An extended abstract appears in Advances in Cryptology — Furocrypt 98 Proceedings, Lecture Notes
in Computer Science, Vol. 1304, K. Nyberg ed., Springer-Verlag, 1998. This is the full version.

Luby-Rackoff Backwards: Increasing Security by
Making Block Ciphers Non-Invertible

MIHIR BELLARE* TeED KROVETZ' PHILLIP ROGAWAYT

August 29, 2000

Abstract

We argue that the invertibility of a block cipher can reduce the security of schemes that
use it, and a better starting point for scheme design is the non-invertible analog of a block
cipher, that is, a pseudorandom function (PRF). Since a block cipher may be viewed as a
pseudorandom permutation, we are led to investigate the reverse of the problem studied by Luby
and Rackoff, and ask: “how can one transform a PRP into a PRF in as security-preserving a way
as possible?” The solution we propose is data-dependent re-keying. As an illustrative special
case, let F: {0,1}" x {0,1}™ — {0,1}" be the block cipher. Then we can construct the PRF F
from the PRP E by setting F'(k,z) = E(E(k,z),z). We generalize this to allow for arbitrary
block and key lengths, and to improve efficiency. We prove strong quantitative bounds on the
value of data-dependent re-keying in the Shannon model of an ideal cipher, and take some initial
steps towards an analysis in the standard model.

Keywords: Birthday attacks, block ciphers, pseudorandom functions, symmetric encryption.

"Dept. of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500 Gilman
Drive, La Jolla, CA 92093, USA. E-mail: mihir@cs.ucsd.edu. Web page: http://www-cse.ucsd.edu/users/mihir.
Supported in part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and
Engineering.

TDept. of Computer Science, Engineering II Bldg., University of California at Davis, Davis, CA 95616, USA.
E-mail: {krovetz,rogaway}@cs.ucdavis.edu. Web page: http://www.cs.ucdavis.edu/"{krovetz,rogaway}. Sup-
ported in part by NSF CAREER Award CCR-9624560 and a MICRO grant from RSA Data Security, Inc.

Contents

1

2

Introduction

The Problem

2.1 Invertibility can hurt when using block ciphers: An example
2.2 PRPs, PRFs, and their relation to block ciphers
2.3 Luby-Rackoff backwards
2.4 History and related work oL

The Fn Construction

Definitions
4.1 Complexity theoretic model L L o
4.2 Ideal block cipher model

Security of the Fn Construction

5.1 Security in the complexity theoretic model
5.2 Security in the ideal block cipher model o oo
5.3 Attacks / Lower bounds

Proof of Theorem 5.1

Proof of Theorem 5.2

7.1 Lemmas e e e e e e
7.2 Proof of Theorem 5.2, Part 1
7.3 Proof of Theorem 5.2, Part 2

Analysis of attacks
8.1 Proof of Proposition 5.3
8.2 Proof of Proposition 5.4

10
10
10
12

13

17
18
19
21

1 Introduction

This paper describes a transformation — turning a “pseudorandom permutation” (PRP) into a
“pseudorandom function” (PRF) using “data-dependent re-keying.” It can be applied to a block
cipher to increase the block cipher’s security in certain ways, and, in particular, the method leads
to block cipher based message encryption and authentication techniques which are approximately
as efficient as ones in current use, but have better security.

In Section 2 we explain our (at first paradoxical sounding) thesis: that invertibility of a block
cipher can be a liability, not an asset, when it comes to the security of schemes that use the cipher.
We will then explain what are PRFs and PRPs, how the former are a better starting point for
constructions but the latter a better model for block ciphers, and how all this leads us to consider
the problem of transforming PRPs into PRFs in a security-preserving way.

In Section 3 we describe our way to do the PRP to PRF transformation. We call our transform
Fn?, where d is a parameter on which the construction depends. (The impatient reader can jump
to Section 3 to see how Fn? works. It is very simple.)

Our main result is an analysis' in the Shannon model which shows that if the block cipher is
ideal then its transform under Fn? is close to an ideal random function. The provided bounds are
strong, showing the transform is close to security preserving.

The interpretation of the above is that the Fn transform gives good security against “generic”
attacks. To guage its strength against cryptanalytic attacks we also analyze it in the standard
complexity theoretic or “reductionist” framework. We do succeed in providing a reduction, but the
quality of the bounds is not as good as in the Shannon model, and thus we view these results as
preliminary, hopefully to be improved.

The results are presented, discussed, and displayed graphically in Section 5. Just before that,
in Section 4, we provide the precise definitions of the security notions, but these can be skipped at
first reading, or skipped entirely by an expert. The rest of the paper is devoted to proofs.

2 The Problem

We begin with a simple example, then relate these issues to PRFs and PRPs, then describe the
problem that results, and conclude with a discussion of related work.

2.1 Invertibility can hurt when using block ciphers: An example

A block cipher is a function E: {0,1}" x{0,1}" — {0, 1}" which transforms an n-bit message block
x into an n-bit string y under the control of a k-bit key k: y = E(k,x). The function is invertible
in the sense that for each key the map Ey<'E(k,-) is a permutation of {0,1}", and knowledge of k
permits computation of £, L. Concrete examples are DES, triple-DES and RC5.

Message encryption is done by using the block cipher in some mode of operation, such as “CBC.”
Using even a very “good” block cipher (say triple-DES, or even an ideal cipher), CBC encryption
becomes insecure once 22 blocks have been encrypted, in the sense that at this point partial
information about the message begins to leak?, due to birthday attacks.® Furthermore, this is true

L All analyses in this paper are concrete and quantitative, meaning providing explicit, non-asymptotic bounds on
the success probabiilty of an adversary as a function of its resources.

2 A good encryption scheme is much more than one that prevents key recovery from a ciphertext: it should have
the property that even partial information about the plaintext is not revealed [9, 4].

3 The attacks are well known. See [4] for an analysis of their effectiveness relative to formal notions of security

for many other common modes of operation, too. Thus direct use of a 64-bit block size block cipher
usually enables one to safely encrypt no more than 232 blocks, which is quite small.

We stress that these attacks arise because the cipher is a permutation, and their cost depends
only on the block length, not the key length or the security of the block cipher. So the attacks are
just as effective for triple-DES, or even an ideal block cipher, as they are for DES. In summary,
block cipher based schemes are often subject to birthday attacks arising from the very nature of
block ciphers as permutations.

So how can we safely encrypt more than 2%/2 blocks? One answer is to use a slightly different
type of primitive in an appropriate mode of operation: specifically, a “pseudorandom function”
(PRF) in CTR (counter) mode, as discussed in [4, 11] and explained further below. This way
to encrypt is easy and has no extra overhead if a PRF of cost comparable to the block cipher is
available.

The above is only one example of an issue that arises in many places: that the permutivity of
a block cipher can hinder the security of schemes which use it. To effectively address this we need
to explain what are PRFs and PRPs and how they relate to block ciphers.

2.2 PRPs, PRFs, and their relation to block ciphers
Let us first back up and look at how the security of a block cipher is best captured.

SECURITY OF A BLOCK CIPHER: PRPS. It is natural to view a real block cipher as constructed to
“approximate”, as closely as possible, an ideal block cipher (that is, a random permutation) in the
sense that if you don’t know the key k and only see input/output examples of Fj, then these should
appear like input/output examples of a random permutation. The quality of a given block cipher
E as a PRP (pseudorandom permutation) is thus captured by a function SEC}, (¢, t) which returns
the maximum “advantage” that one can obtain in distinguishing E}, from a random permutation if
you see ¢ input/output examples and are allowed further computational resources bounded by ¢. (In
the complexity-theoretic model, ¢ will bound computing time; in the information-theoretic model,
t will bound the number of known (k, z, Ex(x)) values. The advantage is a number between 0 and
1 given as the difference of two probabilities: the probability that the adversary outputs 1 given
a random function Ej from E, and the probability that the adversary outputs 1 given a random
permutation 7. See Section 4 for more details.)

Each specific cipher (eg. DES) will have such an associated security function, which depends on
(and to a large extent comprises) its cryptanalytic strength. Of course we won’t know for sure what
is this function, but we can work with what we know from cryptanalytic results. For example, if
the linear cryptanalysis of [13] is the best attack on DES, we might assume SEC] (g, t) stays small
(close to 0) until ¢, ¢ reaches around 2%3. From now on, “block cipher” and “PRP” are synonymous,
from the security point of view.

CIPHERS WITHOUT INVERTIBILITY: PRFSs. Like a block cipher, a pseudorandom function (PRF)
is a map F: {0,1}* x {0,1}" — {0,1}", but now F;&'F(k,-) is not required to be invertible. The
required security property is to approximate, as closely as possible, a random function. The quality
of a given function F is captured by SEC%rf(q, t) which returns the maximum “advantage” that one
can obtain in distinguishing Fj, from a random function if you see ¢ input-output examples and are
allowed computational resources ¢. (This advantage is the difference between probability that the
adversary outputs 1 given a random function Fj from F and the probability that the adversary

outputs 1 given a random function p. See Section 4 for more details.)

for encryption.

