
On the Security of Iterated Message Authentication

Codes�

Bart Preneely, Member, IEEE, and Paul C. van Oorschotz

May 29, 1998

Abstract

The security of iterated message authentication code (MAC) algorithms is consid-

ered, and in particular those constructed from unkeyed hash functions. A new MAC

forgery attack applicable to all deterministic iterated MAC algorithms is presented,

which requires on the order of 2n=2 known text-MAC pairs for algorithms with n bits

of internal memory, as compared to the best previous general attack which required

exhaustive key search. A related key recovery attack is also given which applies to a

large class of MAC algorithms including a strengthened version of CBC-MAC found

in ANSI X9.19 and ISO/IEC 9797, and envelope MAC techniques such as \keyed

MD5". The security of several related existing MACs based directly on unkeyed hash

functions, including the secret pre�x and secret su�x methods, is also examined.

Index terms|Message Authentication Codes, data authentication, cryptanalysis, hash

functions, collisions

�The material in this paper was presented in part at Crypto'95, Santa Barbara, CA, USA, August

27{31, 1995 and Eurocrypt'96, Zaragoza, Spain, May 12{16, 1996. Bart Preneel is an F.W.O. postdoctoral

researcher, supported by the Fund for Scienti�c Research | Flanders (Belgium).
yBart Preneel is with the Department of Electrical Engineering-ESAT, Katholieke Universiteit Leuven,

Kardinaal Mercierlaan 94, B{3001 Heverlee, Belgium. Email: bart.preneel@esat.kuleuven.ac.be.
zPaul C. van Oorschot is with Entrust Technologies, 750 Heron Road, Suite E08, Ottawa, Canada, K1V

1A7.

1

Contents

I. Introduction 3

II. De�nitions and Background 5

III.General Forgery Attack on MAC Algorithms 9

A. Basic Results . 9

B. Extended Results with Common Trailing Blocks 15

C. Implications of Results on CBC-MAC and MAA 18

IV.Application of General MAC Forgery Attacks 18

A. Secret Pre�x Method . 19

B. Secret Su�x Method . 20

C. Envelope Method . 20

V. Key Recovery Attacks 21

A. Divide and Conquer Exhaustive-Search Key Recovery on Envelope Method . 21

B. Slice-by-Slice Key Recovery of Trail Key in Envelope Method 22

C. Key Recovery on CBC-MAC-Y (ANSI X9.19{ISO/IEC 9797) 26

D. Statistical Cryptanalysis of Envelope MACs 27

VI.Discussion of Results 28

VII.Concluding Remarks 29

2

I. Introduction

Message authentication code (MAC) algorithms have received widespread use for data in-

tegrity and data origin authentication, e.g. in banking applications [15, 31]. They are closely

related to hash functions, which play a fundamental role in many areas of modern cryp-

tography, including a primary role in conjunction with digital signature algorithms. When

combined with a secret key, hash functions may provide conventional techniques for mes-

sage authentication; in this case it is preferable that the secret key be a distinct secondary

input.

Relative to the extensive work on the design and analysis of hash functions [40], little

attention has been given to the design of e�cient MACs until recently [6, 7, 8, 41, 48].

This evidently resulted from the adoption of several early MAC proposals as standards

which proved adequate in practice, including constructions based on the Cipher Block

Chaining (CBC) and Cipher FeedBack (CFB) modes of a block cipher [1, 2, 28, 29]. By

far the most common is the CBC mode (CBC-MAC), theoretical support for which was

recently given [5]. Another early proposal dating back to 1983, the Message Authenticator

Algorithm (MAA) [13, 14, 28], is a current ISO standard for which weaknesses of concern

have only recently been raised [41, 42, 44]. MAA is relatively fast in software (about 40

per cent slower than MD5); its primary disadvantage historically was that the 32-bit result

is considered unacceptably short for many applications. Recent research on authentication

codes has resulted in very fast, scalable, and so-called unconditionally secure constructions

[30, 34, 51], which require relatively short keys, and also [48] (see [4] for a summary of

these an other schemes); their disadvantage is that a di�erent key must be used for every

message. If this is not acceptable, one can generate the key using a cryptographically strong

pseudo-random string generator, but the resulting scheme is then (at most) computationally

secure.

In the early 1990's, Rivest proposed two very fast hash functions: MD4 [46] and MD5

[47]. Other hash functions based on these were subsequently introduced, including RIPEMD

[45], SHA-1 [24], and RIPEMD-160 [20]. In software, these hash functions have throughput

as much as one order of magnitude higher than DES [22]. Several factors motivated their

3

adoption as the basis for MAC algorithms: the additional implementation and deployment

e�ort required to adopt these as MACs is minimal (code for the underlying unkeyed hash

function can be called directly); MACs based on these outperform most other available

options; and such MACs, avoiding the use of encryption algorithms, may have preferen-

tial export status. Consequently, MAC constructions based on these hash functions were

adopted in Kerberos [35], SNMP [26], and SSL [25], and gained favor in the IPsec working

group of the IETF [32, 38].

The current paper presents a new cryptanalytic method applicable to all deterministic

iterated MACs, including MAA and CBC-MAC. The technique involves �nding collisions

on known text-MAC pairs after which a few additional chosen text-MAC pairs allow MAC

forgery. The attack requires �(2n=2) known text-MAC pairs (here n is the bitlength of the

MAC's internal memory, i.e. chaining variable), whereas the best previous general attack

on MAC algorithms was an exhaustive key search. An extension of the new technique,

also described, provides a more powerful attack in special cases. Three existing proposals

for MAC algorithms based on hash functions are then analyzed: the secret pre�x method,

the secret su�x method, and the envelope method combining these. For the secret pre�x

and su�x methods, a systematic analysis is given which generalizes the known attacks.

For the envelope method, application of the new general attack illustrates that earlier

arguments [49] regarding the security level of this method, which claimed that security was

exponential in the sum of the lengths of the secret keys used, are incorrect. Finally, variants

of these methods are shown to be susceptible to more serious attacks which actually allow

key recovery. These variants include keyed MD5 as speci�ed per Internet RFC 1828 [38]

and the strengthened CBC-MAC (hereafter CBC-MAC-Y) included in ANSI X9.19 [2] and

ISO/IEC 9797 [29].

The conclusion is that many approaches which construct MACs directly from hash func-

tions (particularly those which use the hash function as a \black box" without modifying

its external interface, and involving only a single call thereof), achieve a security level sig-

ni�cantly less than that suggested by the size of their parameters. In addition, the new

attack calls into question the strength of MAA and CBC-MAC, including CBC-MAC-Y.

4

The sequel is organized as follows. Section II provides background de�nitions and re-

views several existing MAC proposals. Section III presents a new general forgery attack on

MACs, and an extension thereto. Section IV analyzes the security of various MAC propos-

als, taking into account this forgery attack. Section V presents three key recovery attacks,

the �rst speci�cally on CBC-MAC-Y, and the latter two applicable to many envelope-type

MAC constructions; all three are based in part on the central idea of the new forgery attack.

Section VI provides a partial summary, and concluding remarks are given in Section VII.

II. De�nitions and Background

A hash function h maps bitstrings of arbitrary �nite length into strings of �xed length.

Given h and an input x, computing h(x) must be easy.1

First one may de�ne hash functions not involving secret parameters, as follows. A

one-way hash function must provide two properties: preimage resistance (it must computa-

tionally infeasible to �nd any input which hashes to any pre-speci�ed output), and second

preimage resistance (it must be computationally infeasible to �nd any second input which

has the same output as any speci�ed input). For an ideal one-way hash function with m-bit

result, �nding a preimage or a second preimage requires expected �(2m) operations. A

collision resistant hash function is a one-way hash function that provides the additional

property of collision resistance (it must be computationally infeasible to �nd a collision,

i.e. two distinct inputs that hash to the same result). For an ideal collision resistant hash

function with m-bit result, no attack �nding a collision requires less work than a birthday

or square root attack of �(2m=2) operations.

A MAC is a hash function with a secondary input, the secret key K. Given h, an

input x, and the secret key K, computing h(x) must be easy; note K here is assumed to

be an implicit parameter of h(x). The strongest condition one may impose on a MAC is

as follows: without knowledge of the secret key, it must be computationally infeasible to

1The intention of this section is to provide background to allow an understanding of subsequent results.

Consequently, formality is sacri�ced where informality aids understandability.

5

perform an existential forgery , i.e. to �nd any random message and its corresponding MAC.

In contrast, for a selective forgery , an opponent is required to determine the MAC for a

message of their own choosing. For a practical attack, one often requires that the forgery is

veri�able, i.e. that the MAC is known to be correct (or correct with probability very close

to 1). Here it is assumed that the opponent is capable of performing a chosen text attack ,

i.e. may obtain MACs corresponding to a number of messages of their choice. A stronger

notion is that of adaptive chosen text attack, in which an opponent's requests may depend

on the outcome of previous requests. To be meaningful, a forgery must be for a message

di�erent than any for which a MAC was previously obtained.

