
~.INEAR ALGEBRA
AND ITS

APPLICATIONS

ELSEVIER Linear Algebra and its Applications 282 (i998) 25-45

Computing Hermite and Smith normal forms
of triangular integer matrices

Arne Storjohann 2
hlstitut.fiir Wissenschqftliches Rechnen, ETH-Zentrum, CH-8092 Ziirich, Switzerland

Received 13 October 1997; received in revised form 7 April 1998

Submitted by M. Goldberg

Abstract

This paper considers the problem of transforming a triangular integer input matrix to
canonical Hermite and Smith normal form. We provide algorithms and prove determin-
istic running times for both transformation problems that are optimal in the matrix di-
mension. The algorithms are easily implemented, assume standard integer arithmetic,
and admit excellent performance in practice. The results presented here lead to a faster
algorithm Ibr computing the Smith normal form of an arbitrary (i.e. non-triangular)
input matrix.

Keywordw Hermite normal form: Smith normal form; Integer matrix

I . I n t r o d u c t i o n

It follows from Hermitc [!] that any m × n rank n integer matrix d can be
transformed by applying a sequence of integer row operations to an upper tri-
angular matrix H that has off-diagonal entries nonnegative and with magnitude
smaller than the positive diagonal entry in the same column. The triangulariza-
tion H - called the Hermite normal form ofA - always exists and is unique. In
this paper we consider the problem of computing the Hermite normal form H

i This work has been supported by grants from the Swiss Federal Office for Education and
Science in conjunction with partial support by ESPRIT LTR Project no. 20244 - ALCOM-IT.

2 E-mail: storjoha@inf.ethz.ch.

0024-37951981519.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 (9 8) 1 00 ! 2-5

26 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

of an n x n non-singular matrix T that is already upper triangular and has off-
diagonal entries bounded in magnitude by the product D of the diagonal en-
tries. We get the following transformation diagram

T
"hi tl2 t13

h2 t23

h3

O e I

t l n "

t2n

13n

h~

,.,.,..>

H
"hi hi2 hi3 bin

h2 h23 -.- h2n

h3 h3n
. .

h,,

The diagonal entries hj are positive, off-diagonal entries t,j of T are bounded in
magnitude by D = h l h 2 . . . h n and off-diagonal entries h~j of H satisfy
0 <<. h~j < hj for I <~ i < j <~ n. Recall that an integer row operation is one of:
(r l) adding an integer multiple of one row to a different row; (r2) switching
two rows; (r3) negating a row. For the problem of transforming T to H it will
be sufficient to use (rl). The following example shows the transformation of a
3 x 3 matrix T to Hermite form H.

5 2342 1843
T = 78 8074

32

Subtract 30 times row two from row one.

I5 g.

78
-240377

8074
32

Subtract 252 times row three from row two.

1
5 2 - 2 4 0 3 7 7]

10
78 32]

t
Add 751 ! times row three to row one.

!
5 2 7]

H = 78 10
32

A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45 27

Since the Hermite form is a row equivalent form, algorithms that solve
problems concerned with the lattice of T - the set of all integer linear combi-
nations of rows of T - can work with the Hermite form H instead of T itself.
The Hermite form has some important advantages. First, T requires
O(n 2 log D) bits to write down but the total size of H will bounded by only
O(n log D) bits; this smaller size translates into improved running times for
algorithms that use H instead of T. An example of such a problem is to deter-
mine whether or not an n-dimensional integer row vector is contained in the
lattice of T. Second, to determine if two integer matrices generate the same
lattice, it is sufficient to compare their canonical Hermite forms. This check
for row equivalence is not possible with a general (non-unique) triangulariza-
tion.

To give complexity results we will use the parameters c and 0. A single arith-
metic operation with integers bounded in length by t bits costs O(t I+') bit op-
erations and two n x n matrices over a ring can be multiplied in O(n °) ring
operations. The pseudo-linear algorithm of Sch6nhage and Strassen [2] allows
any fixed c with c > 0 and the current record for 0 is 0 < 2.376 due to Copper-
smith and Winograd [3]. All algorithms presented in this paper assume the
standard, eminently practical algorithms for integer and matrix multiplication
which have ~ = I and 0 = 3.

The Hermite form algorithms in [4-6] all require O(n 3) arithmetic operations
with integers bounded in length by O(log D) bits to reduce T to H. One ap-
proach for improving this complexity is to incorporate fast matrix multiplica-
tion techniques. This is done in [7] to get a reduced cemplexity of O(n °)
arithmetic operations with integers of the same length. Thus, the previously
fastest algorithm to compute H from T requires O(n2"376(Iog D) I+') bit opera-
tions assuming asymptotically fast (but currently impractical) matrix multipli-
cation. The algorithm we give here computes H from T in only O(n 2 log 2 D) bit
operations - this is now optimal in n being a factor of only O(log D) more than
the number of bits required to write down the input matrix. Moreover, the
algorithm assumes the standard, practical algorithms for integer and matrix mul-
tiplication and admits excellent performance in practice.