THE EXAMPLE REVISITED. Counter mode encryption with a PRF F' means that to encrypt an
m-block plaintext M = x1 - - x,, send
(otr, Fp((ctr + 1)@y || - || Fillctr +m))@am)

where (i) is the binary encoding of i into n bits, “ || ” denotes concatenation, and where you
increment ctr by m after doing each encryption. (Notice that to decrypt you need only apply Fy,
so that you don’t need this function to be invertible.) Counter-mode encryption with a good PRF
is pretty much “ideal encryption”: it is shown in [4] that an adversary’s chance of obtaining partial
information about some plaintext, after ¢ blocks have been encrypted, is at most SECpFrf(q, t), the
strength of F' as a PRF. In particular if we had a PRF F with the same numerical security as DES
but as a PRF not a PRP, namely SECI;f(q,t) ~ SECHE.(g,t), then we could encrypt nearly 23
blocks, well above the birthday bound.

In contrast, when we use a block cipher (PRP) directly in CBC (or CTR) mode, we are not able
to recoup all of the cryptographic strength captured by its SECLY(+,-) value, because at ¢ = on/2
(which is ¢ = 232 for DES) birthday attacks kill the encryption scheme.

The conclusion can be put like this: to get quantitatively good security, what is most useful
and convenient about F' is that SEC%rf(q, t) be small, not SEC}"(¢,t). To make the former as low
as possible the family F' must not be a family of permutations, since no family of permutation
will have a good value of SEC%rf(q,t) if ¢ > 2"/2. This is because of birthday attacks: if F is
a family of permutations then the adversary A(q) who guesses “random function” if and only if
she sees a collision in the answers returned from ¢ distinct but otherwise arbitrary queries already
accrues/ advantage of about 1/e if ¢ = 2/2 The adversary’s advantage then goes quickly to 1 with
q > 2"2,

2.3 Luby-Rackoff backwards

The above is part of an emerging view or understanding, emanating from works like [4, 5, 6, 20],
that when it comes to designing higher-level primitives (like encryption schemes or MACs) a PRF
is a better tool than a PRP, from two points of view: it permits easier and more effective analysis
of the designed scheme, and the resulting schemes have a greater proven quantitative security. This
leads us to suggest that for the purpose of protocol design, what we really want are PRFs, not
block ciphers (PRPs).

So the question is how to get PRF families of high security and low cost. One possibility is to
make these directly, in the same way we make block ciphers now. We suggest that this indeed be
kept in mind for the future, but at the moment is not a very pragmatic view, for two reasons. First,
we have lots of (good) block ciphers available, and we want to use them well. Second, permutivity
may be important to the design process of block ciphers; for example, using the round structure of
a Feistel-network gives rise to a permutation.?

We propose instead to transform PRPs into PRFs. That is, starting with a good PRP E
(realized by a block cipher), convert it into a good PRF F. This is effectively the reverse of the
problem considered by Luby and Rackoff [12], who wanted to turn PRFs into PRPs.

A crucial issue is to make transformations that are as “security preserving” as possible. We want
SECP™ (¢, 1) to remain low even for ¢ 3> 2™/2. Ideally, SECH (g, ¢) would be close to SECRP(q,).

Let us now discuss some related work. Following that we present our construction.

4 Another possibility is to make sure that the block size n is large enough (n > 128) that attacks of complexity
2™/2 are irrelevant. This too is a good idea, but the construction we give has merit which goes beyond the birthday
attacks which we have been using to motivate this problem.

2.4 History and related work

Our construction is related to the cascade construction of [3].

The notion of a PRF was first defined in the polynomial-time framework by Goldreich, Gold-
wasser and Micali [8]. A concrete security treatment of PRFs, together with the idea that concretely
defined PRFs/PRPs can be used to model block ciphers, originates with [6]. Luby and Rackoff use
the term PRP to refer to a family of permutations that is a PRF family in the sense of [8]. Our no-
tion is different in that we measure the advantage relative to random permutations, not functions.
This makes no difference in the polynomial-time framework, but in the concrete-security framework
the difference is crucial; indeed, if concrete security is ignored, the problem we are considering does
not exist.

The ideal block cipher model we use for some of our results is that of [19], used also in [7, 10].

There are many natural ways to try to do the PRP-to-PRF conversion. One of the first to come
to mind is to define Fj(x) = x@Ex(x). This construction is of value in some contexts, but not in
ours. For if you are given an oracle for this Fj(-) you effectively have an oracle for Fy(-): for any
query x you can compute Fi(z) as z®Fy(z). So Fj will resemble a random function no more than
E;. does.

There are many natural alternatives to the Fn¢ transformation. For example, truncate Ej, (x),
defining Fy(x) to be some appropriate-length prefix of Ej(z). This scheme was partially analyzed
by [2]. Another natural method is Fy,k,(z) = Ek, (z)®E,(x). This has not been analyzed.

Aiello and Venkatesan [1] give a general construction for turning a PRF E : {0,1}* x {0,1}" —
{0,1}" into a PRF F : {0,1}5% x {0,1}?>" — {0,1}?". But this is a different problem. Although
they too want to circumvent some birthday attacks, their starting point is a random function (not
a permutation) and the problem is to double the number of bits the function can take as input.
They are bound by the original security of the starting function as a PRF: birthday attacks are
only prevented in the sense that the construction does not induce such attacks itself. So if a block
cipher is the starting point, it is viewed as a PRF, meaning the security is only 2n/2 There is
no notion of modeling a cipher as a random permutation. In contrast, we go above the original
birthday threshold, to a security close to 2. Our construction is also more efficient, and it yields
a map of the same key size and block length as the original one.

In constructing a Wegman-Carter message authentication code (MAC) [21] one needs to sym-
metrically encrypt the universal-hash of each message M. If a PRP is in hand for doing the encryp-
tion, one could define MACy; j2(M) = (ctr, Ego(ctr)®hg(M)), but the security would degrade by
O(¢*27™) compared to using a PRF. (Here ¢ is the number of MACed messages.) Shoup [20] de-
scribes an alternative with better exact security. Our methods allow the simpler and more general
(ctr, Fyo(ctr)®hg1(M)), where F' is the result of PRP-to-PRF conversion starting from E.

As we explained, Luby and Rackoff consider the complementary problem of turning a PRF into
a block cipher [12]. Luby and Rackoff spawned much further work, including [14, 15, 16, 17, 22|,
and our work shares their emphasis on concrete bounds, efficiency, and tight reductions.

3 The Fn Construction

We have described in Section 2.4 some simple suggestions that don’t work and some related con-
structions. Now we present our solution. We let E: {0,1}* x {0,1}" — {0,1}" be the given block
cipher (PRP).

The values n and x vary across real block ciphers; for example, for DES we have x = 56 and
n = 64; for (two-key) triple DES we have x = 112 and n = 64. We want to handle all these cases.

Accordingly, our construction depends on the relative values of x and n. It also depends on a
parameter d, where 0 < d < n.

SIMPLE CASE. The simplest case of our construction is when the given PRP has the property that
= n, and we choose d = 0. One then defines F = Fn’E by F(k,z) = E(E(k,z),r). That is,
Fy(x) = Ep(x), where k' = Ei(x). We call this “data-dependent re-keying” since we are applying
E to z, but using the data-dependent “derived key” k' = Ej(x). The cost of computing F is twice
the cost of computing F, in the sense that there are two applications of E for each application
of F. The general construction includes a provision aimed at reducing this overhead.

THE GENERAL CASE. Let 0 < d < n be given. If 2’ is an n-bit string, let 2/>d denote 2’ shifted
to the right by d positions, with 0-bits filling the vacated positions. If &’ is a string of length ¢, let
[k'], ,; be the string consisting of the first ¢ bits of &’ (for 1 <4 < ¢). Set j = [k/n]. The function
F = FnE takes a rj-bit key ki - - k; and an n-bit input x to return an n-bit output y as follows:

function F(ki---k;, x)
begin
' — x>d //Shift away low d bits
k' «— E(ki,2")||--- ||E(kj,a") //Construct the “extended” derived key

k—[K], . /] We only need k bits of derived key
y «— E(k,x) // Use derived key on the input
return y

end

We call 2’ the group selector and k the derived key. The j applications of Ej, are to deal with
the possibility that x > n, and the truncating of k' to s bits is to handle the possibility that the
key length x might not be a multiple of the block length n. (More strange is the discarding of bits
from the x, namely the x>>d. This is for efficiency, as we will explain below.) As an example, if
E = DES, so that k = 56 and n = 64, we would have j = 1, so the key of F is just a 56-bit DES
key ki, the derived key k is the first 56 bits of DESy, (2’), and the output is DES/(z). If E is
TDES (two-key triple-DES), so that x = 112 and n = 64, we would have j = 2, so the key for F is
a pair k1ks of TDES keys, the derived key £’ is the first 112 bits of TDESy, (/) TDESy, (2), and
the output is TDESy ().