For an ideal MAC with m-bit result, any method to �nd the k-bit key is as expensive

as an exhaustive search of expected �(2k) operations. For a MAC which behaves as a

random mapping (which is optimal), the expected number of text-MAC pairs required for

veri�cation of such an attack is approximately dk=me. An opponent who has identi�ed the

correct key can compute the MAC for any message; that is, key recovery allows selective

forgery. If the opponent knows no text-MAC pairs, or if m < k, his best strategy may be

to simply guess the MAC corresponding to a chosen message; the probability of success is

1=2m. The disadvantage of a guessing attack is that it is not veri�able. A further desirable

property of an ideal MAC is that �nding a second preimage should require expected �(2m)

known text-MAC pairs. In some settings (e.g. multi-destination electronic mail [39]) it may

be desirable that this requires expected �(2m) o�-line MAC computations even for someone

with knowledge of the key.

Most hash functions h, and most MACs, are iterative processes which hash inputs of

arbitrary length by processing successive �xed-size b-bit blocks of the input x, divided into

t blocks of b bits each, x1 through xt. If the bitlength of x is not a multiple of b, x is padded

using an unambiguous padding rule. h can then be described as:

H0 = IV ; Hi = f(Hi�1; xi); 1 � i � t h(x) = Ht :

Here f is the compression function of h, and Hi is the n-bit chaining variable, n � m,

resulting after stage i. IV is short for initial value, which is a �xed constant. In the case

of a MAC, one often applies an output transformation g to Ht, yielding the m-bit MAC

6

result h(x) = g(Ht). In the simplest case, g is the identity mapping. The secret key may

be introduced in the IV , in the compression function f , and in the output transformation

g.

CBC-MAC, standardized in ANSI X9.9 [1], ANSI X9.19 [2], ISO 8731-1 [28], and

ISO/IEC 9797 [29], is based on a block cipher; it is de�ned as follows:

f(Hi�1; xi) = EK(Hi�1 � xi) ;

where EK(x) denotes the encryption of x with key K and H0 = 0. Let k denote con-

catenation. This MAC requires an output transformation g to preclude the following

(existential forgery) attack: given MAC(x), MAC(xky), and MAC(x0), one knows that

MAC(x0ky0) = MAC(xky) if y0 = y �MAC(x) �MAC(x0). One commonly used approach

is for g to select the leftmost m bits; Knudsen showed recently that this is less secure than

anticipated [33]. Alternatives are to replace processing of the last block by a two-key triple

encryption (CBC-MAC-Y); or to de�ne g as the encryption of Ht with a derived key (e.g.

complement every other half-byte of K) [28, 29, 45].

Several MACs are similar to CBC-MAC. CFB-MAC [1] uses f(Hi�1; xi) = EK(Hi�1)�
xi. RIPEMAC [45] uses f(Hi�1; xi) = EK(Hi�1� xi)� xi. For reasons as above, both also

require an output transformation.

Many MAC algorithms derived from e�cient hash functions have been proposed, includ-

ing the secret pre�x method, the secret su�x method, and several variants of the secret

envelope method. The secret pre�x method consists of prepending a secret key K1 to the

message x before the hashing operation: MAC(x) = h(K1kx) for h an unkeyed hash func-

tion. If the key (possibly padded) consists of a complete block, this corresponds to a hash

function with a secret IV . This method was suggested for MD4 independently by Tsudik

[49] and by the Internet Security and Privacy Working Group for use in the Simple Network

Management Protocol (SNMP) [26]. In the 1980s this was already proposed for at least

two other hash functions (for example [11]). The secret su�x method speci�es that a secret

key K2 be appended to the message: MAC(x) = h(xkK2). This construction was proposed

for SNMP (see Galvin et al. [26]).

7

The envelope method [49] combines the pre�x and su�x methods. One prepends a

secret key K1 and appends a secret key K2 to the message input: MAC(x) = h(K1kxkK2).

Arising from the IP Security (IPsec) working group of the IETF, RFC 1828 [38], a proposed

standard for authentication of IP (Internet Protocol) datagrams, speci�es a variant of this

method using MD5 and a single key K: MAC(x) = h(KkpkxkK) (see also [32]). Here p

denotes some padding bits chosen such that Kkp �lls the �rst 512-bit block (here b = 512).

RFC 1828 allows a variable length key, but mandates support for bitlengths up to 128

bits. RFC 1828 was used in version 2.0 of the Secure Sockets Layer standard (SSL 2.0).

Although it may be supported by a security proof under assumptions regarding the pseudo-

randomness of MD5 [7], Section V demonstrates that this scheme is vulnerable to a key

recovery attack if the unkeyed hash function h has a padding mechanism such as that of

MD5.

The approach of the envelope method was taken one step further in the construction

called MDx -MAC [41]. Important design elements are that three subkeys are derived from

the input key, one of which is involved in every iteration of the compression function.

This o�ers better protection against possible undiscovered weaknesses of the underlying

hash function, and imposes less demanding requirements on the compression function (cf.

Section V.D), without a�ecting the throughput. It is further recommended in MDx -MAC

to keep only half of the output bits (a 64-bit result in case of MD5); the forgery attack of

Section III then requires a large number of chosen texts (aside from known texts). Finally, to

preclude a key recovery attack (Section V.B), the trailing subkey inMDx -MAC is positioned

in a separate block.

An alternate approach to the construction of MACs is given by Bellare et al. [6]: here a

provably secure construction is presented based on a �nite pseudo-random function, which

can be instantiated with a block cipher or a hash function. The scheme has the additional

advantage that it is parallelizable and incremental. More recently, Bellare et al. [8] have

rigorously examined the security of the construction named HMAC, de�ned as MAC(x) =

h((K � p2)kh((K � p1)kx)) and proven it is secure provided that h(:) is collision resistant

for random and secret IV , and that the complete output of the compression function f is

8

hard to predict when its �rst input is random and secret. Before applying the strings p1

and p2 (with p1 6= p2), one pads K out with zeroes to a full b-bit block. Despite two calls to

h, the second is on a short (e.g. two-block) input and thus overall the construction remains

quite e�cient. This scheme has been included in the informational Internet RFC 2104 [9].

An earlier version of this scheme (without padding) was proposed in the note of Kaliski and

Robshaw [32], with the option to choose K2 = K1. Another variant (proposed in a draft of

[8] and included in SSL 3.0) used the strings p1 and p2 to pad out K to a b-bit block.

III. General Forgery Attack on MAC Algorithms

A new attack applicable to all (deterministic) iterated MACs is described here. The pa-

rameters (running time and text requirements) depend only on the bitsize n of the chaining

variables and on the bitsize m of the hash result. The attacks are probabilistic, but the

attackers can verify whether or not it will succeed; moreover, the success probability grows

quadratically with the number of texts, which implies that it is very easy to make it arbi-

trarily close to 1. Initially (Lemma 1 and Propositions 1 and 2), no assumptions are made

about the texts being hashed. Subsequently, an optimization is given for the case that

texts have a common sequence of s trailing blocks (Proposition 3). Then the implications

on CBC-MAC and MAA are discussed.

A. Basic Results

Propositions 1 and 2 below are facilitated by the following de�nitions and Lemma 1. Let

g be the output transformation as de�ned above. Let (x; x0) be a pair of message inputs

with h(x) = g(Ht) and h(x0) = g(H 0

t).

De�nition 1 A chaining variable collision is said to occur when for some i � t, Hi = H 0

i,

i.e. the intermediate chaining values coincide. If the messages x and x0 di�er in their

respective remaining portions subsequent to a chaining variable collision, then in general Ht

and H 0

t will di�er. An internal collision is said to occur when a chaining variable collision

9

results in the situation where Ht = H 0

t; this may happen for example when the remaining

message portions following a chaining variable collision are identical. In the following it

will be assumed that g is deterministic (i.e. involves no randomization, but rather is a

deterministic function of its inputs); an internal collision then yields a MAC collision. If

Ht 6= H 0

t but g(Ht) = g(H 0

t), then an external collision is said to have occurred.

As indicated above, the initial value, compression function, and output transformation

can depend on the secret key. If key bits are included in the �rst message blocks, this

corresponds to keying the initial value; while it is not exactly the same, for the purpose

of our analysis this will be considered to be equivalent [7]. If the message formatting or

padding results in the inclusion of key bits in the �nal message input blocks to be processed,

this opens the question where the output transformation g starts. For subsequent analysis

(and reasons to become apparent in the sequel), the output transformation g is de�ned to

begin with the �rst block i which contains (any partial) keying material in the message

input xi.

Lemma 1 An internal collision for an iterated MAC algorithm can be used to obtain a

veri�able MAC forgery with a chosen text attack requiring only one requested MAC.