The second problem we consider, and the main topic of this paper, is integer
matrix diagonalization. It follows from Smith [8] that any n × in integer matrix
A can be transformed by applying a sequence of integer row and column oper-
ations to a diagonal matrix S = diag(st , . . . , st, 0 ,0), where r is the rank of
A, each s; is positive, and s, divides s~_~ 1 for 1 <~ i <~ r - 1. The matrix S - called
the Smith form ofA - always exists and is unique. For some historical remarks
and applications of the Smith form we refer to Newman [9]. In this paper we
consider the problem of transforming to Smith form an n x m matrix T which
has principal n x n submatrix non-singular, upper triangular and all off-diago-
nal entries bounded in magnitude by the product D of the diagonal entries. We
get the following transformation diagram:

28 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

"tl tl2 tt3

t2 t23

t3

T
tin tl , tim"

• "" t2n t2, " ' " t2m

t3n t3, t3m

" . . : :

tn t,,, t,jm

S1

J

$2

$3

S

Sn

The problem is to transform T to Smith form S using a sequence of integer row
and column operations. Note that the total size of T is O(nm log D) bits. In
this paper we prove the surprising result that the Smith form S of T can be
computed in only O(nm log-' D) bit operations using standard integer arithme-
tic.

Most previous normal form algorithms have been presented for the case of a
non-triangular input matrix A. For brevity let us consider here the case of an
input matrix A that is square non-singular, that is, with n = m. Let us also as-
sume that we have the quantity D (which will be [det A]) and that entries in A
are bounded in magnitude by D. Hafner and McCurley's [5] asymptotically fast
triangularization algorithm requires O(n°(log D) I+') bit operations to produce
a triangularization T of A but the algorithm they propose for computing S from
T (or directly from A) requires O (/ / 3 (1 o g D)(log D) I÷') bit operations - note
the extra O(log D) factor in this complexity result. Giesbrecht [10 t has given
a Las Vegas probabilistic algorithm that requires about O(n3(Iog D) +') bit op-
erations -essentially using randomization to remove this offending O(Iog D)
factor. Most recently, we have discovered a deterministic algorithm that re-
quires O(n°(log D) I ") bit operations [i I]. Thus, the previously fastest algo-
rithm lbr computing S from T requires O(n2'376(log D) re') bit operations
assuming asymptotically fast matrix multiplication. The algorithm we give here
requires only O(n 2 log" D) bit operations using standard arithmetic to compute
S from T - this is now optimal in the matrix dimension, being a factor of only
O(log D) more than the size of the input matrix. In the case where m > n we
prove a complexity of O(nm log 2 D) bit operations - also optimal in the matrix
dimension. This algorithm is easy to implement in a Computer Algebra system
and runs extremely fast in practice.

We apply our triangular Smith normal form algorithm to get a fast, practi-
cal and deterministic algorithm for computing the Smith normal form of an ar-
bitrary (Le. non-triangular) n x tn input matrix ,4. The cost of the algorithm is
O(rim3 log 2 roll,411 -: m 4 log 3 mll,411) bit operations where Ilhll = max 1`4,;I. A
faster randomized algorithm is given in [10] that requires about
O(nm ° log m11,4 II + m 3 log 2 roll`4 II) bit operations, also assuming standard inte-
ger arithmetic, to return a Smith form which is correct with controllable, expo-
nentially small probability of error. The fastest known algorithm which
guarantees correctness of the output is the deterministic algorithm in [1 !].

A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45 29

Assuming asymptotically fast integer and matrix multiplication the algorithm
in [11] computes the Smith form S of A within a poly-logarithmic factor of
the time required by the currently fastest known algorithm to compute only
the determinant of A. Under the assumption of standard integer and matrix
multiplication, though, a direct application of the algorithm in [11] requires
O(rim4 l°g 2 ml]A II) bit operations.

The rest of this paper is organized as follows. In Sections 2 and 3 we present
our algorithm for transforming an upper triangular input matrix to Hermite
and Smith form respectively. In Section 4 we give an algorithm for computing
the Smith form of an arbitrary integer input matrix. In Section 5 we conclude
with some additional comments about the problem of computing Smith forms
of integer matrices. Before continuing we define the complexity model used for
the analysis of algorithms in this paper.

Complexi O, model. The number of bits in the binary representation of an in-
teger a is given by

1, if a = 0:

lg a = 1 + Llog: lalJ, if a > 0.