Notice that for fixed ki - - - k;, if two n-bit strings determine the same group selector then they
generate the same derived key, and this happens if the two strings agree in the first n — d bits.
Accordingly, we cluster together all points that have the same group selector into what we call a
common key group. Thus there are a total of 2"~¢ common key groups. For any « € {0,1}"¢ we
define ckg, = {z : [z]1. n—qd = o} as the a-th common key group. Identifying strings with integers
in the natural way, the i-th common key group consists of the integers (i —1)2¢, ...,42¢ — 1.

EFFICIENCY. Recall that the nominal way to encrypt using F' = Fn?E involves applying F to a
single key k£ and successive ctr-values. By dropping the least significant d bits of this counter, one
needs to recompute k' only once every 2¢ invocations of F. Of course an implementation would
need to to record the last derived key and refrain from re-computing it. Doing this makes the
amortized cost to compute F just (1+527%) times the cost of computing E. For many ciphers this
is an underestimate because of additional cost associated to changing the key. In fact, the cost of
changing the key for some block ciphers is high, which is why we don’t want to do it very often.

VARIATIONS. How exactly one drops bits of = is not so important. For example, instead of shifting
to the right one could zero-out the least significant d bits. This makes no difference in the analysis.

We have constructed F' = FnE to be a map F : {0,1}% x {0,1}" — {0,1}". If one prefers,
let Fi(x) = Ep(x) where k' is the first & bits of Ey (x>3>d) || --- || Ex, (z>>d) and k; is defined as
Er({(i)). Now F uses a k-bit key, just like F. The analysis of F lifts to F with just a tiny loss in
quantitative security.

4 Definitions

Here we give the more precise definitions of security in the two models in which we will be analyzing
our construction, namely the (standard) “complexity theoretic” model and the Shannon model.

Recall that in Section 2 we discussed the security of F' and E by way of functions SEC%rf(q, t)
and SECY"(g,t). Their meaning changes according to the model in a simple way:

e In the complexity theoretic model they are CSEC%rf(q, t) and CSECY, P (g, t), respectively, these

quantities being defined in Section 4.1 below, and

e In the ideal cipher model, they are ISECErf(q, t) and ISECE'] (¢, t), respectively, these quantities
being defined in Section 4.2 below, where F refers to the transformation that takes E into F'.
(In our case, F = Fn?).

PRELIMINARIES. If S is a probability space then g « S denotes the operation of selecting ¢ at
random according to the distribution specified by S. If S is a set it is viewed as endowed with
the uniform distribution, so that g < S means that g is selected uniformly at random from set
S. If y is not a set then g « y is a simple assignment statement, assigning g the value y. (It is
thus equivalent to g < {y}.) Let Perm,, denote the set of all permutations 7 : {0,1}" — {0,1}".
Let Rand,, denote the set of all functions p : {0,1}" — {0,1}". Let BC, , be the set of all maps
E :{0,1}* x {0,1}" — {0,1}" such that E(k,-) € Perm,, for all k € {0,1}". Let RF, ,, be the set
of all maps R: {0,1}* x {0,1}" — {0,1}".

A family of functions with key length x and block length n is a map G : {0,1}* x {0,1}" —
{0,1}", that is, G € RF,. Each k-bit key k specifies the map G,%G(k,) € Rand,,. This map is
not necessarily a permutation. If Gy, is a permutation for each k € {0,1}" (ie., G € BC,,,) then we
call G a family of permutations, or a block cipher. We view G as a probability space over Rand,
given by choosing functions via a uniform choice of the underlying key; that is, g «<— G is the same
as k — {0,1}" ; g — Gj.

Given a block cipher E, the block cipher E=1: {0,1}% x{0,1}"* — {0,1}" is defined by E~!(k, y)
being the unique point « such that E(k,x) = y. We interchangeably write E; *(y) and E~!(k,y).

An adversary is an algorithm A with access to some number of oracles. Oracles are denoted as
superscripts to A, as in APF L An oracle responds to its query in unit time.

4.1 Complexity theoretic model

We will have two measures of security: the strength of G as a PRF and the strength of G as a
PRP. We follow [6] in the manner in which the basic notion of [8] is “concretized.”

First, we need the concept of advantage, which for emphasis we call the “computational advan-
tage” and write CADV. Let D be an algorithm (a “distinguisher”) taking an oracle for a function
g, and let G1, Gy be two families of functions with the same block length. We define

CADvVg, (D) = Prig— Gy : DI=1]—-Pr(g«— Gy : DI=1].

Now, suppose F' is a family of functions, and E is a family of permutations. We let

CADV%rf(D) = CADVFERand, (D) CADpVR?(D) = CADVE perm, (D)

CSEC® (¢,t) = maxp {CADVY (D)} CSECYP(¢q,t) = maxp {CADVEP(D)}
Here the first quantity measures the advantage D has in distinguishing random members of F
(resp. F) from truly random functions (resp. permutations) of the same block length. The second
quantity is the maximum advantage attainable using some amount of resources, in this case the
number ¢ of oracle queries and the running time ¢. For simplicity, when we speak of an adversary’s
time we mean the adversary’s actual running time plus the size of the encoding of the adversary
(relative to some fixed encoding scheme), so we have a single parameter ¢ to capture time plus
description size. The maximum here is over all distinguishers D that make up to g oracle queries
and have running time bounded by ¢.

4.2 Ideal block cipher model

The Shannon model [19] treats E as a random block cipher. This means that each Ej, is taken to be
random permutation on n-bit strings. Let FE be some operator on F which returns a new family of
functions, and say the new family has key length «* but the block length is still n. (For us, F = Fn?
and k* = jk where j = [k/n].) As modeled by [7], the adversary that attacks F is given oracles
for E(-,-) and E71(-,-) — as well as an oracle f where either f(-) = F(k*,-) for F = FE and k*
a randomly chosen key in {0,1}"", or else f(-) = p(-), for a random function p : {0,1}" — {0,1}".
We investigate the adversary’s advantage in determining what type of oracle f is. This is defined

as:
TADVEY(A) = Pr[B — BCppih* — {0,1}"; f — (FE)p : ABETN = 1]

~Pr[E < BC.,: f — Rand, : APEM = 1]

The advantage A gains depends, in part, on the number of queries ¢ she asks of f and the total
number of queries t she asks of E and E~!. We are interested in
ISECE (¢,1) = max, {IADVET(4)}

the maximum being over all adversaries that make up to ¢ queries to the f oracle and up to ¢
queries to the E and E~! oracles.

This is an information-theoretic setting: the adversary has unlimited computational power.
If we think of E as a concrete block cipher, and not an idealized one, then attacks in this model
correspond to attacks in which the adversary exploits no characteristics specific to the block cipher,
only “generic” features of the construction F we are analyzing. Thus, security guarantees from
results in this model are weaker than those from results in the model above, yet they do have some
meaning. We use the Shannon model when technical difficulties prevent us from getting bounds as

good as we would like in the complexity theoretic model.

NoTE. The goal will be to upper bound ISECIF)rf(q,t) as a function of ¢,q, k,n. As such we don’t

really need any notion of ISEC}F (g, t), the security of the block cipher, because the latter is assumed
ideal, but there are two reasons to define it anyway. First, to maintain a uniform security treatment
across the models, and in particular be consistent with Section 2; second, because it is indeed the
quantity with which we wish to compare ISECIF)rf(q, t).

We define ISECE'F (¢,t) as the maximum, over all adversaries A of the specified resources, of the

quantity
Pr [E —BCy sk —{0,1}°; f — E} : ABETL o 1}

—Pr|E«BCy,; f+ Perm, : ABETLS

Notice that this quantity is not zero. For ¢ > 1 and large n we would expect it to be about ¢ - 277,
corresponding to an exhaustive key search attack.

5 Security of the Fn Construction

We summarize both proven security guarantees and attacks that indicate the tightness of the bounds
in them.

5.1 Security in the complexity theoretic model

Here we refer to the notions of security of Section 4.1. We assume FE is a PRP family and show our
construction is a PRF family, via a reduction. We do this only for the case where the key length,
Kk, is identical to the block length, n, and we drop no bits, namely d = 0.

Theorem 5.1 Let k = n be a positive integer and let E: {0,1}" x {0,1}" — {0,1}" be a family
of permutations whose security as a PRP family is described by security function CSECR(-,-).
Let F: {0,1}* x {0,1}" — {0,1}" be our construction for the case of no bit dropping, namely
F = FnE. Its security as a PRF is described by function CSEC%rf(, -) which for any number of
queries ¢ < 2" /2 and time t can be bounded as follows:

CSECP (¢,1) < CSECE™®(q,t') +q- CSECEP(3,1') + oo
where t' =t + O(q) - (k + n + Timeg).