Proof: For an internal collision (x; x0), note that

h(x k y) = h(x0 k y) (1)

for any single block y. Thus requesting a MAC for the single chosen text x k y, permits

forgery { the MAC for x0 k y is the same (since the MAC algorithm is deterministic). This

assumes that both x and x0 �ll entire b-bit blocks; otherwise the padding has to be taken

into account.

The observation of Lemma 1, made in a conference paper [41] submitted in February 1995,

has also appeared in a Spring 1995 note [32].

It follows that a security requirement for MACs is that it should be infeasible for an

adversary to �nd internal collisions. This is somewhat analogous to collision resistance for

10

hash functions. The attack of Lemma 1 can be precluded by making the output transfor-

mation g di�erent for each MAC calculation, e.g., by including a sequence number or a

su�ciently large random number in the computation of g. For example, the MD5 padding

method could be augmented by including immediately prior to the length �eld in the �nal-

block padding an appropriately-sized random bit �eld. Also, appending a length �eld within

the output transformation would impose the restriction that the messages x and x0 used in

the attack are of the same length.

In the remainder of this paper, it will be assumed that the output transformation g(:)

and the compression function f (i.e. both f(:; xi) for �xed xi and f(Hi�1; :) for �xed Hi�1)

are either random permutations or random functions, but in both cases, deterministic once

they have been chosen. In the �rst case, this means that they are chosen with uniform

probability among the set of all permutations on the domain D. In the latter case, this

means that they are chosen with uniform probability among the set of all functions mapping

their domainD to their range R; the main property required of f is that two di�erent inputs

will have colliding outputs with probability close to 1=jRj (here jRj denotes the size of R).
If this probability is signi�cantly larger for some elements in the domain, this can usually

be exploited by the cryptanalyst to improve the attacks described here; in one case this is

a disadvantage to him (this exception is clari�ed below).

Proposition 1 Let h be an iterated MAC with n-bit chaining variable and m-bit result,

and an output transformation g that is a permutation. An internal collision for h can be

found using an expected number of u =
p
2 � 2n=2 known text-MAC pairs of at least t = 2

blocks each.

Proof: Since g is a permutation (e.g. the identity mapping), there are no external colli-

sions. For u =
p
2 �2n=2, a single internal collision is expected by the birthday paradox since�

u
2

�
=2n � 1. (See Note 1 for clari�cation of this statement.) Therefore the result follows

by Lemma 1. More precisely, the number c of internal collisions is a Poisson distributed

random variable with parameter � = u2=2n+1 = 1 [21, p. 59],[27], or

Pr(c = a) = e�� � �
a

a!
; a � 0:

11

If the number of internal collisions is at least 1, the attack (of Lemma 1) succeeds. It fails

only if there is no internal collision, which happens with probability Pr(c = 0) = exp(��)
= 1=e. Such a failure can be easily detected, because all u MAC pairs are distinct in

this case. Moreover, the failure probability of the attack decreases exponentially when u

increases: if u = � p2 � 2n=2, the failure probability becomes exp(�2). For example,

 = 2 yields a failure probability of 1=e4, and = 4 results in a failure probability of

1=e16 � 1:1 � 10�7.

Note 1 (see proof of Proposition 1): If for �xed Hi�1, f(Hi�1; :) is a random function,

the standard assumption for the birthday paradox is satis�ed, and the statement

follows. The situation is more complex if for �xed Hi�1, f(Hi�1; :) is a permutation

(this implies b = n). For simplicity assume the number of input blocks is t = 2;

the argument can be extended to the case t > 2. In this case no collisions can be

obtained immediately after the �rst iteration. However, it is clear that the mapping

f(f(IV; xi1); x
i
2) is a random function for �xed IV provided that the message blocks

(xi1; x
i
2) have the properties that the x

i
1 are all distinct and the xi2 are all distinct. An

internal collision can then occur anywhere after the second block. As a consequence,

the restriction in Proposition 1 (and Proposition 2 below) that t � 2 can be removed

if for �xed Hi�1, f(Hi�1; :) is a random function.

Proposition 2 Let h be an iterated MAC with n-bit chaining variable and m-bit result,

and output transformation g which is a random function. An internal collision for h can

be found using u known text-MAC pairs of at least t = 2 blocks each and v chosen texts of

at least three blocks. The expected values for u and v are as follows: u =
p
2 � 2n=2 and v is

approximately

2
�
2n�m

�
1� 1

e

�
+
�
n� 1

m� 1

��
: (2)

Proof: The distribution of internal collisions is identical to that for the proof of Propo-

sition 1, which implies that again a single internal collision is expected. As g is a ran-

dom function from n-bit to m-bit strings, the number of external collisions expected is

12

t1 =
�
u
2

�
=2m � u2=2m+1 = 2n�m. (If g results in more (less) collisions than a random

mapping, a larger (smaller) number of external collisions will occur; the attack remains the

same in principle, but the number of chosen texts required varies as will become clear.)

Additional work is now required { for a veri�able forgery { to distinguish the internal colli-

sion from the external collisions (since Lemma 1 requires internal collisions). This may be

done by appending a string y to both elements of each collision pair and checking whether

the corresponding MACs are equal, requiring 2(t1 + 1) chosen text-MAC requests. For an

internal collision both results will always be equal; for an external collision this will be so

with probability 1=2m in the case that f is a permutation for �xed xi. On the other hand,

if f is a random mapping for �xed xi, the probability that both MACs are equal is

1�
�
1� 1

2n

�q
�
�
1� 1

2m

�
(3)

where q � 1 is the number of blocks in y. Assume q = 1, in which case 2=2m = 2�m+1 is

an upper bound on the probability (3); this upper bound will be used for the remainder of

the proof. The attacker now discards collision pairs corresponding to unequal MACs. The

expectation is that after this stage, at most t2 = 2n�2m+1 external collision pairs plus the

one internal collision pair remain. These however cannot yet be distinguished if the (total)

number of remaining collision pairs is 2 or more. More generally, if n� 2m+1 > 0, further

external collisions must be �ltered by appending a di�erent y, and continuing with further

�ltering stages until only a single collision remains (ti � 0), which with high probability

is an internal collision. The expected number of �ltering stages required is de�ned by the

smallest � such that (21�m)� � t1 < 1. Thus

� =
�
n�m

m� 1

�
+ 1 =

�
n� 1

m� 1

�
: (4)

If ti is the total number of external collision pairs remaining at stage i, then the total

number v of chosen texts required is
P��1

i=0 2(ti + 1) = 2� + 2 �P��1
i=0 ti, which is

2�+ 2 � 2n�m + 2 � 2n�m �
��1X
i=1

(2=2m)i � 2� + 2 � 2n�m (5)

for m � 1. The proof is completed by noting that instead of working stage by stage, one

can eliminate the collision pairs one by one; if a pair survives after � stages, it is declared

13

to be an internal collision. As a consequence, not all of the 2n�m external collisions need be

processed: if there are j internal collisions (an event with probability Pr(c = j) = e�1=j!),

about 1 in j + 1 external collisions must be processed before one expects to �nd a �rst

internal collision. The expected number which must be eliminated through processing can

then be approximated by

2n�m �
1X
j=0

e�1

j!
� 1

j + 1
= 2n�m

�
1� 1

e

�
:

Note that if f is a permutation for �xed xi, one obtains the same expression (5) but with

� =
j
n
m

k
, which gives the same results when n is a multiple of m (a common case in

practice).

Note 2: To con�rm that the calculations in the proof of Proposition 2 were good approx-

imations, exact calculations were made for m = n and m = 2n (the most important

cases in practice). For m = n, one can verify that the stated value of v is obtained

when one takes into account that the number of external collisions is Poisson dis-

tributed with mean value 1 as well. The probability of a detected failure (no internal

collisions) is exp(�1� 2=2m); it can be reduced by increasing u as noted in the proof

of Proposition 1. An undetected failure occurs when an external collision is declared

to be an internal collision; in this case the failure will only be detected after try-

ing to apply the attack of Lemma 1 and noticing that the MAC veri�cation fails.

The probability of such a failure is upper bounded by (1 � 1=e)2�m+1. Moreover, if

�0 > � is used, the probability of an undetected failure decreases exponentially in

�0� �. For n = 2m, (2) predicts v = 2m+1(1� 1=e) + 4, while the exact expression is

v = 2m+1(1� 1=e) + 6. It can be shown that the relative error is upper bounded by

3=2m for practical values of m.

Corollary 1 Creating t MAC forgeries by the method of Lemma 1 requires one internal

collision and t chosen-text MAC requests. The cost of the internal collision is given by

Propositions 1 and 2.

14

B. Extended Results with Common Trailing Blocks

The attack outlined in the proofs of Propositions 1 and 2 yields an internal collision (x; x0).

If x and x0 have a common sequence of s trailing blocks and if the compression function f

is a permutation (for �xed xi), the collision must occur at Ht�s, i.e. just before the common

blocks. After deleting the s common blocks in x and x0, one still has an internal collision.

