relations are ignored because

2 Notice that q2(x) is simply a constant, but we still refer to it as a (constant) poly-
nomial.

58 Nick Howgrave-Graham

of their obvious linear dependence). If these choices seem a little “plucked from
the air”, their justification can be seen in the determinant analysis.

We plan to reduce this lattice to obtain a small vector r = (r0, r1X, . . . , rhXh)
from which we obtain the polynomial r(x) =

∑
rix

i.
It remains to see how small the entries of r will be. The dimension of the

lattice is clearly (h + 1) and the determinant of the lattice can be seen to be

∆ = Xh(h+1)/2b
u(u+1)/2
0 = b

u(u+1)/2+β0h(h+1)/2
0 ,

which means we are assured of finding a vector r such that |r| < c∆1/(h+1)

for some c which (as in the previous section) is asymptotically small enough
(compared to ∆1/(h+1)) for us to ignore in the following analysis. To actually
find r one would use the LLL algorithm (see [8]) or one of its variants (e.g. [12]).

Notice that, as mentioed above, this bound on r is also (approximately) a
bound on the integers |r(x′)|, where r(x) =

∑
rix

i, and x′ is any integer such
that |x′| < X .

We therefore wish ∆1/(h+1) to be less than du > bα0u
0 , so that the roots of

r(x) = 0 over the integers must contain all solutions x0 such that d > bα0
0 divides

both q1(x0) and q2(x0), and |x0| < X .
For this to happen we require that (u(u+1)+β0h(h+1))/(2(h+1)) < α0u,

i.e.
β0 <

u(2(h + 1)α0 − (u + 1))
h(h + 1)

.

For a given α0 the optimum choice of h turns out to be at approximately
u/α0; in which case we obtain that whenever

β0 < α2
0 −

α0(1− α0)
h + 1

,

we will find all the possible x0.
This proves the existence of algorithm GACD L. One simply reduces the rele-

vant lattice with h = 	(α0(1− α0)/ε
 − 1 and u = 	hα0
, and finds the roots of
the resulting polyomial equation over the integers. The fact that there are only
a polynomial number of possible d follows from the fact that the number of x0

is bounded by h.

4 Using Lattices to Solve GACDP

In this section we attempt to solve GACDP by recovering the x and y such that
“a paricularly large” d divides both a0 +x and b0+ y. As mentioned in section 2
there are exponentially many x and y for d > b

2/3
0 which implies that our lattice

technique cannot work above this bound. However we will show that the method
does work (heuristically) right up to this bound.

The approach taken is similar to that described in section 3, which we will
make frequent reference to, but the analysis must now deal with bivariate poly-
nomials.

Approximate Integer Common Divisors 59

A particularly interesting question is whether one can make what follows
completely rigorous. Such an argument is presently evading author, and as shown
in [9] one cannot hope for a argument for a general bivariate modular equation,
but it does not rule out that in in this case (and other specific cases) it may be
possible to prove what follows.

In the GACDP we are given two polynomials3 q1(x, y) = a0+x and q2(x, y) =
b0+y, where a0 ∼ b0, and told that d > M = bα

0 divides q1(x0, y0) and q2(x0, y0)
for some |x0|, |y0| < X = bβ

0 .
The first thing to notice is that we can extend the general approach of the

last section easily, since if we have m polynomials pi(x, y) ∈ Z[x, y], and we
are assured that for some integers x0, y0 we have pi(x0, y0) = 0 mod t for all
i = 1 . . . m, then any (polynomial) linear combination of these polynomials, i.e.
r(x, y) =

∑m
i=1 ui(x, y)pi(x, y) also has the property that r(x0, y0) = 0 mod t.

Again rather than just considering q1(x, y) and q2(x, y) directly we will cal-
culate r(x, y) by considering the polynomials pi(x, y) = q1(x, y)u−iq2(x, y)i for
some fixed integer u. In this new case the role of the variable h is as a bound
on the total degree of the polynomials. Notice that we still have pi(x0, y0) =
0 mod du.