Using standard arithmetic, a and b can be multiplied in O((lg a)(lg b)) bit op-
erations, and we can express a = qb + r, with 0 <~ Irl < Ibl, in
O((lg a/b)(lg b)) bit operations. The greatest common divisor g = gcd (a, b)
of a and b can be found in O((Ig a)(Ig b)) bit operations; in the same running
time we can recover s and t satisfying sa + tb = g with s <~ Ib/g[and It[~< [a/b I.
Finally, each direction of the isomorphism implied by the Chinese remainder
algorithm can be computed in O((Ig N) 2) bit operations if N is the product
of all the moduli. This complexity model was popularized by Collins [12]
and is sometimes called "naive bit complexity" (see, for example, [13]).

2. Hermite normal forms of triangular matrices

Work on this problem was motivated by an asymptotically fast triangular-
ization algorithm of Hafner and McC~,rley [5] that takes as input an m × n rank
n input matrix and returns as output a row equivalent upper triangular matrix
with all entries non-negative and with off-diagonal entries bounded in magni-
tude by the product D of the diagonal entries - the matrix T of (1) is an exam-
ple of the principal n × n submatrix of such a triangularization.

.->

T
8 11286 4555 46515

1 66359 153094

9 43651

77

H
8 0 1 51

1 2 20

9 69

77

(1)

30 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

The classical algorithm for transforming T to Hermite form works by placing,
for r = 1 ,2 , . . . , n, the principal rth submatrix of T into correct form. At stage r
appropriate multiples of the rth row of T are added to rows 1 ,2 , . . . , r - - 1 to
reduce modulo the diagonal entry the entries in column r.

Classical Triangular Reduction
for r = 1 to n do

for i = 1 to r - 1 do
row(T,/) = r o w (r , i) - lT~,r/Tr,,.Jrow(T,r);

The classical approach requires O (n 3) arithmetic operations but does not prop-
erly bound the magnitudes of intermediate integer entries. The Hzrmite form
algorithms given in [4-6] essentially follow the classical approach but perform
all integer operations modulo D; this leads directly to a complexity of O(n 3)
arithmetic operations with integers bounded in length by O(log D) bits. Fast
matrix multiplication techniques can be used to reduce the complexity to
O(n °) arithmetic operations with integers of the same length [7]. At first sight
this appears to be near-optimal in the parameter n since the problem seems tan-
tamount to performing a "matrix operation" 3 on an n x n matrix. This assess-
ment is false. The algorithm we give here computes H in only O(n 2 log 2 D) bit
operations using standard arithmetic.

Our algorithm is based on an idea due to Chou and Collins [14]; their ap-
proach for reducing the off-diagonal entries differs from the classical approach
primarily with respect to the order of operations. The algorithm works by
transforming, for r = n, n - i , . . . , 1, the trailing (n - r) x (n - r) submatrix
of T into correct form. At stage r, appropriate multiples of rows
r + 1, r + 2 , . . . , n of T are added to row r to reduce modulo the diagonal entry
in the same column the off-diagonal entries in row r.

Chou and Collins Triangular Reduction
for r = n by .-1 to 1 do

f o r j = r + l t o n d o
row(T,r) = row(T, ,-)- [T r j / T y j J r o w (T , j) ;

In [14] this special reduction order was used during the transformation of a
non-triangular input matrix to Hermite normal form and allowed the authors
to obtain a better bound on the size of intermediate integer entries. Here, we
combine the reduction order due to Chou and Collins with the modular deter-

3 Note that the classical triangular reduction algorithm performs O(n 2) row operations on an
n x tr matrix - the same as required by the classical algorithms for Gaussian elimination,
determinant computation, inversion, etc.

A. Storjohann ! Linear Algebra and its Applications 282 (1998) 25-45 31

minant approach (cf. [4-6]). A careful analysis of the ensuing algorithm enables
us to prove a complexity of only O(n 2 log 2 D) bit operations. To get this com-
plexity result, we need two refinements to the algorithm. First, all integer op-
erations must be performed modulo d for some integer d bounded by D. The
following lemma shows that reducing modulo d = [t2t3... tk[any entry in the
first row of the following upper triangular, non-singular matrix

tl ti2 tl3 - - - tlk

t2 t23 " ' " t2k

T = t3 t3/~

.°

tk

is equivalent to performing a sequence of integer row operations on T.

Lemma 1. Let T be a k x k non-singular upper triangular integer matrix and let
d = H2 <<. i <~ k [Ti,il" For j with 2 ,~ j ~ k, the matrix Td obtained from T by reducing
modulo d the entry in row 1 column j is row equivalent to T.