In this case the attack can be enhanced since this provides additional freedom in the choice

of the text forged by the method of Lemma 1. In particular, if x and x0 have the same

length one can obtain a forgery on a text of that length. As a signi�cant consequence,

in this case the attack cannot be precluded by prepending the length of the input before the

MAC calculation or by �xing the length of the input.2

If all the texts in the known text-MAC pairs of Propositions 1 and 2 have a common

sequence of s trailing blocks, and if the compression function is a random mapping for �xed

xi, fewer known and chosen texts are required as per Proposition 3, although the total

number of operations of the compression function increases. The proof of this requires a

generalization of the birthday attack as given in Lemma 2.

Note 3: Lemma 2 is of independent interest for parallelizing a collision search when the

constraint is the number of hash function evaluations rather than the number of

evaluations of the compression function.

Lemma 2 Let h be an iterated MAC with n-bit chaining variable, a compression func-

tion f that is a random function (for �xed xi), and an output transformation g that is a

permutation. Consider a set of r � 2 distinct messages which have the last s blocks in

common, with r � 2n. The probability that the set contains an internal collision for h is

approximately

1� exp

�r(r � 1)(s+ 1)

2n+1

!
: (6)

2This is emphasized because elsewhere wide-ranging claims have appeared regarding the security pro-

vided by these measures, as a result of their success in precluding other attacks on various MAC algorithms.

15

Proof: For s = 0 the probability p that there is no internal collision is given by

p =
r�1Y
i=1

�
1� i

2n

�
or ln p =

r�1X
i=1

ln
�
1� i

2n

�
:

If r � 2n, one can replace the ln by the �rst order term of its series expansion, yielding

ln p �
r�1X
i=1

i

2n
= �r(r � 1)

2n+1
or p = exp

�r(r � 1)

2n+1

!
:

Consider now s > 0: if a chaining variable collision occurs just before the s constant blocks,

or after one of the s constant blocks, this will be an internal collision. If f is a random

function, then the events that no chaining variable collision occurs in the di�erent iterations

are independent; consequently, the probability that no internal collision occurs is equal to

ps+1, and the probability for at least one collision can be approximated by (6).

From the expressions for s = 0 and s > 0, note that for r � 1, the e�ect of the common

blocks corresponds to multiplying r by the factor
p
s+ 1.

Lemma 2 yields an optimization of Propositions 1 and 2 as follows.

Proposition 3 Let h be an iterated MAC with n-bit chaining variable, m-bit result, a

compression function f which is a random function (for �xed xi), and output transformation

g. An internal collision for h can be found using u known text-MAC pairs, where each text

has the same substring of s � 0 trailing blocks, and v chosen texts. The expected values for

u and v are as follows: u =
q
2=(s+ 1) �2n=2; v = 0 if g is a permutation or s+1 � 2n�m+6

(the expected number of external collisions is su�ciently small); if g is a random function,

v is approximately

2

2n�m

s+ 1
�
�
1� 1

e

�
+

$
n� 1� log2(s+ 1)

m� 1

%!
: (7)

Proof: It follows from Lemma 2 that for u as given above, the probability of one or more

internal collisions is 1�1=e. More precisely, the number of internal collisions will be Poisson

distributed with parameter � = u2(s+1)=2n+1 [21, p. 59], hence one expects approximately

a single collision. (Note that if there are collisions, the di�erent events are not independent,

but this will be a good approximation since u2s = �(2n).) If g is a permutation, then the

proposition follows by Lemma 1. If g is a random function, then the number of external

16

collisions is Poisson distributed with parameter �0 = u2=2m+1 = 2n�m=(s + 1). If s + 1 �
2n�m+6, �0 � 1=64. The attack will fail only if there is exactly one external collision and

no internal collision, an event with probability �0e��
0

e�1 � 0:006. Note that this failure

cannot be detected (as per Note 2), whereas the simple absence of internal collisions can

be detected and resolved by increasing u. If the total number of collisions (internal and

external) exceeds 1, additional tests are carried out to eliminate the external collisions.

This gives only a negligible contribution to the expected number of chosen texts, since the

probability of this event is 1� e��
0 ��0e��

0

e�1 � �0
�
1� 1

e
+ �0

e

�
< 0:01. If s+1 < 2n�m+6,

the expected number of external collisions is larger and the same procedure as in the proof

of Proposition 2 is used to eliminate external collisions. Since f is a random function for

�xed xi, the probability that an appended y (consisting of 1 block) survives a test is at

most 2=2m. The expected number � of steps is found from

�
2

2m

��
�

2n�m

s+ 1

!
< 1

or

� =

$
n� 1� log2(s+ 1)

m� 1

%
:

One then obtains (7) by noting that the expected number of chosen texts can be computed

as in the proof of Proposition 2, and is 2� plus 2(1�1=e) multiplied by the expected number
of external collisions.

Given an internal collision with s � 1 common trailing blocks, the probability that it

occurs before the last w blocks is 1 � w=(s + 1). This event can be checked with a small

number of additional chosen texts. Again the attack still works if one appends an arbitrary

block y after the internal collision rather than at the end. This means that an attacker can

replace or delete w � s trailing blocks, and that the attack is applicable even if the input is

of �xed length or if the length is prepended to the input (cf. [5]).

Corollary 2 It follows from the proof of Proposition 3 that a non-veri�able version of the

MAC forgery of Lemma 1 can be achieved using
q
2=(s+ 1) � 2n=2 known texts and only a

single chosen text, with success probability approximately 1 /(1 + 2n�m=(s+ 1)) .

17

C. Implications of Results on CBC-MAC and MAA

For CBC-MAC with m = n = 64, Proposition 1 requires 232:5 known text-MAC pairs;

the forgery attack requires a single chosen text. For m = 32, Proposition 2 indicates that

about 232:3 additional chosen texts are required. The attack of Proposition 3 fails for CBC-

MAC, RIPEMAC, and CFB-MAC with maximal feedback, since for these the compression

function is bijective on the chaining variable for �xed xi (e.g. Hi = f(Hi�1; xi) = EK(Hi�1�
xi)). However, it does apply to CFB-MAC with feedback shorter than a full block. Other

speci�c schemes to which the attacks apply are discussed in Section IV. Proposition 3

answers in part an open question arising in the discussion of CBC-MAC [5] on whether a

bijective compression function (for �xed input xi) allows stronger security claims.

Proposition 2 applied to MAA (where n = 64 and m = 32) requires 232:5 known text-

MAC pairs and about 232:3 chosen text-MAC pairs. Because of the internal properties of

MAA, the known texts must have the same number of blocks mod 32. The function f of

MAA behaves approximately as a random function for �xed xi; the optimized version of

Proposition 3 with s = 216 � 1 (corresponding to a �xed but arbitrary 256 Kbyte trailing

block) requires 224:5 known texts and about 83 000 chosen texts. By exploiting the inter-

nal structure of MAA, these results can be further improved: about 217 chosen texts of

256 Kbyte allow a MAC forgery [42, 44]; no known texts are required. The forgery attack

can also be extended to a key recovery attack, and it leads to the de�nition of weak keys

for MAA [42, 44]. Note that the designer of MAA realized that its compression function

not being a bijection might lead to weaknesses, motivating a special mode in ISO 8731-2

[28] for messages longer than 1024 bytes. However, it turns out that the above attack is

applicable to this mode as well. This is apparently the �rst attack on MAA which is more

e�cient than an exhaustive key search or guessing the MAC.

IV. Application of General MAC Forgery Attacks

This section discusses the security of several proposed MAC algorithms constructed from

unkeyed hash functions. First the secret pre�x and secret su�x methods are considered.

18

Forgery on the envelope method is then examined. Recall that these methods were reviewed

in Section II.

A. Secret Pre�x Method

It is well-known that the secret pre�x method is insecure: a single text-MAC pair contains

information essentially equivalent to the secret key, independent of the key size. An attacker

may append any blocks to the message and update the MAC accordingly, using the old

MAC as the initial chaining variable (taking into account the padding if necessary). The

messages for which an attacker can compute the MAC are restricted to those having known

texts as pre�x, but this is a weak restriction. The appending attack may be precluded if

only a subset of the hash output bits are used as the MAC (e.g. m = n=2 as for MD2.5

below), or by prepending the length of the message before hashing [49]. However, relying

on a prepended length for security appears to make additional demands on the properties

of the hash function. Moreover, because the compression function in MD4-based hash

functions is of the form Hi = Exi
(Hi�1)+Hi�1 (addition here is modulo 232) which behaves

as a random function (for �xed xi), the attack noted following Proposition 3 still applies

for s � 1.

A variation of the pre�x method with MD5 is used in Kerberos V5, under the name

MD2.5 [35]. The 128-bit key K1 is derived from a 56-bit DES key K by using DES as a

keystream generator in Output Feedback Mode (OFB) with IV = 0. The MAC consists of

the leftmost 64 bits of the 128-bit hash result. While the expansion does not preclude an

exhaustive search for the DES key, it appears to provide some bene�t. In addition, revealing

only 64 bits of the hash result prevents simply appending one or more blocks to allow update

of the MAC. However, the technique of Proposition 3 still applies if s � 1 and there is

an internal collision before the last block (w � 1). Also, it remains conceivable that one

could append carefully chosen blocks at the end in such a way that the new MAC depends

only on the 64 known bits, implying that choosing m < n imposes additional conditions

on the hash function beyond those for which it was designed or has yet been analyzed.