As an example of the lattice we create we show below the matrix whose rows
generate the lattice, for h = 4 and u = 2. Note that we use the symbol Y to
denote bound on |y0|, though in fact Y = X = bβ0

0 in our case (this is done so
that the entries of the matrix may be more easily understood).

a2
0 2a0X X2 0 0 0 0 0 0 0 0 0 0 0 0

0 a2
0X 2a0X2 X3 0 0 0 0 0 0 0 0 0 0 0

0 0 a2
0X2 2a0X3 X4 0 0 0 0 0 0 0 0 0 0

a0b0 b0X 0 0 0 a0Y XY 0 0 0 0 0 0 0 0
0 a0b0X b0X2 0 0 0 a0XY X2Y 0 0 0 0 0 0 0
0 0 a0b0X2 b0X3 0 0 0 a0X2Y X3Y 0 0 0 0 0 0

b20 0 0 0 0 2b0Y 0 0 0 Y 2 0 0 0 0 0

0 b20X 0 0 0 0 2b0XY 0 0 0 XY 2 0 0 0 0

0 0 b20X2 0 0 0 0 2b0X2Y 0 0 0 X2Y 2 0 0 0

0 0 0 0 0 b20Y 0 0 0 2b0Y 2 0 0 Y 3 0 0

0 0 0 0 0 0 b20XY 0 0 0 2b0XY 2 0 0 XY 3 0

0 0 0 0 0 0 0 0 0 b20Y 2 0 0 2b0Y 3 0 Y 4

Again, since we are proving the bounds given in algorithm GACD L, we must
treat β0 as a variable for the time being.

As can be seen the situation is slightly different to that previously obtained in
section 3, mainly due to the differences in the linear dependencies of polynomial
multiples of the pi(x, y). As we see we can multiply each pi(x, y) by xj for all
j = 0 . . . h−u now, without incurring any linear dependencies. The down side is
that only (h−u)(h−u+1)/2 other rows corresponding to multiples of (b0+ y)u

may be added.
Alternatively seen, one can think of the pi(x, y) as (a0 + x)s(b0 + y)t for

u ≤ s + t ≤ h, since these generate the same basis as the above ones. We
consider these because they admit an easier analysis, though in practice we would
probably reduce the above ones because they are slightly more orthogonal.

3 Notice that q1(x, y) is not dependent on y, and q2(x, y) is not dependent on x, but
we cannot keep the univariate nature of them for long.

60 Nick Howgrave-Graham

Again we wish to reduce this lattice, and recover a polynomial r1(x, y) which
is small for all |x|, |y| < X . However knowing that all the x, y solutions to the
GACDP are solutions to r1(x, y) = 0 does not assure us of finding the x0, y0 we
require; in general we cannot solve a bivariate equation over the integers.

The common (heuristic) argument at this stage, is to find another small
vector in the basis, from which one produces another polynomial r2(x, y) = 0
over the integers. If we are fortunate in that r1(x, y) and r2(x, y) are algebraically
independent, then this does give us enough information to solve for all roots
(x, y), e.g. using resultant techniques. Unfortunately we cannot prove that in
general we can always find two small vectors which give rise to algebraically
independent polyomials, although this would seem likely, and indeed is borne
out by practical results (see Table 1).

Assuming that we can find two algebraically independent polynomials, we
still have the problem of working out what bounds this lattice method implies.
Working out the determinant of a lattice given by a non-square matrix can be
a major piece of work; see for example [3]. Fortunately there is a trick in our
example, which may prove useful in more general situations.

It is well known that the determinant of the lattice is bounded above by the
product of all the norms of the rows. Our strategy for analysing the determinant
of this lattice will be to perform some non-integral row operations4 and then use
the product of the norms of the rows.

As an example of this if we consider the fourth row of the above lattice, then
this clearly corresponds to the polynomial (a0 + x)(b0 + y). By writing (b0 + y)
as y0 − (b0/a0)x + (b0/a0)(a0 + x) we see that

(a0 + x)(b0 + y) = (a0 + x)(y − a0

b0
x) +

a0

b0
(n + x)2.

This means that taking a0/b0 times the first row, away from the fourth row, will
leave us with a polynomial representing (a0 + x)(y − (a0/b0)x). Since a0 ∼ b0,
if we look at each of the entries of the vector corresponding to this polynomial
then we see that they are each less than b0X (since a0 < b0), so this a bound
for the norm of the vector too (again we ignore the aymptotically small factor
of the difference of these two norms). This bound is a vast improvement on the
b2
0 we may have näıvely bounded the vector by.

In a similar way, we also see that the norms of the vectors corresponding to
the polynomials (a0 + x)s can be bounded by Xs−ubu

0 , since we can subtract
suitable multiples of the vectors corresponding to the polynomials (a0 + x)i for
i < s.