Proof . Let Ti be the trailing (k - !) x (k - I) submatrix of T. We claim that the
k-dimensional row vector with all entries zero except with j th entry equal to
det/ '1 can be expressed as an integer linear combinat ion of the last k - 1 rows
of T. To see this, note that T~dJTi = det (Tl)/k-i where l~dj, the adjoint of Ti, is
an integer matrix. Since d = + d e t Tt, there exists some integer linear
combinat ion of the last k - ! rows of T which, when added to row one of T,
has precisely the effect of reducing modulo d the entry in column j . []

For the second refinement, we note that some row operations may be sparse.
Consider the following k x k input matrix

"hi t12 tl3

h2

l

T =

tl4 tl5 tt6 t i t " ' " tlk

h25
h3s

I h45

h5

h27 h2k
h37 h3k

hs? h5k
l h67 h6k

h?]17~.
"..

hA

(2)

which has last k - 1 rows in Hermite normal form. The goal at this stage is to
perform integer row operations on T to reduce off-diagonal entries in row one.

32 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

Because the last k - 1 rows of T are in Hermite normal form, all columns with
a unit diagonal entry will have off-diagonal entries necessarily zero - row op-
erations involving the last k - 1 rows of T can ignore these columns. In essence.
this second refinement takes advantage of the possible sparsity of the Hermite
form. The following algorithm for transforming to Hernfite form an input ma-
trix as in (2) includes both refinements.

Algorithm: TriangularReduction
Input: A k x k upper triangular rank k integer matrix T with trailing

(k - 1) x (k - 1) submatrix in Hermite normal form.
Output: The Hermite normal form of T. [T is transformed in place.]
(1) (Initialize:)

d ~ 1-I.2<~i<k Ti,i;
if Tlj < 0 then row(T, 1) ~ -row(T, 1);
for j = 2 to k do TIj ,-- 7"14 (modd);

(2) (Reduce off-diagonal entries in row 1:)
L ,--- {jI 2<<.j<<.k,T~,, > 1};
for j = 2 to k do
L ~ L \ {j};

(a) (q, r) ,--- a solution to Tij = q~ j + r with 0 <~ r < ~j;
Tt4 ~ r;
for 1 6 L do

(b) Ti.t ,-- Ti.t - q ~ . l (modd);

Lemma 2. Algorithm Tr&ngularReduction is correct.

Proof. It will be sufficient to show that only integer row operations are
performed during the transformation and that the output matrix is in Hermite
form. First note that the only entries of T which are modified during the
algorithm are the off-diagonal entries of row one. Step (1) applies an integer
row operation to T, if required, that ensures that entry Tl,l is positive. By the
choice of (q, r) in step (2), *.he output matrix will be in Hermite normal form.
The fact that line (b) is essentially performing integer row operations on T
follows from Lemma 1. []

Lemma 3. I f both d and IITII are boumled by D, then the runn#Tg time of
Algorithm TriangularRe&tction is O(k log 2 D) bit operations.

Proof. The cost of step (I) is easily seen to be bounded by O(k log 2 D) bit
operations. Note that throughout step (2) all entries in the work matrix satisfy
0 <~ T,. i <~ d. A single execution of statement (a) requires O((lg T,,j/Tjj)(lg ~4))
bit operations. Since Ig Tx4/Tjj <~ lg d, we can bound this more simply by
O((lg d)(lg Tj,j)) bit operations. The cost of a single execution of statement (b)

A. Storjohann I Linear Algebra and iis Applications 282 (1998) 25-45 33

is bounded by O((:g q)(lg Tj, t) + (lg ((I/'1,t1 + I qTj, t 1)/d)(lg d)) bit operations.
Replacing q, Tid by d - 1 and Tj, t by Tt, t - 1 leads to the simpler b ,und
O((lg d)(lg Tt,t)) bit operations. This shows that the cost of a single execution
of statement (a) and (b) is bounded by c(lg d)(lg Tjj) and c(lg d)(lg Ttj)
respectively for some absolute constant c. The total cost for one pass of the
outer loop in step (2) is given by

e(lg d)(lg Tj.j) + Z c (l g d)(lg Tt.,)
IEL

<~ c(lg d) (lg Tjj + Z l g Tt.,)
IEL

~ < c (l + l o g 2 d) (l + l o g 2 ~ j + Z (l + l o g : T l , I))
IEL ,"

~< e(l + log: d) (l + log 2 Tja + 2 ~ log 2 Tc,)
N IEL /

~<e(! + logzd)(I +21ogzd).