Proof: See Section 6. 1

The bound here looks good at first glance. The first term, namely CSECR(¢,t'), is saying
the security of F' as a PRF is related to that of £ as a PRP for essentially the same resources:
we can’t ask better. The last term, namely ¢?/22", is negligible. What about the middle term,
namely ¢ - CSECRP(3,¢)? Intuitively, CSECY,(3,t') is small: what can you do in three queries?
This view is deceptive because one should not forget the time ¢’. One can spend it in exhaustive
key search, and thus CSEC},?(3,¢') can be Q(#'27%). But (dropping constants) this is at least ¢27*
so the second term in our bound looks like ¢?27". Since x = n this is ¢?27".

So these bounds are not proof that the security of F' goes beyond the birthday bound. It would
be nice to improve the above result. However, even the proof of the above is not exactly trivial,
and this is one reason we include the result in this paper: we hope its ideas are food for thought
towards an extension.

As far as we can tell, the difficulties in extending the above result are techncial rather than
arising from any weakness in the construction. (We could be wrong.) Is there any other way we
can give some meaningful evidence of the strength of the construction? We do this by analyzing it
in the Shannon model.

5.2 Security in the ideal block cipher model

The theorem below looks at the most general version of the F' = Fn?E construction, when the num-
ber d of bits dropped is arbitrary and no restrictions are made on k,n, in the model of Section 4.2,

10

k=128,d=8,n=64 —
Birthday Bound, n = 64 -

0.8

0.6

Advantage

04

0.2

é 1‘6 2‘4 3‘2 46 4‘8 5‘6 64
lgQ
Figure 1: Right curve: Illustrating Theorem 5.2, our upper bound on the adversary’s advantage
in distinguishing F' = Fn?E from a random function, assuming n = 64, k = 128, and d = 8. Here
E is a random permutation and the horizontal axis () = max(q,t) is the maximum of the number
of consecutive f-queries and the total number of E, E=! queries. Left curve: The birthday bound
for the same choice of parameters.

where F is an ideal cipher. We obtain very strong results, showing security not only beyond the
birthday bound, but nearly as good as one could hope for.

As we noted in Section 2, an important mode of operation for our construction will be when the
values to which Fj, x, are being applied are successive counter values. Indeed, the bit dropping
is done precisely to have maximum efficiency in this mode: as explained in Section 3, in this case,
the amortized cost of computing F is just (1 + j/2%) times that of computing E, a negligible
overhead. Accordingly, this is the case to which the following security analysis pertains. (Though
later analyses are more general.)

Theorem 5.2 Let n, k be positive integers and d,q,t,t be non-negative integers with 0 < d < n
and let F = Fn?. Let A be an adversary with three oracles, E(-,-), E=1(-,-), and f(-), who asks the
numbers 0,...,q — 1 of its f-oracle (so that these refer to ¢ = [¢2~%] common key groups), and
asks at most t total queries of its E- and E~'-oracles, these referring to no more than t common
key groups. Let j = [r/n]. Then IADVE™(4) <
qA5 + {5
120

R (j2 + 254 +t5 + t) QTR 4 2T 4 gfgdenmRt2

Proof: See Section 7. 1

The first term bounding IAD\/IF)rf(A) remains low until ¢ ~ 2%/% or ¢t ~ 2%/5 We speculate
that these conditions can be further improved to 2(1=9)% (and they are already very small in their
current form), so a reasonable summary of IADVErf(A) is to say that the construction is good until
q ~ min{2", 2"~} or t ~ min{2~, 2(n++)/2},

In Figure 1 we illustrate our bound for the case of a block cipher with parameters n = 64,
k = 128, and dropping d = 8 bits. The bound indicates that one must ask about 2% queries before
one can hope to distinguish Fj from a random function with advantage 1/e. (This 1/e-convention
is a convenient way to summarize security.) For comparison, if you let F' = E you get the usual
birthday-attack curve, which indicates that it takes but 232 queries before an adversary can get like

advantage at distinguishing Fj from a random function.

11

X~ X
no o
DD DDD
BRAERS
coocaa

08| ' : 081

0.6 [0.6 |

Advantage
Advantage

04 - 04

02 02

é 1‘6 2‘4 32 4‘0 4‘8 5‘6 64 é 1‘6 2‘4 32 4‘0 4‘8 5‘6 64
lgQ lgQ
Figure 2: Varying the parameters of Theorem 5.2 — our upper bound on the adversary’s advantage
in distinguishing F' = FneE from a random function, with the horizontal axis Q = max(q,t) as in
the previous figure. Left: Varying key length k. Right: Varying bits dropped d. For both pictures

n = 64.

In Figure 2 we illustrate our bound by showing the effect on advantage of changing either the
key length (left-hand plot) or the value of d (right-hand plot). We assume a block size of n = 64
bits. The adversary’s maximum advantage decreases with increasing key length, but this effect
soon saturates. The construction has worse demonstrated security for larger values of d, but the
effect is not that dramatic, and there is little reason to select a very large value of d, anyway.

It is important to understand the difference between the results here and those of Section 5.1.
The “type” of security guarantee is better in the latter, since we are saying that security in the
sense of a PRP (using the standard notion of a PRP) translates into security in the sense of a
PRF (using the standard notion of a PRF). The results here are only about ideal ciphers, which
only guarantees security against generic attacks. Yet, generic attacks are an important and easy to
mount class of attacks, and a proof of security against them, especially with such strong bounds,
is certainly meaningful. Eventually we hope strong results will emerge in the other model (as well
as for other PRP-to-PRF constructions).

5.3 Attacks / Lower bounds

In Propositions 5.3 and 5.4 we present the best attacks that we know on our construction. These
translate into lower bounds on the security of Fn?E. We present two adversaries: one which
becomes successful when ¢ ~ 27~%, and one which becomes successful when ¢ &~ 2. This is done
in the Shannon model, but in this case (of attacks) this is not a restriction; if we can attack ideal
ciphers we can certainly attack real ones. Thus, the results here should be viewed as complementing
Theorem 5.2, telling us how close to tight is the analysis in the latter.

Proposition 5.3 Let n, k be positive integers and d,q non-negative integers with 0 < d < n, and
let F = Fn?. Then there is an adversary CS which asks at most q queries of an f oracle, no queries
of the E or E~! oracles, and achieves advantage

IADV‘F’rf(CS) > 1 — e 2721

_Qdfnfl

Proof: See Section 5.3. 1

12

Upper Bound, k
Lower Bound, k

64,
64,

0.8

0.6

Advantage

04

0.2

é 1‘6 2‘4 3‘2 46 4‘8 5‘6 64
lgQ
Figure 3: With typical parameters our bounds are tight. Illustrating Propositions 5.3 and 5.4 and
Theorem 5.2 for n = 64, k = 64, d = 7. The horizontal axis () is the same as in the previous
figures.

Proposition 5.4 Let n, k be positive integers and t,d, c be non-negative integers with 0 < d < n,
let F = Fn?, and let j = [x/n]. Then there is an adversary KS which asks ¢ queries of her f oracle,
t queries of her E oracle, and achieves advantage

TADVE(KS) = min{1, [t/(cj +¢)] - 2795} — 27"

Proof: See Section 5.3. 1|

The first lower bound is around 1 — e*‘ﬂd_n_l, while the second one is around t277%. These become

significant when ¢ ~ 2"~% or ¢t ~ 27%. The point of giving these lower bounds is to see how tight is
Theorem 5.2. As Figure 3 illustrates, the bounds are quite close for realistic parameters. On the
same plot we graph our upper and lower bound for kK = 56, n = 64, and d = 7. The curves almost
coincide.

6 Proof of Theorem 5.1

Refer to Section 5.1 for the theorem statement and to Section 4.1 for the definitions of security.
We now provide the proof.

Since the oracles we provide our adversaries are deterministic, we assume throughout and with-
out loss of generality that no adversary ever repeats an oracle query. By Timer we mean the
worst-case amount of time required to calculate function E in our underlying (fixed) model of
computation.

We use the notion of multi-oracles as in [3], to provide a framework in which to reason about
intermediate constructions that arise in our analysis. A multi-oracle) is simply a sequence of
oracles, with some rules as to how queries to the multi-oracle are answered by the individual oracles.
In our setting, an adversary making ¢ queries will be provided with a multi-oracle consisting of ¢
functions, f1,..., fy, each mapping n bits to n bits. The adversary’s j-th query to the multi-oracle
will be answered by f;, for j = 1,...,¢. (That is, if the j-th query to € is ; then the response
is fj(x;).) Note that in this game it is not possible to ask two queries of a single oracle, nor to
ask queries in some different order: the adversary is effectively restricted to sequentially querying

13

f1,-.., fq in that order, with exactly one query to each function. Furthermore, all queries z1, ..., z,
are distinct strings.
We will consider various possible multi-oracles. The first, represented pictorially, is
Q(O) : EE EEk ;

where k — {0,1}" is a random key and there is a total of ¢ instances of Eg, above. Next come two
classes, or types, of multi-oracles, and in each type there are ¢ 4+ 1 different multi-oracles, so that
we have §(s,7) for i =0,...,q and s = 1,2. We typically want to visualize and compare the i-th
members of each class. These are represented pictorially below. In each case m;y1,...,m; «+ Perm,,
are randomly and independently chosen permutations, and k1,...,k;—; are random, distinct k-bit
keys.