In general the vector corresponding to a polynomial pi(x, y) = (a0+x)s(b0+
y)t will contribute Xs+t−uY tbu−t

0 for 0 ≤ t ≤ u and XsY t for u < t ≤ h. We
can write the contribution of the polynomials in a table indexed by s and t, e.g.
for the above example with h = 4 and u = 2

4 These non-integral row operations will mean that the resulting matrix will no longer
be a basis for our lattice, but it will have the same determinant which is all we care
about estimating.

Approximate Integer Common Divisors 61

Y 4

Y 3 XY 3

Y 2 XY 2 X2Y 2

b0Y b0XY b0X2Y
b2
0 b2

0X b2
0X

2

This representation allows us to count the dimension of the lattice and its
determinant easily. The dimension is clearly m = (h + 1− u)(h + u + 2)/2, and
the determinant is

∆ = Y (h+1−u)(h(h+u+2)+u(u+1))/6b
u(u+1)(h+1−u)/2
0 X(h−u)(h+1−u)(h+2u+2)/6 = bδ

0

where δ = u(u + 1)(h + 1− u)/2 + β0(h + 1− u)(2h2 + 4h + 2uh − u2 − u)/6.
As in section 3 we require that δ < muα0, so that the vectors LLL finds5

will be valid over the integers. Representing this in terms of β0 we obtain

β0 <
3u(h + u + 2)α0 − 3u(u + 1)
2h(h + u + 2)− u(u + 1)

=
3u(h + u)α0 − 3u2

2h(h + u)− u2
− 3u(h − u)(2h − uα0)

(2h(h + u)− u2)(2h(h + u + 2)− u(u + 1))
.

The optimal setting for γ such that h = u/γ is now

γ =
2− 2α0 −

√
4− 4α0 − 2α2

0

3α0 − 2

for which we obtain the bound

β0 < 1− 1
2

α0 −
√
1− α0 − 1

2
α2

0 − ε(h, α0)

where for completeness we give the precise ε(h, α0) = ε1/ε2; namely

ε1 = 3(3α0 − 2)
(
(α0 − 1)(11α2

0 + 8α0 − 12)
√
4− 4α0 − 2α2

0

+(α2
0 − 16α0 + 12)(α2

0 + 2α0 − 2)
)

ε2 = 4h(α2
0 + 2α0 − 2)

(
(10α0 − 8)

√
4− 4α0 − 2α2

0 + 23α2
0 − 44α0 + 20

)

+2(3α0 − 2)
(
(34α2

0 − 55α0 + 22)
√
4− 4α0 − 2α2

0

+(19α0 − 14)(α2
0 + 2α0 − 2)

)
.

Notice that limh→∞ ε(h, α0) = 0, and so this proves the existence of the
algorithm GACD L.
5 Actually there are a few minor errors that can creep in due to: underestimating the
determinant (since a0 ∼ b0, but a0 �= b0), transferring between the L1 norm and L2

norms, the fact that there is a 2(m−1)/4 LLL approximation factor and the common
divisor may be overestimated (again since a0 ∼ b0, but a0 �= b0).

62 Nick Howgrave-Graham

5 An Equivalent Problem?

In this paper we have been considering equations where d divides both a0 + x
and b0+y, and d is particularly large with respect to the sizes of x and y. Notice
that we may write this as

b′(a0 + x)− a′(b0 + y) = 0

where now a′ = (a0 + x)/d and b′ = (b0 + y)/d are particularly small.
A very related problem to this is finding small a′ and b′ such that there exists

small x, y which satisfy

b′(a0 + x)− a′(b0 + y) = 1.

The author knows of no reduction between these two problems, but as we
shall the techniques used to solve them are remarkably similar.

The partial variant of the second problem is very related to cryptography;
indeed it has recently been named “the small inverse problem” in [3]. The con-
nection with cryptography was first realised in [15] where it was shown (via a
continued fraction method) that the use of a low decrypting exponent in RSA
(i.e. one less than a quarter of the bits of the modulus N) is highly insecure;
the public information of N and e effectively leaks the factorisation of N in
polynomial time!