Thus, one pass of the loop requires O(log" d) bit operations. Since the loop is
repeated k - 1 times, and diD, all of step (2) can be accomplished in
O(k log: D) bit operations. []

Theorem 4. There exists a deterministic algorithm that receives as hlput an n x n
rank n upper triangular rnatrix T and returns as output the Hermite normal form
o f T. I f both Idet(T)l and [ITII are bounded by D, then the running time of the
algorithm is O(n 2 log 2 D) bit operations.

Proof. Apply in place, for k -- 1,2,. . . , n, algorithm TriangularReduction to
the trailing k x k submatrix of T. []

3. Smith normal forms of triangular matrices

In this section we assume we start with an n x m integer input matrix T hav-
ing principal n x n submatrix non-singular upper triangular and all entries
bounded in magnitude by the product D of the diagonal entries. Eq. (3) gives
an example of a 4 x 5 input matrix with D = 113472.

T
3 113344 95472 42884 12302

2 1576 98594 11872

2 99206 94692

9456 7080

S

[] 2
6 . (3)

24

34 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

The goal is to transform T to Smith normal form S by applying a sequence of
integer row and column operations. The classical approach for diagonalizing
integer matrices using alternating row and column operations does not exploit
the triangular structure during the reduction when applied to a triangular input
matrix. Algorithms based on the classical approach but which perform arith-
metic modulo D to avoid intermediate expression swell still require (worst case)
on the order of O(nm 2 log D) arithmetic operations with integers bounded in
length by O(log D) bits to compute S from T [5,6]. The near-optimal algorithm
given in [1 1] for diagonalizing matrices over the ring of integers modulo D can
be applied to the problem at hand and requires O(nrn °-~) arithmetic operations
with integers of the same length; even assuming the current record on 0 this be-
comes O(nml376(log D) l+') bit operations. The algorithm we propose here re-
quires only O(nm log 2 D) bit operations using standard integer and matrix
multiplication.

Before presenting the general algorithm in Section 3.3, we present two key
subroutines separately in Sections 3.1 and 3.2. We will require the following
simple number theoretic algorithm.

Theorem 5 (Bach [15]). Let a ,b ,N be integers with N positive and
gcd(a, b, N) = 1. There exists a deterministic algorithm that takes as input a,
b and N and returns as output an integer c with 0 <~ c < N and such that
gcd(a + cb, N) = 1. I f la[, Ibl <~ N then the cost of the algorithm is O(log 2/~) bit
operations assuming standard integer arithmetic.

Proof. The algorithm and proof are due to Bach [15]. The algorithm can be
expressed as follows:
1. if god (a, N) = I then
2. c ~ 0
3. elif gcd (a + b, N) = 1 then
4. c~--I
5. else
6.
7. and

g ~ gcd (a, N);
(N',N")~--- a factorization N = N ' N " with gcd (N ' ,N")= !

gcd (g, N") = 1;
c ~ an integer with 0 < c < N, c = 1 mod N' and c = 0 mod N"; 1

9. ft.
The values returned for c in lines 2 and 4 are clearly correct. If gcd (a, N) ~ 1
then g must contain at least one prime divisor of N. If gcd (a + b, N) =fi 1 as
well, then some prime divisor of N must be excluded from a (otherwise
gcd (b, N) = ! and we would have gcd (a + b,N) = 1). The factorization
N'N" is obtained by applying a factor refinement algorithm to g(N/g). The fac-
tor N' will contain those prime of N that are common to a while the factor N"
those primes of N that are not common to a - this reduces the problem to the

A. Storjohann I Linear Algebra and its Applications 282 (1998) 25--45 35

two cases in lines 2 and 4. Line 7 can accomplished in O(log 2 N) bit operations
(see [13] or [16]) and line 8 is accomplished in the same time using the Chinese
remainder algorithm. []

3.1. Phase one subroutines

Let T be a k x m rank k upper triangular matrix with first k - 1 columns in
Smith normal form. We can write T as

"al

a2

tl *

t2 *

ak- I tk- I
tk

T =

, . . . ,

(4)

The purpose of this section is to prove the following result.

Theorem 6. Let T be as in Eq. (4) and satisfy the conditions
1. first k columns o f T have rank k,
2. first k - 1 columns of T are in Smith normal form,
3. off-diagonal entries in ron's 1,2, k - I are reduced modulG the diagonal

entry #1 the sanw row,
4. off-diagonal entries hi row k are boumled in magnitude by D, a positive mul-

tiple oj' the detenninant of the pr#wipal kth submatrix of T.
There exists a deterministic algorithm that applies integer row and column oper-
ations to transform the kth principal subm,ztrix o f T to Smith normaljbrm. I f the
input matrix satisfies k = I or at > 1, then the running time of the algorithm is
O(m log 2 D) bit operations.

We first prove some intermediate results.