Q(l,l) Ek1 Ekz‘—l Ekz Ti+1 = 7Tq ki<—{0,1}“—{k1,...,ki_1}
0(2,4) : Ey, - Ey, , m Ty - Tq m; < Perm,,

k

In other words, in €2(1,4), the i-th oracle is encryption under a key k; distinct from those of the
previous oracles. In €(2,4) the i-th oracle is a random permutation independent of anything else.
Observe that Q(1,7) = Q(2,i — 1) for i = 1,...,q; this is something we will use later. Now, for
s=0,1,2and i=0,...,q we let
w(s,i) = Pr [AQ(S’“ = 1} and w(0) = Pr [AQ(O) = 1}

be the probability that A outputs 1 in the game where it is provided with the corresponding multi-
oracle, the probability being over the choice of the multi-oracle as discussed above, and over the
coins of A, if any. We now claim that

w(0) = Prlk«—{0,1}";9« Ep, : A9 =1]
w(1,0) = Pr[g+« Rand, : A9=1].

The first equality follows from the definition of €(0). For the second, observe that ©(1,0) consists
of ¢ random, independent permutations, 7y, ..., m,. The adversary is making exactly one query to
each of these, so the responses are independently and uniformly distributed over {0,1}". Thus the
equality is true.

Thus our goal is to bound w(0) — w(1,0). We will do so by comparing both to w(1,q). The
proofs of the following lemmas appear later.

Lemma 6.1 w(0) —w(1,q) < CSECEP(¢,t).

Lemma 6.2 w(1,q) — w(1,0) < ¢ CSECRP(3, 1) + .

Now we can write
w(O) - CU(]_, 0) = [W(O) - CU(]_, Q)] + [CU(]., Q) - CU(]_, 0)]
And then apply the two lemmas above to obtain the bound in the theorem. So to complete the

proof of the theorem we need to prove the two lemmas. The first is quite straightforward; the
second will take work.

Proof of Lemma 6.1: We bound the quantity in question via the advantage of a distinguisher
D (for E versus Perm,,) that we will construct below. It gets an oracle for a function g which is
either F;, for a random k or is m « Perm,, and wants to tell which. It uses A as a subroutine and
will respond to oracle queries in such a way that A is working with multi-oracle Ey, Eg, ..., E,.
The code for D is as follows:

14

Algorithm DY
Run A, replying to the j-th oracle query z; of A by Ey, (%)
Output whatever A outputs and halt

We now claim that
Prik —{0,1}";9g— E; : DI=1] = w(0)
Pr[g < Perm, : DY =1] = w(l,q).

The first is clear. For the second, note the sequence of auxiliary keys used to answer the queries
when ¢ <« Perm,, will be outputs of g on distinct points, hence random, distinct keys, which
matches the definition of (1, q).

Now, note that D makes q oracle queries and has a running time bounded by that of A plus ¢-Timeg
plus overhead, making it at most . Thus, we know that its advantage is at most CSECYP(g,t').

Proof of Lemma 6.2: We bound the quantity in question via the advantage of a distinguisher
D (for E versus Perm,,) that we will construct below. It gets an oracle for a function g which is
either E}, for a random k or is m <+ Perm, and wants to tell which. It uses A as a subroutine.
Before specifying the code and analysis let us try to give an idea of the issues.

D will try to respond to oracle queries of A in such a way that A is working with multi-oracle

Ek‘l Eki—l g 7TZ+1 7Tq (]_)
where k1,...,k;_1 are random but distinct keys, and m; 1, ..., 7, are random, independent permu-
tations. D can “simulate” the first kK — 1 oracles by choosing random but distinct keys k1, ..., k;_1

and responding to a query to the j-th oracle (j = 1,...,i—1) via Fj,(-). Simulation of the (i+1)-th
to g-th oracles is even easier: since each is called exactly once, D can just return a random number
in response to each query. Now, we would like that if g « Fj, for a random k then the oracle provide
to A in the simulation looks like 2(1,4), and if g < 7 for a random permutation 7 then it looks like
(2,7). However, neither of these wishes is easily realizable. Consider the first, namely the case
where g = Ej, for a random k. For the oracle provided to A in the simulation to be ©(1,7) it must
be that k & {k1,...,ki—1}. Although this happens with some probability, namely 1 — (i —1)/2%, D
does not know whether or not this happens. (And we can’t just neglect this, because then it turns
out the bound would not be of good quality.) Therefore the idea is to have D try to figure this out:
it will run a certain test whose purpose is to accept if k € {k1,...,ki—1} and reject otherwise. The
test is to compute g on m values, where m is some parameter whose value influences the analysis,
and compare this to Ej, evaluated on the same values, for j = 1,...,i — 1. Now the problem is
that this test might accept even though £ is not in fact one of k1, ..., k;_1, and the analysis must
take that into account.

Let us now specify the code. We will then give the analysis. Below, m > 0 is an integer parameter
whose value we will specify later and () is the n-bit binary representation of integer I.

Algorithm DY
Let i — {1,...,q}
Let ki,...,k;—1 be random but distinct x-bit strings
Let 7i41,...,7q < {0,1}"

15

For [=0tom—1do
yi < g({1)
end for
J—1
While (j <i-1)do
If [Ey((0) = yoand ... and By ((m — 1)) = ymi]
then return 1 (and halt)
Je=J+1
end while
Run A, replying to the j-th oracle query z; of A as follows:
if j < i then reply by Ey,(;)
if j =i then reply by g(z;)
if j > 4 then reply by r;
Return whatever A outputs (and halt)

We refer to [Ey,((0)) = yo and ... and Ey ({(m — 1)) = ym_1] as the “equality test for key k;”.
For the analysis, let

7(1) = Prlk« {0,1}";9« By : DI =1]
7(0) = Pr[g« Perm, : DI =1].
We now claim a certain lower bound on 7(1) which will be justified below:

)MLw+i;1 (2)

1 q
1) = -
q =

i—1
20

q

> 13019 3)

ot

1=

The second inequality is just arithmetic, but we do have to justify the first. In particular, it would
appear that we have not accounted for the equality test at all, but in fact we have.

Equation (2) is justified like this. With probability (i — 1)/2% it will be the case that k €
{k1,...,ki—1}. (The probability is ezactly this because ki,...,k;—1 are distinct.) In this case,
the appropriate equality test (namely the one for k; where k; = k) is sure to return true and D
will certainly output 1. This accounts for the second term in Equation (2). Now, with probability
1—(@—-1)/2" k & {k1,...,ki—1}. In this case, we would like to have the equality tests fail so
that we are providing A with the multi-oracle of Equation (1). If this would happen, we would
have Equation (2) with an equality, not an inequality. But some test may succeed. In fact for any
key k & {ki,...,ki—1} there is a certain probability p(k) that the test succeeds, and this means
that each key reaches the simulation part of the code with a different probability. However, the
key observation is that if the test succeeds in these bad cases, D will output 1. So the overall
probability of outputting one cannot decrease relative to the case where the tests do not succeed,
so what we have written is indeed a lower bound.

Now, we upper bound 7(0) as follows:

16

-1 1 1 5
2 " on 9(m-1)(n—1) ° ()

Equation (4) is justified by observing that the chance of an equality test for a particular key k;
succeeding when g is a random permutation is at most the product above, and there are ¢ — 1 keys
tested. On the other hand, the probability of reaching the simulation is certainly only decreased, so
the probability of D outputting 1 via A can’t exceed w(2,7). To get Equation (5) we are first using
the observation made above that €2(2,4) is just €(1,7 — 1). On the other hand we are simplifying
the second term, using our assumption that ¢ < 271

We can now lower bound the difference (namely the advantage of D):
CApvR*(D) = (1) —7(0)

q

1 q—1 1
> ggw (1,3) —w(l,i —1) | — T = D)(n=1)
1 q—1 1
- g[w(LQ) - w(l,O)] - on+1 9(m—1)(n—1) *

The simplification came about because the sum “telescoped”. Now, multiply both sides of the
above by ¢ and transpose terms to get
al¢ —1) 1

_ prp
W(LQ) W(l,O) < q- CADV (D)+ on+l 9(m—-1)(n—-1) °

The second term can be made arbitrarily small by increasing the parameter m. Let us decide to
set m = 2. Now, notice that D makes m + 1 = 3 queries to its oracle g, and its running time is
bounded by #', so that CADVLP(D) < CSECY,P(m,t'). Thus we conclude that

2

r q
w(l,q) —w(1,0) < ¢q-CSECLP(3,t) + -

This completes the proof of Lemma 6.2. 1

7 Proof of Theorem 5.2

Refer to Section 5.1 for the theorem statement. We now provide the proof.