An unfortunate additional drawback is that, while one advantage of an MD5-based MAC

19

over a DES-CBC MAC is avoidance of block ciphers and associated export issues, DES

is nonetheless required for key expansion in MD2.5. Finally, the threat of exhaustive key

search [52] may be of concern due to the (relatively short) 56-bit key.

B. Secret Su�x Method

A concern with the secret su�x method is that an o�-line collision attack on the hash

function may be used to obtain an internal collision. Therefore by a birthday attack, �nding

a pair (x; x0) such that h(x) = h(x0) is possible in expected �(2n=2) o�-line operations;

Lemma 1 may then be applied. The candidate inputs in a collision search can also be

chosen from an adversary-controlled set. Furthermore, this method is weak if an (o�-line)

second preimage attack on the underlying hash function is feasible { given one known

text-MAC pair, a second hash function preimage (for that text) allows an existential MAC

forgery. If t text-MAC pairs are known, �nding a MAC second preimage requires 2n=t

rather than 2n o�-line trials; here, if the length of the message is not appended, t is the

total number of blocks rather than the number of messages. The concern of o�-line collision

search also applies to DES MAC MD5 of [35], which consists of applying CBC-MAC to the

image under MD5 of the data input.

C. Envelope Method

The envelope method used with MD4-based hash functions (see Section IV.A) is subject

to the forgery of Lemma 1 regardless of the bitlength of the lead and trail keys. More

speci�cally, Proposition 3 applies with m = n = 128 (assume the last block consists of

K2 only). For s = 216, one chosen text and 256:5 known text-MAC pairs are required.

Consequently, the key size k1 + k2 gives a misleading impression of the security for this

scheme.

If K2 is simply appended to the message, the last two blocks processed by the hash

function will consist of some message bits followed by K2, some padding bits and the length

of the message (for more details, see Section V.B). In this case, the output transformation

20

begins with the block containing some bits of K2. The forgery attack works in the restricted

case that all known messages are of the same length, and the message bits involved in the

output transformation are constant.

V. Key Recovery Attacks

Three partitionable MAC key recovery attacks are presented below; one can consider these

to be divide-and-conquer attacks as they allow to �rst recover the �rst half of the key

(independent of the second half), and then to recover the second half by exhaustive search.

The �rst two apply to variants of the envelope method. The last is a key recovery attack on

CBC-MAC-Y, a strengthened variation of CBC-MAC [2, 29]. The section concludes with a

note on how a statistical cryptanalytic technique which fails against an underlying unkeyed

hash function might nonetheless succeed against a MAC construction (e.g. the envelope

method) based thereon.

A. Divide and Conquer Exhaustive-Search Key Recovery on En-

velope Method

Consider the envelope method (see Sections II and IV.C) with distinct keys K1, K2, where

ki =jKij and k1 = n is the bitlength of the chaining variable. It has been claimed [49] (along

with a sketch of proof) that a divide and conquer attack (or partitionable attack) against

K1 and K2 is not possible, and that breaking this method requires exhaustive search for a

key of k1 + k2 bits. This statement is now shown to be false.

Proposition 4 For the envelope method with distinct keys K1, K2, ki =jKij, with a chain-

ing variable of bitlength n = k1, a key recovery attack is known and uses 2(n+1)=2 known texts

of at most t blocks each (t � 2) and exhaustive search involving at most 2(t� 1) � 2k1 + 2k2

operations.

Proof: By Proposition 3 (assume s = 0 for simplicity) an internal collision for the

chaining variables may be found using 2(n+1)=2 known texts (e.g. 264:5 for MD5). With

21

s common trailing blocks, this can be further reduced (e.g. to 256:5 text-MAC pairs for

s = 216). An attacker can then perform an exhaustive search for K1 in 2(t� 1) � 2k1 o�-line
operations, eliminating all trial key values not yielding a collision before the last block (i.e.

an internal collision).3 Slightly over k1=n internal collisions are required to determine K1

uniquely; two su�ce for k1 = n. Once K1 is known, the envelope method is e�ectively

reduced to the (secret su�x) method wherein a secret key is only appended and which is

vulnerable to an o�-line exhaustive search for K2.

Proposition 4 indicates that using K1 6= K2 o�ers substantially less additional secu-

rity than one might suppose, relative to the k1 bits of security resulting when K1 = K2.

The attack does however require an unreasonably large number of known text-MAC pairs.

Moreover, these texts must have equal length if the length is included in the padding bits.

B. Slice-by-Slice Key Recovery of Trail Key in Envelope Method

This section presents a key recovery attack against the trailing key K2 in the envelope

method. This includes the case where K1 = K2 of the method proposed in Internet

RFC 1828 [38] (and [32])) described in Section II. The attack exploits the padding proce-

dure of MD5, which was not designed to conceal secret keys. It also applies to any hash

function with a similar trailing padding technique. The attack again requires a very large

number of known text-MAC pairs (variable depending on choices made, but on the order

of 264 assuming 128-bit chaining variables); the work complexity for key recovery is on this

same order, albeit dramatically less than exhaustive search.

Recall the padding procedure for MD5 for a message input y of bitlength `, where ` =jyj.
A single `1' bit is appended to y, followed by z `0' bits (0 � z � 511), where z is chosen

to make the sum of ` and the bitlength of the padding equal 448 mod 512. The 64-bit

integer representation of ` is then appended to complete the last block. For the special

case of the IPsec envelope method with a 128-bit key, the data, after padding, processed

by the compression function of MD5 has the form: KkpkxkKk1000 : : :000k`. Here x is the

3More precisely, the output transformation g(Hj) may involve 1 or 2 blocks (see Figure 1).

22

message on which a MAC is desired, y = KkpkxkK, and ` = 512 + 128+ jxj. De�ning

r =jxj mod 512,

z =

8><
>:

319� r if 0 � r � 319

831� r if 320 � r � 511

If z 2 [0; 319], the key K will lie completely in the last block, and the number of message

bits in the last block is r. For z 2 [320; 446], z � 319 bits of the key K will be in the

second last block, with the remaining key bits in the last block. For z 2 [447; 511], K falls

completely in the second last block. In the latter two cases, there will be r message bits in

the second last block (see Figure 1).

second last block last block

z = 127 512 bits of message r bits K z + 1 `

z = 383 r bits K K z + 1 bits `

z = 511 r bits K z + 1 bits `

Figure 1: Message, key, padding and length �elds in �nal blocks of envelope method.

De�ne an internal collision as a pair of inputs (x; x0) which produce the same MAC

output, and for which the internal chaining variables collide just before the block containing

the key (or any partial key). Since such a collision is detectable only through a collision for

the MAC, all blocks following the internal collision must be identical in the two members

of the colliding input pair. Therefore the attack of Proposition 3 requires the lengths of all

the messages to be equal, and the last r message bits (which are either in the last or in the

second last block) to be the same. If r = 0 (i.e. jxj= 0 mod 512), there is no condition on

the last message bits.

Consider the case r = 511 (i.e. z = 320). There is a single key bit in the second

last block. Therefore 511 message bits in the second last block must be identical to allow

23

for identi�cation of an internal collision. However, if that key bit is simply guessed, the

unknown key is restricted to the last block, and collisions after the second last block are

again internal collisions (or almost internal collisions). A �rst observation is that this

reduces the constraint on the message. A more signi�cant consequence is that by using

the attack of Lemma 1, one can actually verify the guess for that key bit. This leads to a

powerful divide and conquer attack (or partitionable attack) against the key which may be

illustrated as follows.

Let x be a 480-bit message. Then r=480, z=351, and the �rst block contains the

padded key K. The second block contains 480 message bits and 32 key bits. The last block

contains the 96 remaining key bits, a `1' bit followed by 351 `0' bits, and the 64-bit length

�eld `=1120 (i.e. 512+128+480). If the MACs for about 264:5 such messages x are known,

one may expect (by Proposition 2 with n = m = 128) about two collisions: one after

the second block (an almost internal collision), and one after the last block (an external

collision). Denote the almost internal colliding pair (x; x0). Construct 232 message pairs

of the form (xkkiky; x0kkiky), where ki is 32 bits and ranges over all 232 possible values,

and y is now an arbitrary block. Request the 233 corresponding MACs. When ki takes

on the value of the correct partial key, the two MACs agree; moreover, with probability

� 1�1=296, no other pairs of MACs will be equal. This reveals 32 key bits. For the external

collision, with overwhelming probability none of the pairs gives the same MAC.