Lemlna 7. Let T be as in Eq. 14) with k > 1 and satisfy the four conditions of
Theorem 6. There exists a deterministic" algorithm that transforms T to an
equivalent matrix that satisfies the same conditions but with the addition of

5. gcd(ai, ti) = gcd(a, ti, t~+l,... ,tk) for 1 <~i<<.k - 1.
lJ" the input matrix satisfies al > 1, then the running time of the algorithm is
bounded by O((m - k + 1) log" D) bit operations.

Proof. The algorithm is inductive. Note that for r = k the input matrix T
trivially satisfies

gcd (T~,r, rr,k) = gcd (T~.r, Tr.k, T~+ , , , , . . . , Tk.,). (5)

36 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25 4 5

For some i, 1 <~ i <~ k, assume that T satisfies Eq. (5) for r = k, k - 1 , . . . , i + 1.
We show how to apply integer row and column operations to transform T to
an equivalent matrix that satisfies conditions 1-4 and Eq. (5) for
r = k, k - 1 , . . . , i. Let c be a solution to gcd (t; + ct~+l, a;) = gcd (ti, t~+l, a~) with
0 ~< c < a~. Set row(T,/) = row(T, i) + c row(T, i + 1) to produce the matrix

T
!

"al

a2

ai cai+ i

ai+l

°

ilk- I

tl

t,

ti + cti+l

li+ I

tk

• , * At:

Now,

gcd (T,.'i, T/'k) = gcd(ai , ti + cb+,)

= g c d (ai, ti, b+ t)

= gcd (a~, ti, ai+ i, ti ~l)

= gcd (ai, ti, ti+j, t i+2 , . . . , t~.).

Here, the second last equality follow frGm the fact that a, la~¢ i, and the last
equality follows by the induction hypothesis. Finally, reduce off-diagonal en-
tries in row i of T' modulo the diagonal entry a,. Since a, lai+t, the entry in
the ith row (i + l)st column will be zeroed out, leaving the first k - 1 columns
unchanged. The following code implements the above construction.
I. f o r i = k - ! b y - I to l d o
2. c ,-- a solution to gcd (ti + cT~+t.~, ai) = gcd (ti, T,.+ I.k, ai) with 0 ~< c < ai;
3. for j = k to m do T,.j ~ T,.j + cT~+l,i;
4. for j = k to m do T,j ,--- T~j (mod a~);

Remark 8. All the code fragments we present perform operations inplace. In
the code fragment above the quantities al, a2 , . . . , ak- i and q, t2 , . . . , tk always
refer to the numbers in the original input matrix as in Eq. (4). Thus, ti is the
entry in row 1 column k of the input matrix, and not necessarily the current
entry in row 1 column k of the work matrix: this entry may have changed. To
refer the current entry in row i column j we write T,.j.

For convenience, we will denote D by ak. Then the row operation at line 3
requires O((m - k + i) (lg ai+t)(lg a~)) bit operations• This bounds the cost
of line 2, which is accomplished using the algorithm of Lemma 5. After line

A. Storjohann I L#lear Algebra attd its Appfications 282 (1998) 25-45 37

3 completes entries in row i will have magnitude bounded by
ai + a~(a~+l - 1) = a~a~+l and i~ follows that one pass of the loop at line 4 re-
quires O ((m - k + I)(lg a~a~+~/ai)(lg a~)) bit operations. Thus, one pass of
the outer loop at line 1 is bounded by c(m - k + I) lg" a;+~ bit operations for
some absolute constant c. The total cost of the outer loop~ ignoring for the mo-
ment the factor (m - k + 1), is given by

Z c lg 2 ai+l <~c(lg 2
I , ~ i < ~ k - I

<~c(l + log2 D +

~<c 21og2 D + 2

~< 2c

ak + Z lg 2 ai+l)
I ~ i ~ k - 2

Z (1 + log'-ai+,))
I ~ i (k - 2

Z l°g! a/+l)
I ~ i ~ k - 2

log-' D + log 2 D).

Thus, the running time of the algorithm is bounded by O((m - k q- 1) log" D)
bit operations. []

Lemma 9. Let T be as in Eq. (4) with k > 1 and ~ati.~v the five conditions o f
Lemma 7. There exists a deternfinistic algorithm that tran.~forms T to an
equivalent matrix that satisfies the same conditions but with the addition of

6. Tl.I dirMes all other entries in the principal kth submatrix o f T .
7. Tl,~ = 0 .

I f the inpttt matrix sati.~fies at > 1, then the running time of the algorithm is
O((m - k + !] (log D)(log al)) bit operations.

Proof. We show how to transform T to the equivalent matrix

T
!