Since the oracles we provide our adversaries are deterministic, we assume throughout and with-
out loss of generality that no adversary ever repeats an oracle query. Sometimes we regard a block
cipher as a two-dimensional table with 2" rows and 2" columns, where E(k,z) is the value in the
cell of the k-th row and z-th column.

Given a partial function f from (a subset of) {0,1}" to (a subset of) {0,1}", we denote the
domain and range of f (the points where f has been defined and the values those domain points map
to) by Dom(f) and Range(f), respectively. Define Dom(f) = {0,1}" — Dom(f) and Range(f) =
{0,1}™ — Range(f).

When an oracle’s algorithm is specified in pseudo-code having a Boolean variable bad;, BAD; is
the event that flag bad; is set true and is the first such bad flag to be set by the algorithm.

17

7.1 Lemmas

The proofs in this section use two lemmas which are independent of the rest of the section. We
give them here.

The first lemma bounds the ability of an adversary to distinguish the output from two nearly
identical programs. When we write two algorithms which simulate two oracles, we specify the
algorithms to be syntactically identical for as much of their specification as possible. Where their
specifications diverge, a flag is set, and we bound the advantage of an adversary based on her ability
to set one of these flags. See Figures 4 and 5 for examples. The basis for this approach is founded
on Lemma 7.1.

The second standard lemma gives upper and lower bounds for the birthday phenomena in
Lemma 7.3.

DISTINGUISHING NEARLY IDENTICAL PROGRAMS. Consider an adversary A and her oracle f, and
assume A is defined to output either 0 or 1. Say that f is set to either program P; or P», and that
the advantage A has in distinguishing which is the case is Adv4 = Prij[A = 1] — Pra[A = 1]. Now
consider the case where P; and P, are syntactically identical except for some if-guarded instructions
in P, which, if executed, set a boolean flag bad. Let BAD be the event in P, that bad is set.

Lemma 7.1 Adv, < Pry[BAD].

Proof: Let C be the set of all infinite strings representing the coins used in the experiment. Classify
the elements of C' into four non-overlapping sets, Ci2, C79, C15 and C73, where the elements of Co
cause (A =1 A AP2 = 1), and the elements of Cyy cause (A =0 A AP2 = 1), etc. Then,

Advy = %r[Apl =1] - Pér[APQ =1]
|Cr2| +|C13| [Crz| + |C1a
C]| C]|

‘015’ — ’CIQ‘
C

|Cy3] + |Cta
C|

= Pr[a" # A7

<

< Pry[BAD]

To see the last step, if a set of coins does not cause the bad flag to be marked, then only shared
code is executed, and P; and P have identical output. Therefore, A can only have advantage on
the coins selected which set bad. 1

Corollary 7.2 If P, and P» are identical except for some if-guarded instructions in P, which
if executed set bady, and some if-guarded instructions in P, which if executed set bads, then

Advy < PI‘l[BADl] + PI’Q[BADQ]

Proof: Let program P be identical to the common parts of P; and P,. Then, Pri[4 = 1]—Prg[A =
1] S (Prl[A = 1] - PI‘3[A == 1]) + (PI‘3[A == 1] - PI‘Q[A = 1]) S Prl[BADl] + PI‘Q[BADQ] I

18

Lemma 7.3 [Birthday Phenomenon] Given n balls tossed independently and randomly into m
bins, the probability that at least one bin has more than one ball, C'(n,m), satisfies 1—e~nn=1)/2m <
C(n,m) <n?/2m. 1

7.2 Proof of Theorem 5.2, Part 1

In the ideal model the adversary has access to E, E~', and (Fn?E)(k,-) oracles. However, we
initially envision an adversary with access only to the last of these. Later we correct for this
simplifying assumption. Modularizing the proof in this way makes this already-complex argument
easier to follow.

Lemma 7.4 Let n,x be positive integers and d,§ be non-negative integers. Let j = [k/n]. Let A
be an adversary with a single oracle, f, and suppose A asks f queries referring to no more than §

common key groups. Then Adv!, ¢

Pr|E « BCy ik« {0,117 f(-) < FnlE(k,-) : AS = 1} —Pr{p < Rand,, : A” =1]
qA5

m . 2—4& + qA22d—7’l+3 + quQ—Fv' .

S j22—l€—1 +
Note that if an adversary is restricted to referring to no more than § common key groups, implicitly
she is restricted to no more than §2¢ total queries.

Proof: To prove the bound we devise an algorithm to simulate an oracle for the adversary. Actually,
there are two algorithms developed. Both are indicated in Figure 4, the difference being whether
or not we set the flag Game2. We call “Game 1” the result of running the specified algorithm with
the flag Game2 set to false, and we call “Game 2” the result of running the specified algorithm
with the flag Game?2 set to true.

The idea of these games is to simulate one of two experiments —the exact two experiments used in
the definition of AdvY— and to structure these simulations so that they are “identical” until this
can be maintained no longer. Game 1 simulates the experiment used to define the second addend
of the adversary’s advantage. Game 2 simulates the experiment used to define the first addend
of the adversary’s advantage. When Games 1 and 2 “diverge,” a flag will be set. Bounding the
probability that any of the game’s flags get set will serve to bound AdvY.

Let py = Pr| B« BCupik — {0,117, () & Fn?E(k,) : AT = 1| denote the first addend of the
adversary’s advantage in Lemma 7.4. Similarly, let p; = Pr[p < Rand,, : A? =1] denote the
second addend. Let Pr;[F] denote the probability of event E with respect to the probability space
induced by Game i. Our definitions of an oracle F' in Game 1 and Game 2 (Figure 4) make the
following clear.

Claim 7.5 Pr, [AF - 1} _—

Claim 7.6 Pry {AF = 1} = po.

To bound |p; — p2| we bound an adversary’s advantage in differentiating between Game 1 and
Game 2. The following claim is a direct result of Lemma 7.1.

19

On initialization: On oracle query F'(z):

E(-,-) is undefined Yy {o,1}"
bady, bads, bads — false v r>d / /
k... ki — {0,1}% K= Bk, 2| - [E (R, 2]y
ukey — {kx} U U {k*} if Game?2 and k' € ukey then

J
if Game2 and |ukey| < j then bady = true

bad; = true return E(k', z)

fori«—1,...,jdo if Game?2 and y € Range(E(k',-)) then
E(k;,-) — Perm,, bads = true
y — Range(E(K,+))

define E(k',z) =y

return y

Figure 4: Game 1(when Game2 = false) and Game 2 (otherwise).
Claim 7.7 [Pry [A" = 1] - Pry [AT =1]| < £}, Pry [BAD;].

As a result of this claim, we need only bound the three events BAD{, BADy and BADj3 in Game 2.

BOUNDING BAD;. The values ki ..., k; are uniformly sampled and their collision probability is
upper bounded with the birthday bound, giving Pro[BAD; | < j227%~1.

BoUNDING BADs. Recall that, by our convention, the event BAD; can only occur when BAD;
does not occur for all ¢ < I. Event BADy is the event that bad; is the first bad flag to be set.
Therefore, Pro[BADy | < Pry[BAD2|BAD, |, and we analyze BAD, in the context that ki, ..., k; are
random but distinct values. It is clear that each distinct set of keys ki, ..., k; gives rise to the same
distribution on derived keys: the value of the underlying key is not significant, it is only a “name”
for referring to one of the permutations. Thus we could just as well have first choosen the derived
keys from the appropriate distribution, and only then chosen the underlying keys kq,...,k; (all
of them distinct). Conducting the experiment in this way makes it clear that the chance that an
underlying key and a derived key coincide (given that the underlying keys are distinct) is at most
Gj27", since there are at most ¢ derived keys out of the 2% possible ones, and whatever the derived
keys are, we subsequently choose j random distinct keys and look to see if there is a collision.

BoOUNDING BADs3. Let BAD* be the event in Game 2 that some collection of more than 4 common
key groups all map to the same k' value. (We choose the number 4 to be concrete; the proof works
with other numbers, but 4 yields a good result and simplifies the exposition.) We bound Prs[BADs3 |
by

Pry[BAD3] = Pry[BAD;|BAD*] - Pry[BAD*] + Pro[BAD3|BAD | - Pry[BAD"]

IN

Pry[BAD* | + Pry[BADs|BAD |

We now bound each summand.