The problem was re-addressed in [3], where the new attack was now based
on Coppersmith’s lattice techniques, and the bound for which the decrypting
exponent likely reveals the factorisation of N (in polynomial time) was increased
to 1 − 1/

√
2 of the bits of N . It is a heuristic method, but seems to work very

reliably in practice.
In [3] it was hypothesised that this bound might be increased to 1/2 the bits

of N , because the bound of 1 − 1/
√
2 seemed unnatural. However the author

would like to point out that this state of affairs is unlikely, and in fact the bound
of 1 − 1/

√
2 is natural in that it is exactly what one would expect from the

related PACDP.
Indeed if one had the bound β0 = 1/2− ε for α0 = 1/2 for the PACDP (as

one might expect the two problems to have the same bound), then this would
imply a polynomial time factoring algorithm for RSA moduli6!

We note that this does not prove the falsity of the conjecture (even assuming
factoring is not possible in polynomial time) because there is no known reduction
between the small inverse problem and the PACDP (in either direction). However
it does mean that for the conjecture to be true, the fact that the r.h.s. of the
above equation is 1 rather than 0 must be of key importance to the algorithm
which finds a′, b′ (which is not the case in any of the known attacks).

6 One would just need to guess a constant amount of the top order bits of a factor of
p, and use the algorithm to find the remaining bits.

Approximate Integer Common Divisors 63

6 Results

We sum up the results in the last sections by showing their bounds graphically.
The variables α = logb0 M and β = logb0 X are represented below by the x−
and y− axes respectively. The lines show the maximum β for which the common
divisor d can still be recovered for any given α ∈ (0 . . . 1).

Figure 61. The Bounds Implied by the Approximate Common Divisor
Algorithms.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

The top line is β = α2 which is the bound implied by PACD L. It is respon-
sible for theorems such as “factoring with high bits known”, and (with a slight
extension) “factoring integers of the form N = prq”; see [1] and [5].

The straight line given by β = 2α − 1 is the bound implied by PACD CF, and
is equivalent to Wiener’s attack on low decrypting exponent RSA. The line for
GACD CF starts off the same, but after α = 2/3 it then becomes the line β = 1−α
to ensure a polynomial sized output.

The curved line between the previous two is

β = 1− 1
2

α −
√
1− α − 1

2
α2.

This is a new (but heuristic) lattice based result, explained in section 4, which
also applies to GACDP. It interestingly shows that the problem may be solved
even when α < 1/2.

We now give some practical results to demonstrate the last of these methods
working in practice. We show that indeed we can recover the common divisor d

64 Nick Howgrave-Graham

in reasonable time, and that the size of the short vectors are not significantly
smaller than predicted by the Minkowski bound, which impies that no sublattice
of the one we reduce will reveal a better determinant analysis (this ratio is given
logarithmically below by δ).

The results were carried out on a Pentium II 700MHz machine, running
Redhat Linux. The software was written in C++ and used the NTL Library [13].
Notice that for consistency the total number of bits of a and b was kept near
1024.

Table 1. Table of Practical Results.

bits of # bits of α βmax h u time(s) δ # bits of β
divisor a,b error

205 1025 0.2 0.016 10 1 731 0.941 5 0.004
307 1023 0.3 0.041 5 1 8 0.998 15 0.012

6 1 20 0.972 20 0.019
7 1 43 0.965 22 0.019

410 1025 0.4 0.079 4 1 2 0.984 43 0.041
5 2 28 0.990 41 0.040
6 2 83 0.987 51 0.049
7 2 197 0.990 56 0.055

512 1024 0.5 0.137 4 2 9 0.994 103 0.100
5 2 34 0.993 107 0.104
6 3 261 0.996 113 0.110

614 1023 0.6 0.231 4 3 18 0.998 213 0.208
5 3 100 0.990 207 0.204
6 4 507 0.997 216 0.211

(We bring to the readers attention the fact that some of the above choices
for u are sub-optimal. This effect can be noticed in the bound on β).

7 Conclusions and Open Problems

The first problem is to find more uses for approximate integer common divisor
problems in cryptography, or any other part of computational mathematics (es-
pecially for the general case). Without this the techniques described herein will
find it hard to reach a large target audience.

Another interesting question is to see if one can find reductions between the
“= 0” and “= 1” variants given in section 5, i.e. the small inverse problem and
PACDP.

The next obvious thing to do is to generalise ACDPs even more. For instance
one could complete the analysis (aluded to in section 4) of when dr divides a
number close to one of the inputs. Alternatively one could work out the bounds

Approximate Integer Common Divisors 65

when one has many inputs, all close to numbers which share a large common
divisor d. For completeness these extensions will appear in the final version of
this paper.