"SI

a2

a t - i

t2al / s i

tk- lal/si
tka~/s~

. . . , "

° • • : ~

where sl = gcd (ai, ti), using only unimodular row and column operations. Let
(s, t, sj) be a solution to the extended gcd equation sa~ + ttj = st and let V be
the m x m identity matrix except with V~t = s , Vk~ = t , V~,~ = tt/s~ and
Vk.~ = a~/s~. Then V has determinant +1 and thus is the product of elementary
matrices• Moreover,

38 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

Sl

TV = tt3

ttk

a2

ak- t

t 2 a t / s t

t k - l a t / s t

t ka l /S i

• . . g¢

with the entry in row one column k zero. By assumption, at divides t~ for
i - 1,2, 3 , . . . , k. Since st la~, we can add appropriate multiples of row one in
matrix TV to rows 2~ 3, . . . ,k to zero out off-diagonal entries in column one
and produce the matrix T'. Finally, reduce off-diagonal entries in the first
k - 1 rows of T' modulo the diagonal entry in the same row, and reduce off-di-
agonal entries in row k modulo D. The output matrix will satisfy all seven con-
ditions of the lemma. The following code implements the above construction.
For convenience, ak is taken to be D.
1. (s , t , s l) ~ a solution to sat + ttl = sl with st = gcd(at,tt);
2. Tt,t ,--- s l ;
3. TI,k ~ 0;
4. for i = 2 to k do
5. q ~ t tdSl (modai);
6. for j = k + I to m do T~j ~ T~j - qTl.i;
7. Ti,k ~ tia~ / s l ;
8. for j = k to m do T/j ~ T,.j (mod a~);
9. for j = k to m do Ti.k '-" Ti,k (mod st).
Line 1 can be accomplished in O((Ig at) 2) bit operations to yield a solution
(s, t, sl) satisfying Isl, Itl,s~ .< a~. Since magnitudes of off-diagonal entries in
rows one and i are bounded by at and a~ respectively, line 6 requires
O((m - k + l)(lg a,)(ig al)) bit operations. This bounds the cost of lines 5
and 7 as well. After lines 5, 6 and 7 are completed, row i of T has entries bound-
ed in magnitude by 2a~al, leading to a cost of O((m - k + l)(lg a;)(lg at)) for
the loop at line 8. The total cost for the loop in line 4, ignoring for the moment
the factor (m - k + 1) is given by

k

E c (l g ai)(lg al)
i=2

k--I

=c(lg a~.)(lg a t) + c (l g a l) E (l g a,)
i=2

k - t

~<c(l + log D)(I + log al) + c (I + log a j) E (1 + log ak)
i : 2

k - I

,~ c(21og D)(21og at) + c(21og a l)E (21og ak.)
i : 2

<~ c(21og D)(21og at) + c(21og al)(21og D).

A. Storjohann I Lhlear Algebra and its Applications 282 (1998) 25-45 39

Thus, the total cosL of all iterations of the loop in line 4 is bounded by
O((m - k + 1) (log D)(log al)) bit operations. This bounds the cost of line 1
and the loop in line 9. []

We caa now prove Theorem 6.

Proof of Theorem 6. Let T be a k x m matrix which satisfies the conditions of
the Theorem. If k > 1, apply the algorithm of Lemma 7 at a cost of
O ((m - k + 1)log 2 D) bit operations to "condition" T. Next, apply the
algorithm of Lemma 9 to the trailing i x i submatrix of T for i = k, k - ! , . . • , 2
at a cost of

c (m - k + 1)(log D)(log a,) - = c (m - k + l)(log D) ~ (log ai)

cCm - k + 1) (log 2 D).

So far the total cost is bounded by O((m - k -~ 1) log: D) bit operations. It re-
mains to replace Tk,~ by I T ,kl and reduce off-diagonal entries in row k modulo
Tt,,k. Since Tk,k ~< D, the cost of this is also bounded O((m - k + 1) log 2 D) bit
operations• []

3.2. Phase two subroutines

Let T be a k x m rank k upper triangular matrix with first k columns in
Smith normal form. We can write T as

T =

al

a2

bl,i

b2,1

ak bk,1

bl,2 . . . b l . m - t

b2,2 "" b2..,-k

bk.2 • • " bk,m-k

(6)

The purpose of this section is to prove the following result.

Theorem 10. Let T be a k x m integral matrix with first k columns rank k and in
Smith normal form and off-diagonal entries in each row reduced modulo the
diagonal entry in the same row. There exists a deterministic algorithm that
applies integer column operations to transform T to an equivalent matrix with
principal kth submatrix lower triangular and last m - k columns zero. I f Ti,i > 1,
and the determinant of the principal kth submatrix of T is bounded in magnitude
by D, then the output matrix will have all entries bounded in magnitude by D and
the running time of the algorithm is O((m - k) log 2 D) bit operations.