BOUNDING Pry[BAD*|. If £ > n, then Pro[BAD* | = 0 because the first n bits of each &’ will be the
result of a permutation on differing group selector 2’ values, hence these values will be different for
each common key group. In the case where k < n, each k' is generated by a single n-bit permutation,

20

with the trailing n — & bits deleted. This results in as many as min(2"~%,2"~*) common key groups
mapping to each k’-value. For some 5 common key groups z/,...,z5 to map to the same derived
key, the permuted values of 2/, ..., 25 must agree in the first bits. The probability of this is no
more than 27, The adversary is restricted to ¢ common key groups, so gAiE)ven (g) ways of grouping
the common key groups into groups of size 5, Pro[BAD*] < () - 274 < 4. 27%%,

BOUNDING Pry[BAD3|BAD*]. Each k' has no more than 4 common key groups mapped to it,
each of size 2¢. Also, no more than § different &’ values are mapped to. Using a birthday bound
(Lemma 7.3), Pro[BAD3|BAD*] < ¢- C(4-2%,2") = §22d-—n+3. |

7.3 Proof of Theorem 5.2, Part 2

We now include the oracles E, E~!. Clearly we can give our adversary A from the previous section
a block cipher G, G~! unrelated to (Fn?E)(k, -) and her advantage will not be increased by querying
G,G™!. So another way to express Advi‘ is

Advy = ‘Pr [E — BCpn; G — BCpnik — {0,1}9%; fa(FnlE) (K, -) :
AGGTHS 1} —Pr [E « BCpn;p « Rand, : APFp = 1”

Recall that we aim to bound

Advy = ‘Pr {E BCp ik {0,117 fAX(Fnd B) (K,) : APE T = 1}—

Pr {E — BCy n; p < Rand, : ABE e 1” .

The second summand for each of the above two expressions are identical, so the next goal is to
bound the the difference of the first summands. In summary, the idea is to show that there is very
little difference in adding oracles G, G~! unrelated to (Fn?E)(k,-) and adding the “real” oracles
E,E~1
Lemma 7.8 Let n,x be positive integers and d,q,t,t be non-negative integers. Let j = [k/n]
and § = [q2~%]. Let A be an adversary with three oracles, F(-,-), E7'(-,-), and f(-), who asks
the numbers 0,...,q — 1 of its f-oracle, and at most t total queries, referring to no more than t
common key groups, of its E- and E~'-oracles. Then

Advi % |Pr| B e BCypik « {0,117 FE(FnlE)(k,) : ABE = 1]

Pr[B BCLiG o BCp ik — {0,195 F(FrlE) (k.) : ASCT = 1]

) 75
J A . —K 3 —4K royd—n—rKr+2
< — t t]-2 — 2 tt2 .
<2+q‘7+3+> 120 *

Proof: To prove the bound we devise an algorithm to simulate a triple of oracles (E, E~1, F) for
the adversary. Actually, there are two algorithms developed. Both are indicated in Figure 5, the
difference being whether or not we set the flag Game3. We call “Game 3” the result of running the

21

On initialization: On oracle query E(k, z):

bad1, ..., badr — false if k € ukey then

F,HE, HF «+ undefined bady «— true

ki, .o kG {0,137 if HE(k, z) defined then

ukey — {ki}U---U{k}} return HE(k,z)

if Game3 and |ukey| < j then if Game3 and HF (k,z) defined then
badq < true bads «— true

HF(k7,), ..., HF(k},) < Perm, return HF (k,x)

y — Range(HE(F, -))

if Game3 and y € Range(HF (k,-)) then
badg «— true
y < Range(HE(k,-)) N Range(HF (k,-))

On oracle query F(x): define HE(k,z) =y

return y
x — x>d
/ / /

ff (I;F[(Ekg,k:;xdgzﬂinedHﬂfg 21 On oracle query E—!(k,y):

return HF (K, z) if k € ukey then
if Game3 and HE(K',x) defined then bad- — true

bady « true if HE~'(k,y) defined then

return HE(kK', z) return HE '(k,y)
y < Range(HF (K, ")) if Game3 and y € Range(HF (k,-)) then
if Game3 and y € Range(HE(k’,-)) then bads — true

bads — true return HF'(k,y)

y < Range(HE(k,)) N Range(HF (k,)) | 2 — Dom(HE(k, "))
define HF(K',z) =y if Game3 and « € Dom(HF (k,-)) then
return y badg «— true

x «— Dom(HE(k,-)) N Dom(HF (k,-))
define HE (k,z) =y
return z

Figure 5: Game 3 (when Game3 = true) and Game 4 (otherwise).

specified algorithm with the flag Game3 set to true, and we call “Game 4” the result of running
the specified algorithm with the flag Game3 set to false.

The idea of these games is to simulate one of two experiments —the exact two experiments used
in the definition of Adv%— and to structure these simulations so that they are “identical” until
this can be maintained no longer. Game 3 will simulate the first experiment in the expression for
Adv?, that is, the experiment associated to

P3Py | B BCy ik = {0, 1)9%; fA(Fn?E) (K,) : ABE S = 1]

Game 4 will simulate the second experiment in the expression for Adv124, that is, the experiment

associated to p,&f

Pr {E — BCK,TL; G — BCK,TL; k — {0, 1}j"€; fd:ef(FndE)(k‘,) : AG’Gil’f = 1} .
When Games 3 and 4 “diverge,” a flag will be set. Bounding the probability that this flag gets set
will serve to bound Adv¥.

Games 3 and 4 were designed to make the following two claims clear:

22

Claim 7.9 Prs [AE’E‘%F _ 1} — ps.

Claim 7.10 Pry [AE’E‘%F - 1} — Dy
Combining these claims and Lemma 7.1, the advantage adversary A can achieve is bounded:
Claim 7.11 |p3 — p4| < 37, Pr3[BAD;].

Therefore, instead of directly considering adversaries who try to maximize |ps —p4|, we may consider
adversaries whose goal it is to set the bad; flags in Game 3. Claim 7.11 tells us that |ps — p4| is no
larger than the maximum probability an adversary can achieve in setting the flags in Game 3. For
the remainder of this section, we consider in turn the maximum probability an adversary D has in
setting each of the bad; flags. The overall bound we wish to prove, |ps — p4|, is no larger than the
sum of these maximum probabilities. We now bound the maximum probability that an adversary
has in causing each event BAD; in Game 3. Recall our convention that BAD; is the event that bad;
is the first flag to get set.

BoOUNDING BAD;. The underlying keys are uniformly distributed and so we bound their collision
probability with a birthday bound. So, Pr3[BAD; | < j227%~1

BounbpiNG BAD;UBADsUBADg. Each common key group shares a single derived key. The elements
of the common key group along with their associated derived key together define a contiguous set of
entries in the HF-table which we call distinguished bozes. The locations of these distinguished boxes
are fixed during initialization by the fixing of HF(k{,),..., HF(k},-). The adversary is allowed F
queries to no more than ¢ common key groups, so there will never be more than ¢ distinguished
boxes with entries in them. (Any distinguished boxes which have derived keys which coincide with
any of the underlying keys in ukey will also have their entries filled, but we do not consider those
here because BAD events associated with them are subsumed by BAD4 and BAD7.) Furthermore,
the distribution on the location of the § occupied distinguished boxes is unaffected by the ordering
or content of the adversary’s queries. We therefore consider an adversary who asks her F' queries
first.

If we consider the the projection onto the HFE-table of the ¢ occupied distinguished boxes from the
HF-table, then the ability of of the adversary to ask her E-oracle a query which intersects one of
the projected distinguished boxes serves as a bound on the three events BADy U BAD5; UBADg. Let
BAD™* be the event in Game 3 that such an intersection ocurrs. Event BAD, UBADs UBADg cannot
occur without such an intersection. And so,

Pl‘g[BAD, U BAD5 U BADQ] = Prg[BAD, UBADs5 U BAD9|BAD>’<]Prg[BAD*] +

Pr3[BAD, U BAD; U BADo|BAD" |Pr3[BAD" |
< 1-Prg[BAD*]+0-Prs[BAD"]
= Pry[BAD*]

Event BAD* is really the union of § events: That the adversary asks a query of F which intersects
projected distinguished box dboz;, for 1 < ¢ < ¢. By the principle of incusion-exclusion we thus

23

bound BAD* by a sum, Prs|BAD*] = Prs[UL dboz;] < S°9_, Pra[dboz;]. But, notice that each
column of the HE-table has at most one distinguished box and that its derived key is uniformly
distributed, and so Prs[dbox; | = ¢;27", where ¢; is the number of queries the adversary asks in
the column where the ¢-th distinguished box is projected. Finally, we have Z?:l Prs[dbox; | =

S @27 =q27"

BounDING BAD3UBADg UBADg. None of the events comprising BAD3UBADgUBADg occur unless
an entry in HF'(k,-) is also in HE(k, -), for any k. We therefore bound BAD3 UBADg UBADg on the

adversary’s ability to cause such a collision in the same manner we did in the previous paragraphs.
Let BAD* be the event that such a collison occurs, then Prs[BAD2 U BAD; U BADg | < Pr3g[BAD™].