It is easy to extend the attack to �nd further key bits. One possibility is to repeat

the above procedure using messages of length 448 bits, yielding the next 32 key bits. The

remaining 64 key bits are then most e�ciently found (o�-line) exhaustively. Alternatively,

one could begin with messages of this length, which would require 266 chosen texts, but

reveal 64 bits of the key immediately. This reasoning allows the following result, which is

stated for clarity speci�cally with respect to Internet RFC 1828, but is easily seen to be a

more general result:

Proposition 5 There exists a key recovery attack on the (RFC 1828) envelope method

which uses q = d64=de steps (1 � d � 64) to �nd 64 bits of the key. Step i (1 � i � q)

requires
p
2 �264 known texts of bitlength ci �512�d � i for some �xed ci > 1, and 2d+2 chosen

24

texts.

Table 1 summarizes the complexity to �nd 64 key bits in d-bit slices, for di�erent values

of d. If a 128-bit key is used with the remaining bits found by exhaustive search, the overall

time complexity is on the order of the number of known texts. The attack is easily modi�ed

for keys exceeding 128 bits; e.g. recovering a 256-bit key in three 64-bit slices requires about

266 known text-MAC pairs and the same order of chosen texts. Thus relative to this attack,

this MAC design makes very poor use of key bits beyond 128. For context, recall that

linear cryptanalysis of DES [37], viewed as a tremendous breakthrough, requires 243 known

texts against a 56-bit key, while di�erential cryptanalysis requires 247 chosen texts [10].

The new key recovery attack, relative to a larger 128-bit key, requires substantially fewer

known texts (and time); this indicates that the general construction fails to make good use

of key bits.

Table 1: Complexity of key recovery attack on envelope method (128-bit key)

d # known texts # chosen texts

2 269:5 29

4 268:5 210

8 267:5 213

16 266:5 220

32 265:5 235

The above attack requires that jxj mod 512 2 [448; 511], because the number of bits

of K in the penultimate block must be between 1 and 64; and that the known texts have

the same number of blocks, because the value of ` must be the same for the two messages

forming the internal collision. However, if a set of about 273 \short" (say ten or fewer

blocks) known messages is available, one expects to �nd among those a su�cient number of

messages suitable for the attack (without �xing d in advance); the attack will still require

a much smaller number (less than 220) of chosen texts to identify the key bits.

25

The attack relies on the key being split across blocks. While it is not practical, vulner-

ability to it represents a certi�cational weakness, and indicates an architectural aw. It is

certainly one of the reasons for the fact that SSL 3.0 [25] has replaced the MAC algorithm

of RFC 1828 (that was used in Secure Sockets Layer SSL 2.0) by HMAC [8]. One concludes

it is more secure to isolate the entire trailing key in a separate block (together with the

message length and possibly a pseudo-random string). However, this requires changing the

padding procedure for MD5, contravening an original motivating factor { being able to call

the underlying hash function directly; an alternative is to use two nested calls as in the

HMAC construction [8]. Nonetheless, customized MACs (as suggested in [32, 41]) appear to

o�er a more secure alternative to constructions relying directly on unkeyed hash functions.

This attack does not contradict the security proof for this scheme given by Bellare et

al. [7], because the required number of known or chosen texts is larger than their security

bound.

C. Key Recovery on CBC-MAC-Y (ANSI X9.19{ISO/IEC 9797)

CBC-MAC-Y is a modi�cation of CBC-MAC (see Section II) intended to increase the

security. It replaces the processing of the last block from EK1
(xt�Ht�1) to a two-key triple

encryption:

EK1
(DK2

(EK1
(xt �Ht�1))) :

Aside from precluding the existential forgery attack noted in Section II, this is intended

to prevent an exhaustive key search attack on K1. This is a particular concern when DES

is used as the block cipher E, because its key is only 56 bits [52]. However, a new divide

and conquer (or partitionable) key recovery attack is possible provided (e.g. in the case

m = n) 2(n+1)=2 known text-MAC pairs are available. This attack follows similarly from

Proposition 1; for more details, see [43].

Proposition 6 For the strengthened version CBC-MAC-Y [2, 29] of CBC-MAC, a key

recovery attack yielding both keys K1 and K2 is known which uses 2(n+1)=2 known texts of at

most t blocks each (t � 2) and exhaustive search involving at most (2t� 1) � 2k encryptions,

26

where k =jK1j=jK2j, k � n, and m = n.

Note 4: If triple encryption (e.g. triple-DES CBC-MAC) is used at each stage in the MAC

operation, Proposition 6 does not apply. However, an output transformation is required to

prevent the existential forgery attack on CBC-MAC described in Section II. Moreover, the

basic forgery attack of Proposition 1 does apply and the complexity (about 232 known texts

and 1 chosen text for n = 64) is independent of the key size.

D. Statistical Cryptanalysis of Envelope MACs

Even if the above attacks are precluded in some way, one should keep in mind that the

attacks are independent of possible weaknesses of the hash function. More sophisticated

attacks might be found which exploit such weaknesses, even if they do not inuence the one-

wayness or collision resistance of the hash function (see for example [3]). As an example,

consider the envelope method with a 128-bit key K; the remaining message input is under

control of an attacker. Assume that there exists a number of probabilistic relations between

the key bits in the data input and the bits of the MAC. Linear cryptanalysis, as proposed

by M. Matsui [36, 37] could then be used to recover part of the key K using a number of

known text-MAC pairs (for example, 240 known text-MAC pairs might allow one to recover

60 bits of K). The remaining 68 bits could then be found by exhaustive search. Note

that this type of attack is completely di�erent from a (second) preimage attack, where

an opponent only knows the hash result and possibly a single preimage. Here, he has at

his disposal 240 hash results, for which he knows the complete input except for the 128

input bits of K, which are the same in all these cases. This scenario illustrates another

important point: the assumption that the complete output of the compression function is

unpredictable when part of it is keyed (on which the security proof of [7] is based), is quite

a di�erent property than collision resistance or (2nd) preimage resistance. It should be

noted that the open literature contains no analysis of existing hash functions with respect

to the former property.

27

VI. Discussion of Results

Table 2 gives the number of text-MAC pairs required by the best known attacks on MAA

and on CBC-MAC with m-bit result (using a block cipher such as DES with n = 64).

Table 2: Security of MAA and CBC-MAC

no. of known texts no. of chosen texts

MAA (general) 232:5 232:3

MAA (long message) | 217

CBC-MAC (m = 32) 232:5 232:3

CBC-MAC (m = 64) 232:5 1

The weaknesses of the proposals based on hash functions of Section IV are summarized

in Table 3. Storage requirements (e.g. for known text-MAC pairs) have been omitted, as

well as the potential improvements due to common trailing blocks as discussed in Section III.

The tabulated values, corresponding to the best known attacks, give upper bounds on the

security of these constructions. Depending on the parameters, �nding a second preimage

may be easier by �rst obtaining the key with an exhaustive search; this type of attack is

not noted in the table.

If the underlying hash function is collision resistant (implying n is su�ciently large),

the �gures in Table 3 (aside from the secret pre�x method without additional precautions)

indicate that the corresponding attacks are only certi�cational { breaking these schemes

is easier than breaking an ideal MAC with the same parameters, although the attacks are

clearly infeasible in practice. In particular, the number of known or chosen texts required is

much smaller than would be ideal, and known texts can be replaced by o�-line computations.

It is however clear from Table 3 that if the hash function is only a one-way hash function

(with n typically between 64 and 80 bits), then both the su�x and envelope methods are

vulnerable as well. Also, it follows that in case of the envelope method k1 must not be too

small.

28

Table 3: Security of 3 proposals to build n-bit MACs (n = m) from hash functions.

\#MAC" is the number of known text-MAC pairs; \C" the number of chosen texts; \#opn"

the number of o�-line compression function operations required for best known attacks; t

is the number of messages (or blocks) available to an attacker; k, k1, k2 are key bitlengths.

ideal MAC secret pre�x secret su�x envelope

(k) (k1) (k2) (k1 + k2)

#MAC #opn #MAC #opn #MAC #opn #MAC #opn

key recovery d kne 2k 1 0z dk2n e 2k2 dk1+k2n e 2k1+k2

2n=2 2k1+1 + 2k2

MAC forgery d kne 2k 1 1 1C 2n=2 5C+2n=2 0

2n=2 2k1y

2nd preim. 2n 0 t 2n=t t 2n=t 2n 0

yThis attack reduces the envelope method to the secret su�x method only.

zInformation essentially equivalent to the secret key is known.

Even if keys are chosen su�ciently large that these attacks are computationally infea-

sible, one should keep in mind the attacks are independent of possible weaknesses of the

hash function. More sophisticated attacks might be found which exploit such weaknesses

(cf. Section V.D). This is a particular concern in light of recent techniques which allowed

collisions to be found for MD4, and for two rounds of RIPEMD [18, 19].