The last problems are of a more fundamental nature to do with lattice anal-
ysis. The proof of algebraic independence of the two bivariate polynomials still
remains as a key result to prove in this field. A proof would turn both this
method and the ones described in [3] and [4] in to “fully fledged” polynomial
time algorithms, rather than the heuristic methods they are currently written
up as. Of course as shown by [9] it is not possible to hope for a general solution
to bivariate modular equations, but in this particular case (and others) one may
hope to find a rigorous proof.

Finally we ask if the bounds implied by section 4 are the best possible, in
polynomial time? One way in which this result may not be optimal, is that
our determinant analysis may be too pessimistic, or alternatively there may be
a sublattice of this lattice, for which the reduced dimension and determinant
imply better bounds on the GACDP (for example this type of effect was seen in
the first lattice built in [3]).

Evidence against both of these states of affairs is given by the results in
Table 1, i.e. they do show that the vectors obtained are approximately what
one would expect from the Minkowski bound (though for smaller α there is a
small observed discrepancy), which means that neither of these above situations
is likely with our method.

This being said, it still remains a very interesting and open theoretical ques-
tion to be able to identify, in advance, which lattices are built “incorrectly”, i.e.
those for which some of the rows actually hinder the determinant analysis (e.g.
like the first one in [3]).

A third way to improve the results is that one could build an entirely different
lattice, whose analyis simply admitted better bounds than the ones reached
here. Nothing is presently known about the existence or non-existence of such
an algorithm.

Acknowledgements

The author would particularly like to thank Don Coppersmith, Yuval Ishai and
Phong Nguyen for interesting conversations relating to this subject, and is also
very grateful for the period of time spent on this problem at HP Labs in Bristol.

References

1. D. Coppersmith. Finding a small root of a bivariate integer equation Proc. of
Eurocrypt’96 Lecture Notes in Computer Science, Vol. 1233, Springer-Verlag, 1996

2. D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the
American Mathematical Society (AMS) Vol. 46, No. 2, pp. 203–213, 1999.

3. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
N0.292 IEEE Transactions on Information Theory, Vol 46, No. 4, pp. 1339–1349,
July 2000.

66 Nick Howgrave-Graham

4. D. Boneh, G. Durfee and Y. Frankel. An attack on RSA given a small fraction
of the private key bits. In proceedings AsiaCrypt’98, Lecture Notes in Computer
Science, Vol. 1514, Springer-Verlag, pp. 25–34, 1998.

5. D. Boneh, G. Durfee and N. Howgrave-Graham Factoring N = prq for large r. In
Proceedings Crypto ’99, Lecture Notes in Computer Science, Vol. 1666, Springer-
Verlag, pp. 326–337, 1999.

6. G.H. Hardy and E.M. Wright. An introduction to the theory of numbers, 5’th
edition. Oxford University press, 1979.

7. N.A. Howgrave-Graham. Computational mathematics inspired by RSA. Ph.D.
Thesis, Bath University, 1999.

8. A.K. Lenstra, H.W. Lenstra and L. Lovász. Factoring polynomials with integer
coefficients Mathematische Annalen, Vol. 261, pp. 513–534, 1982.

9. K.L. Manders and L.M. Adleman. NP-Complete decision problems for binary
quadratics JCSS Vol. 16(2), pp. 168–184, 1978.

10. P. Nguyen and J. Stern. Lattice reduction in cryptology: An update”, Algorithmic
Number Theory – Proc. of ANTS-IV, volume 1838 of LNCS. Springer-Verlag, 2000.

11. T. Okamoto. Fast public–key cryptosystem using congruent polynomial equations
Electronic letters, Vol. 22, No. 11, pp. 581–582, 1986.

12. C–P. Schnorr. A hierarchy of polynomial time lattice bases reduction algorithms
Theoretical computer science, Vol. 53, pp. 201–224, 1987.

13. V. Shoup. NTL: A Library for doing Number Theory (version 4.2)
http://www.shoup.net

14. B. Vallée, M. Girault and P. Toffin. Proceedings of Eurocrypt ’88 LNCS vol. 330,
pp. 281–291, 1988.

15. M. Wiener. Cryptanalysis of short RSA secret exponents IEEE Transactions of
Information Theory volume 36, pages 553-558, 1990.

http://www.shoup.net

	Introduction
	Presentation and Algorithm Definitions

	A Continued Fraction Approach
	Using Lattices to Solve PACDP
	Using Lattices to Solve GACDP
	An Equivalent Problem?
	Results
	Conclusions and Open Problems