As in the proof of Lemma 7.4, we assume that no 4 common key groups map to the same derived
key (see that proof for details). Thus, we consider the case where no HF'(k,-) has more than
4 - 2¢ defined elements, and they are all random and distinct by definition. (Again, those entries
associated witht the elements of ukey are bounded separately.) So, given that ¢; F-oracle queries
are made of the form E(i,-), no matter what their distribution, the chance of colliding with at
least one of the 4 - 2¢ random distinct values from HF(i,-) is 1 — (1 — (¢;/(2" — 4 - 2d)))4'2d. We
sum over all ¢;. The sum is maximized when ¢; = ¢ for a single value of i. Adding the term which
compensates for our assumption that no 4 common key groups map to the same derived key, and
we arrive at our bound, 1 — (1 — (¢/(2" — 4 - 2d)))4'2d + %—5! QAR

BounDING BAD4 U BAD;. The underlying keys ki,...,k; are uniformly distributed on {0,1}*.
Furthermore, The value of each underlying key is not significant, it is only a “name” for referring
to one of the permutations. j27".

The summation of these terms completes the bound of Lemma 7.8. |

By the triangle inequality, Adv4 < Advl + Adv?%, which concludes the proof of Theorem 5.2. 1

Remark 7.12 If x > n then we can improve our bound to:

Adva < @227 4 2270 4 g7tk /] 278 278 20T

Proof: If K > n, then Pr;[BAD;] < §2%¢="~! and Pr3[BAD,] + Pr3[BAD;] < t29"""%. Each
common key group will be mapped to a different derived key k’. When k > n, the keys are generated
by a function which is the concatenation of j > 1 permutations, ensuring than no two inputs map
to the same output. |

8 Analysis of attacks

Here we prove the lower bounds, namely the results of Section 5.3.

8.1 Proof of Proposition 5.3

Adversary CS looks for collisions within common key groups in the output of f. The attacks are
specified in Figure 6.

Proof: If f(-) = (Fn?E)(k,-) then each common key group is answered by a single permutation,
and so Pr[E « BCy »; k < {0,1}7% : CSFEk,) — 1] = 0. Thus, advantage IADVErf(CS) is exactly

24

function CSf(q, d) function KSf’E(t7 d,j,c)
for i=0...]¢27% —1do Choose K C {0,1}% where
i |{£(20), (20 1), (K| = min[¢/(c(j + 1)), 2}
f(i2¢4 4+ 2% — 1)} < 24 for each ki---kj € K do
then return 1 W Bk, i)l | Bk),
return 0 if f(i2%) = E(K',i2%) forall 0 <i<c—1
then return 1
return 0

Figure 6: Naive attacks. Left: collision-search adversary. Right: key-search adversary.

Pr[p «— Rand,, : CS”() = 1]. This is easily bounded using Lemma 7.3. Let Q = [¢27%].
IADVPT(CS) = Pr|p < Rand,: CS*0) =1]
— Pr[p—Rand,: VO, [Bj: (- 120 <1< <2~ 15 p(0) = p(7)] |
= 1-Pr[p—Rand,: AZ, [V0j: (- 1020 <1< j <2t =12 p(1) # p(j)] |
Q

= 1_HPr[p<—Randn: [w,j:ogzqﬂd—l:p(l)#p(j)H
=1

1 . eiQ(2d71)2d—n—l

v

8.2 Proof of Proposition 5.4

Adversary KS makes a small number (c¢) of f-queries and a large number (¢) of E-queries. (With
typical values of k,n, imagine ¢ = 2 or ¢ = 3.) The adversary simply guesses a key and then tries
to confirm that guess. The attack is again specified in Figure 6.

Proof: If f is a random function then there is a small chance that KS will incorrectly identify it as an
instance of Fn?E. For this to happen some k1, . . ., k; must collide with f’s output. This occurs with

chance only 27" for each of the t queries, and so Pr [E «— BC,; f < Rand,, : KSTE(t. d, j,c) = 1}

is no more than ¢27™¢.

If f is an instance of Fn?E, then the chance that the algorithm outputs 1 is at least as much as the
probability that the algorithm guesses the random key set correctly. We try min{|¢/(c(j+1))],2/%}
out of a total 2/ possible keys, from which the result now follows. |

References

[1] W. AIELLO AND R. VANKETESAN, “Foiling birthday attacks in output-doubling transfor-
mations.” Advances in Cryptology — Eurocrypt 96 Proceedings, Lecture Notes in Computer
Science Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

[2] M. BELLARE, O. GOLDREICH AND H. KRAWCZYK, personal communications, 1995.

25

[3]

M. BELLARE, R. CANETTI AND H. KRAWCZYK, “Pseudorandom functions revisited: The
cascade construction and its concrete security.” Proceedings of the 37th Symposium on Foun-
dations of Computer Science, IEEE, 1996.

M. BELLARE, A. DEsal, E. JOKIPII AND P. RoGAwAY, “A concrete security treatment of

symmetric encryption.” Proceedings of the 38th Symposium on Foundations of Computer
Science, IEEE, 1997.

M. BELLARE, R. GUERIN AND P. RocawAay, “XOR MACs: New methods for message
authentication using a finite pseudorandom function.” Advances in Cryptology — Crypto 95
Proceedings, Lecture Notes in Computer Science Vol. 963, D. Coppersmith ed., Springer-
Verlag, 1995.

M. BELLARE, J. KiLIAN AND P. RoGAawAy, “The security of cipher block chaining.” Ad-
vances in Cryptology — Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839,
Y. Desmedt ed., Springer-Verlag, 1994.

S. EVEN AND Y. MANSOUR, “A construction of a cipher from a single pseudorandom permu-
tation.” Advances in Cryptology — ASIACRYPT 91 Proceedings, Lecture Notes in Computer
Science Vol. 739, H. Imai, R. Rivest and T. Matsumoto ed., Springer-Verlag, 1991.

O. GOLDREICH, S. GOLDWASSER AND S. MICALI, “How to construct random functions,”
Journal of the ACM, Vol. 33, No. 4, 1986, pp. 210-217.

S. GOLDWASSER AND S. MICALI, “Probabilistic encryption.” J. of Computer and System
Sciences, Vol. 28, April 1984, pp. 270-299.

J. KiLiaN AND P. RocawAy, “How to protect DES against exhaustive key search.” Ad-
vances in Cryptology — Crypto 96 Proceedings, Lecture Notes in Computer Science Vol. 1109,
N. Koblitz ed., Springer-Verlag, 1996.

M. LuBy, Pseudorandomness and Crpyptographic Applications. Princeton University Press,
1996.

M. LuBy AND C. RACKOFF, “How to construct pseudorandom permutations from pseudo-
random functions.” SIAM J. Comput, Vol. 17, No. 2, April 1988.

M. Matsui, “The first experimental cryptanalysis of the Data Encryption Standard.” Ad-
vances in Cryptology — Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839,
Y. Desmedt ed., Springer-Verlag, 1994, pp. 1-11.

U. MAURER, “A simplified and generalized treatment of Luby-Rackoff pseudorandom per-
mutation generators.” Advances in Cryptology — Eurocrypt 92 Proceedings, Lecture Notes in
Computer Science Vol. 658, R. Rueppel ed., Springer-Verlag, 1992, pp. 239-255.

M. NAOR AND O. REINGOLD, “On the construction of pseudo-random permutations: Luby-
Rackoff revisited.” Proceedings of the 29th Annual Symposium on Theory of Computing,

ACM, 1997.

J. PATARIN, “Improved security bounds for pseudorandom permutations.” Fourth ACM Con-
ference on Computer and Communications Security, 1997.

26

[17]

[18]

[21]

[22]

J. PATARIN, “About Feistel schemes with six (or more) rounds.” To appear in Fast Software
Encryption (FSE5), March 1998.

J. PIEPRZYK, “How to construct pseudorandom permutations from single pseudorandom
functions.” Advances in Cryptology — Eurocrypt 90 Proceedings, Lecture Notes in Computer
Science Vol. 473, I. Damgard ed., Springer-Verlag, 1990 pp. 140-150.

C. SHANNON, “Communication theory of secrecy systems.” Bell Systems Technical Journal,
28(4), 656-715 (1949).

V. SHouP, “On fast and provably secure message authentication based on universal hash-
ing.” Advances in Cryptology — Crypto 96 Proceedings, Lecture Notes in Computer Science
Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

M. WEGMAN AND L. CARTER, “New hash functions and their use in authentication and set
equality.” J. of Computer and System Sciences 22, 265-279 (1981).

Y. ZHENG, T. MATSUMOTO AND H. IMAI, “Impossibility and optimality results on construct-
ing pseudorandom permutations.” Advances in Cryptology — Crypto 90 Proceedings, Lecture
Notes in Computer Science Vol. 537, A. J. Menezes and S. Vanstone ed., Springer-Verlag,
1990, pp. 412-422.

27