VII. Concluding Remarks

The new forgery attack on iterated MACs requires expected �(2n=2) known text-MAC pairs

and expected �(2n�m) chosen texts, where m is the bitlength of the hash result and n is

that of the chaining variable. Thus a square-root attack applies to MACs as in many other

29

cryptographic problems (albeit the square root is in the number of texts required). A naive

non-veri�able attack always succeeds with probability 2�k by guessing the k-bit key and

computing the MAC, or 2�m by guessing the MAC. These attack scenarios di�er, but

nonetheless suggest using n = 2m and k � m. An important conclusion is that the attack

can be avoided by varying the output transformation using a sequence number or a random

number, although this adds the inconvenience that this latter value must be separately

available for use in veri�cation of the MAC.

The new attack may pose a relatively serious threat to certain applications of CBC-MAC

(e.g. when n = m = 64), and illustrates that CBC-MAC-Y, the strengthened version of

CBC-MAC in ANSI X9.19 and ISO/IEC 9797, o�ers increased strength against exhaustive

key search only if less than expected �(2n=2) known text-MAC pairs are available. Its

implications for the security of MAA are also serious. The analysis of existing proposals

indicates that one must exercise care in designing MACs based on hash functions.

Acknowledgements

The authors would like to thank the anonymous referee(s), for comments resulting in a more

readable paper, and in particular for encouraging clari�cation of the proofs of Propositions 1

and 2.

References

[1] ANSI X9.9 (revised), \Financial institution message authentication (wholesale)," American

Bankers Association, April 7, 1986.

[2] ANSI X9.19, \Financial institution retail message authentication, American Bankers Associ-

ation, August 13, 1986.

[3] R. Anderson, \The classi�cation of hash functions," in Codes and Cyphers: Cryptography

and Coding IV, P. G. Farrell, Ed. Institute of Mathematics & Its Applications (IMA), 1995,

pp. 83{93.

30

[4] M. Atici and D. Stinson, \Universal hashing and multiple authentication," in Advances in

Cryptology, Proc. Crypto'96, Lecture Notes in Computer Science, vol. 1109, N. Koblitz, Ed.

New York: Springer-Verlag, 1996, pp. 16{30.

[5] M. Bellare, J. Kilian, and P. R. Rogaway, \The security of cipher block chaining," inAdvances

in Cryptology, Proc. Crypto'94, Lecture Notes in Computer Science, vol. 839, Y. Desmedt,

Ed. New York: Springer-Verlag, 1994, pp. 341{358.

[6] M. Bellare, R. Gu�erin, and P. R. Rogaway, \XOR MACs: new methods for message authen-

tication using block ciphers," in Advances in Cryptology, Proc. Crypto'95, Lecture Notes in

Computer Science, vol. 963, D. Coppersmith, Ed. New York: Springer-Verlag, 1995, pp. 15{

28.

[7] M. Bellare, R. Canetti, and H. Krawczyk, \Pseudorandom functions revisited: The cascade

construction and its concrete security," in Proc. 37th Annual Symposium on the Foundations

of Computer Science, Los Alamitos: IEEE Computer Society Press, 1996, pp. 514{523. Full

version: http://www-cse.ucsd.edu/users/mihir.

[8] M. Bellare, R. Canetti, and H. Krawczyk, \Keying hash functions for message authenti-

cation," in Advances in Cryptology, Proc. Crypto'96, Lecture Notes in Computer Science,

vol. 1109, N. Koblitz, Ed. New York: Springer-Verlag, 1996, pp. 1{15. Full version: http://

www.research.ibm.com/security/.

[9] M. Bellare, R. Canetti, and H. Krawczyk, \HMAC: Keyed-hashing for message authentica-

tion," Request for Comments (RFC) 2104, Internet Activities Board, Internet Privacy Task

Force, Feb. 1997.

[10] E. Biham and A. Shamir, Di�erential Cryptanalysis of the Data Encryption Standard. New

York: Springer-Verlag, 1993.

[11] F. Cohen, \A cryptographic checksum for integrity protection," Computers & Security, vol. 6,

no. 5, pp. 505{510, 1987.

[12] I. B. Damg�ard, \A design principle for hash functions," in Advances in Cryptology, Proc.

Crypto'89, Lecture Notes in Computer Science, vol. 435, G. Brassard, Ed. New York:

Springer-Verlag, 1990, pp. 416{427.

31

[13] D. Davies, \A message authenticator algorithm suitable for a mainframe computer," in

Advances in Cryptology, Proc. Crypto'84, Lecture Notes in Computer Science, vol. 196,

G. R. Blakley and D. Chaum, Eds. New York: Springer-Verlag, 1985, pp. 393{400.

[14] D. Davies and D.O. Clayden, \The message authenticator algorithm (MAA) and its imple-

mentation," NPL Report DITC 109/88, Feb. 1988.

[15] D. Davies and W. Price, Security for Computer Networks, 2nd ed. New York: Wiley, 1989.

[16] B. den Boer and A. Bosselaers, \An attack on the last two rounds of MD4," in Advances in

Cryptology, Proc. Crypto'91, Lecture Notes in Computer Science, vol. 576, J. Feigenbaum,

Ed. New York: Springer-Verlag, 1992, pp. 194{203.

[17] B. den Boer and A. Bosselaers, \Collisions for the compression function of MD5," inAdvances

in Cryptology, Proc. Eurocrypt'93, Lecture Notes in Computer Science, vol. 765, T. Helleseth,

Ed. New York: Springer-Verlag, 1994, pp. 293{304.

[18] H. Dobbertin, \Cryptanalysis of MD4," in Fast Software Encryption, Lecture Notes in Com-

puter Science, vol. 1039, D. Gollmann, Ed. New York: Springer-Verlag, 1996, pp. 53{69.

[19] H. Dobbertin, \RIPEMD with two-round compress function is not collision-free," J. Cryp-

tology, vol. 10, no. 1, pp. 51{69, Winter 1997.

[20] H. Dobbertin, A. Bosselaers, and B. Preneel, \RIPEMD-160: a strengthened version of

RIPEMD," in Fast Software Encryption, Lecture Notes in Computer Science, vol. 1039,

D. Gollmann, Ed. New York: Springer-Verlag, 1996, pp. 71{82.

[21] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1. New York:

Wiley, 1968.

[22] FIPS 46, \Data encryption standard," Washington D.C.: NBS, U.S. Department of Com-

merce, Jan. 1977.

[23] FIPS 81, \DES modes of operation," Washington D.C.: NBS, US Department of Commerce,

Dec. 1980.

[24] FIPS 180-1, \Secure hash standard," Washington D.C.: NIST, US Department of Commerce,

April 1995.

32

[25] A. O. Freier, P. Karlton, and P. C. Kocher, \The SSL protocol version 3.0," Internet Draft

(work in progress), Internet Activities Board, Internet Privacy Task Force, March 1996.

[26] J. M. Galvin, K. McCloghrie, and J. R. Davin, \Secure management of SNMP networks,"

in Integrated Network Management, II, I. Krishnan and W. Zimmer, Eds. Amsterdam, The

Netherlands: North-Holland, 1991, pp. 703{714.

[27] M. Girault, R. Cohen, and M. Campana, \A generalized birthday attack," in Advances in

Cryptology, Proc. Eurocrypt'88, Lecture Notes in Computer Science, vol. 330, C. G. G�unther,

Ed. New York: Springer-Verlag, 1988, pp. 129{156.

[28] ISO 8731:1987, \Banking { Approved algorithms for message authentication, Part 1, DEA,

Part 2, Message authentication algorithm (MAA)."

[29] ISO/IEC 9797:1993, \Information technology - Data cryptographic techniques - Data in-

tegrity mechanisms using a cryptographic check function employing a block cipher algorithm."

[30] T. Johansson, G. Kabatianskii, and B. Smeets, \On the relation between A-codes and codes

correcting independent errors," in Advances in Cryptology, Proc. Eurocrypt'93, Lecture Notes

in Computer Science, vol. 765, T. Helleseth, Ed. New York: Springer-Verlag, 1994, pp. 1{11.

[31] R. R. Jueneman, S. M. Matyas, and C. H. Meyer, \Message authentication with manipulation

detection codes," in Proc. 1983 IEEE Symposium on Security and Privacy, Los Alamitos:

IEEE Computer Society Press, 1983, pp. 33{54.

[32] B. Kaliski and M. Robshaw, \Message authentication with MD5," CryptoBytes (RSA Labo-

ratories Technical Newsletter), vol. 1, no. 1, pp. 5{8, Spring 1995.

[33] L. R. Knudsen, \A chosen text attack on CBC-MAC," Electron. Lett., vol. 33, no. 1, pp. 48{

49, 1997.

[34] H. Krawczyk, \LFSR-based hashing and authentication," in Advances in Cryptology, Proc.

Crypto'94, Lecture Notes in Computer Science, vol. 839, Y. Desmedt, Ed. New York:

Springer-Verlag, 1994, pp. 129{139.

[35] J. Linn, \The Kerberos Version 5 GSS-API Mechanism," Request for Comments (RFC) 1964,

Internet Activities Board, Internet Privacy Task Force, June 1996.

33

[36] M. Matsui, \A new method for known plaintext attack of FEAL cipher," in Advances in

Cryptology, Proc. Eurocrypt'92, Lecture Notes in Computer Science, vol. 658, R. A. Rueppel,

Ed. New York: Springer-Verlag, 1993, pp. 81{91.

[37] M. Matsui, \The �rst experimental cryptanalysis of the Data Encryption Standard," in

Advances in Cryptology, Proc. Crypto'94, Lecture Notes in Computer Science, vol. 839,

Y. Desmedt, Ed. New York: Springer-Verlag, 1994, pp. 1{11.

[38] P. Metzger and W. Simpson, \IP Authentication using Keyed MD5," Request for Comments

(RFC) 1828, Internet Activities Board, Internet Privacy Task Force, Aug. 1995.

[39] C. Mitchell and M. Walker, \Solutions to the multidestination secure electronic mail prob-

lem," Computers & Security, vol. 7, no. 5, pp. 483{488, 1988.

[40] B. Preneel, Analysis and Design of Cryptographic Hash Functions. Doctoral Dissertation,

Katholieke Universiteit Leuven, Belgium, January 1993 (updated version to appear as Cryp-

tographic Hash Functions. Boston, MA: Kluwer Academic Publishers).

[41] B. Preneel and P. C. van Oorschot, \MDx-MAC and building fast MACs from hash func-

tions," in Advances in Cryptology, Proc. Crypto'95, Lecture Notes in Computer Science,

vol. 963, D. Coppersmith, Ed. New York: Springer-Verlag, 1995, pp. 1{14.

[42] B. Preneel and P. C. van Oorschot, \On the security of two MAC algorithms," in Advances

in Cryptology, Proc. Eurocrypt'96, Lecture Notes in Computer Science, vol. 1070, U. Maurer,

Ed. New York: Springer-Verlag, 1996, pp. 19{32.

[43] B. Preneel and P. C. van Oorschot, \A key recovery attack on the ANSI X9.19 retail MAC,"

Electron. Lett., vol. 32, no. 17, pp. 1568{1569, 1996.

[44] B. Preneel, V. Rijmen, and P. C. van Oorschot, \A security analysis of the Message Authen-

ticator Algorithm (MAA)," European Trans. Telecommunications, vol. 8, no. 5, pp. 455{470,

1997.

[45] RIPE, Integrity Primitives for Secure Information Systems. Final Report of RACE Integrity

Primitives Evaluation (RIPE-RACE 1040), Lecture Notes in Computer Science, vol. 1007.

A. Bosselaers and B. Preneel, Eds. New York: Springer-Verlag, 1995.

34

[46] R. L. Rivest, \The MD4 message digest algorithm," in Advances in Cryptology, Proc.

Crypto'90, Lecture Notes in Computer Science, vol. 537, S. Vanstone, Ed. New York:

Springer-Verlag, 1991, pp. 303{311.

[47] R. L. Rivest, \The MD5 message-digest algorithm," Request for Comments (RFC) 1321,

Internet Activities Board, Internet Privacy Task Force, April 1992.

[48] P. R. Rogaway, \Bucket hashing and its application to fast message authentication," in Ad-

vances in Cryptology, Proc. Crypto'95, Lecture Notes in Computer Science, vol. 963, D. Cop-

persmith, Ed. New York: Springer-Verlag, 1995, pp. 29{42.

[49] G. Tsudik, \Message authentication with one-way hash functions," ACM Computer Com-

munications Review, vol. 22, no. 5, pp. 29{38, 1992.

[50] S. Vaudenay, \On the need for multipermutations: cryptanalysis of MD4 and SAFER," in

Fast Software Encryption, Lecture Notes in Computer Science, vol. 1008, B. Preneel, Ed.

New York: Springer-Verlag, 1995, pp. 286{297.

[51] M. N. Wegman and J. L. Carter, \New hash functions and their use in authentication and

set equality," J. Computer Sys. Sciences, vol. 22, no. 3, pp. 265{279, 1981.

[52] M. J. Wiener, \E�cient DES key search," presented at rump session of Crypto'93, Santa

Barbara, CA. Reprinted in Practical Cryptography for Data Internetworks, W. Stallings, Ed.

Los Alamitos: IEEE Computer Society Press, 1996, pp. 31{79.

35

�gure 1

second last block last block

z = 127 512 bits of message r bits K z + 1 `

z = 383 r bits K K z + 1 bits `

z = 511 r bits K z + 1 bits `

36

�gure caption

Fig. 1. Message, key, padding and length �elds in �nal blocks of envelope method

37

table 1

d # known texts # chosen texts

2 269:5 29

4 268:5 210

8 267:5 213

16 266:5 220

32 265:5 235

38

table 2

no. of known texts no. of chosen texts

MAA (general) 232:5 232:3

MAA (long message) | 217

CBC-MAC (m = 32) 232:5 232:3

CBC-MAC (m = 64) 232:5 1

39

table 3

ideal MAC secret pre�x secret su�x envelope

(k) (k1) (k2) (k1 + k2)

#MAC #opn #MAC #opn #MAC #opn #MAC #opn

key recovery d kne 2k 1 0z dk2n e 2k2 dk1+k2n e 2k1+k2

2n=2 2k1+1 + 2k2

MAC forgery d kne 2k 1 1 1C 2n=2 5C+2n=2 0

2n=2 2k1y

2nd preim. 2n 0 t 2n=t t 2n=t 2n 0

yThis attack reduces the envelope method to the secret su�x method only.

zInformation essentially equivalent to the secret key is known.

40

table captions

Table 1. Complexity of key recovery attack on envelope method (128-bit key)

Table 2. Security of MAA and CBC-MAC

Table 3. Security of 3 proposals to build n-bit MACs (n = m) from hash functions.

\#MAC" is the number of known text-MAC pairs; \C" the number of chosen texts; \#opn"

the number of o�-line compression function operations required for best known attacks; t

is the number of messages (or blocks) available to an attacker; k, k1, k2 are key bitlengths.

41

footnotes

1. The intention of this section is to provide background to allow an understanding

of subsequent results. Consequently, formality is sacri�ced where informality aids under-

standability.

2. This is emphasized because elsewhere wide-ranging claims have appeared regarding the

security provided by these measures, as a result of their success in precluding other attacks

on various MAC algorithms.

3. More precisely, the output transformation g(Hj) may involve 1 or 2 blocks (see Figure 1).

42

biographies

Bart Preneel was born in Leuven, Belgium, on October 15, 1963. He received the

Electrical Engineering degree and the Doctorate in Applied Sciences in 1987 and 1993

respectively, both from the Katholieke Universiteit Leuven in 1987. He is currently a

postdoctoral researcher, sponsored by the F.W.O. (Fund for Scienti�c Research Flanders,

Belgium). He is also a part-time associate professor at the K.U.Leuven and a visiting

professor at the University of Bergen in Norway. During the academic year 1996-1997,

he was a visiting professor at the Universiteit Gent, and during the academic year 1993-

1994, he was a research fellow of the EECS Department of the University of California

at Berkeley. His main research interests are cryptography and information security. He

has authored more than 40 scienti�c publications and has participated in several research

projects sponsored by the European Commission. As a consultant, he has been involved

in a large number of security studies on banking and telecommunications systems. He is

a member of board of directors of the International Association of Cryptologic Research

(IACR). He has served on various program committees (Asiacrypt, Crypto, and Eurocrypt),

has been program chair of the 1994 workshop on Fast Software Encryption and is program

chair of Eurocrypt 2000. Since 1989, he is a Belgian expert in working group ISO/IEC

JTC1/SC27/WG2 (Security Techniques and Mechanisms), where he is editor of several

standards.

Paul Van Oorschot was born in Ontario, Canada on June 29, 1962. He completed

B.Math, M.Math, and Ph.D. (Computer Science) degrees in 1984, 1986, and 1988, all

from the U. of Waterloo (Canada). From 1988 through 1996, his work at Nortel and its

R&D subsidiary, Bell-Northern Research, involved cryptographic research and consulting,

product R&D, and participation in national and international security standards. He is cur-

rently Chief Scientist with Entrust Technologies (http://www.entrust.com), a company

spun out from Nortel in January 1997. He has authored over 30 scienti�c publications,

and has been an Adjunct Research Professor in Computer Science at Carleton Univer-

sity (Ottawa) since 1991. He is a member of the Board of Directors of the International

43

Association for Cryptologic Research (IACR), has served as General Chair of Crypto'93,

and has been on various program committees including Crypto, Eurocrypt, and Asiacrypt.

His research interests include all practical aspects of information security and electronic

commerce, especially authentication, key management, certi�cate management, and Public

Key Infrastructures (PKIs). He is the co-author of An Introduction to Error Correcting

Codes with Applications (Kluwer Academic Publishers, 1989) and the Handbook of Applied

Cryptography (CRC Press, 1997).

44