Proof. Let (s,t) be a solution to the extended gcd problem sal + tblj = si
where sl = gcd(a l ,b l j) . Let V be the m x m identity matrix except with

40 A. S tor johmm I Linear Algebra a nd its Applications 282 (1998) 25-45

Vl,t = s , Vj.I = t, VLj = - b i j / s l and /4,k = a l / s l . Then V has determinant +1
and

-

s i

tb2. I

tbk.

a2 b2,1 al/Si

ak bk.lal/sl

bl,2 • • • b l ,m-k

b2.2 " ' " b2.m-k

b, .2 • " " bk ,m-k

with the entry in row one column k + 1 zero. Now, reduce off-diagonal entries
in columns 1 and j in TV modulo the diagonal entries in the same row. Repeat-
ing this process, zero out all off-diagonal entries in row 1. The following code
implements the above construction.
1. for j = I to m -- k do
2. (s,t, st) ,--- a solution to sTi j + tb l . j = s l with sl = gcd(Tlj,b~j);
3. a ~ - - b l . j / S l ;

4. b ,-- Tl.I/sl;
5. Tij ~ sl;
6. Tij~, ,-- 0;
7. for i = 2 to k do
8. C ~ sT,.i + tbi,/ (mod a;);
9. T,,/~k ,-- aTij + bbij (mod ai);

10. E.I '-- C.
Since all entries in row i of T are reduced modulo at, the quantities sl, s, t, a and
b computed in lines 2, 3 and 4 will have magnitude bounded by al and the cost
of one pass of these lines is bounded by O((lg 2 a~)) bit operations. The cost of
a single pass of the loop at line 7 is O((Ig al)(lg ai)) bit operations. The total
cost of the loop at line 7 for a single value of j is given by

c(lg at)(lg ai)
2 ~ i ~ k

= c(l + log al) ~ (1 + log a,)
2<~ i.<i

<~c(21og al) ~ (2log ai)
2 -<. i~i k

<~ c(21og a,)(21og D).

Thus, the total cost of the loop at line 7 for a single value of the outer
loop index j is bounded by O((loga l) (logD)) bit operations, and this
bounds the cost of lines 2, 3 and 4 as well. The outer loop at line 1 is
repeated m - k times so the total cost of the code fragment is
O((m - k)(log al)(log D)) bit operations.

After the code completes the work matrix has the form

A. Storjohann I Linear Algebra and its Applications 282 (1998) . 5-4. 41

a2

ak

"'" ~] ~

• • • ~1¢

with all off-diagonal entries in row one zero. To complete the reduction, apply
a similar procedure to the trailing (k - i + !) x (m - i + 1) submatrix of the
work matrix to zero out entries to the right of the diagonal in row i for
i = 2, 3 , . . . , k. The total cost to reduce T to lower triangular form is

y ~ c(m - k)(log a~)(log D) <~ c(m - k) log -~ D
I~<i<~k

bit operations for some absolute constant c. []

3.3. The triangular Smith normal Jbrm algorithm

Theorem 11. There exists a deterministh" algorithm that receives as input an
n × m hztegrai matrix A with principal n × n submatri.r non-singular and upper
triangular, and returns the Smith normal form of A. I f hoth the magnitude oJ'ail
entries of A and the magnitude of the determinant of the principal n × n
submatrix q['A is bounded by D, then the runnhlg thne o[" the algorithm is
O(nm log z D) bit operations using standard integer arithmetic.

Proof. Phase one of the algorithm transforms, for r = I, 2 n in succession,
the principal r x r submatrix of A into Smith tbrm. The algorithm is inductive
and it is sufficient to consider a single stage• Let A I t /be the work matrix at the
beginning of stage r. Off-diagonal entries in rt~ws 1,2, . . . , r - 1 ofA trl will have
magnitude bounded by the diagonal entry in the same row, and using a block
decomposition, the n x rn matrix A I ' / can be written as

A ,7,

T~ is k × k upper triangular with rank k and with first k - 1 columns in Smith
form• If k > 1 then the leading diagonal entry of T~ is greater than 1. ~ is
k × (m - r) with entries in rows i, 1 <~ i <~ k - i, reduced modulo the ith diagonal
entry in T~ aud entries in row k reduced modulo D. B is the trailing
(n - r) x (m - r) submatrix of the input matrix A. For the initial case r = 1
of the induction, note that A (~1, which is A, can be written as in Eq. (7) with
k = l .

42 A. Storjohann I Linear Algebra and its Applications 282 (1998) 25-45

At stage r, row operations on A (r) are limited to rows occupied by T~ and the
only column operations involving colunms occupied by B are limited to those
which add multiples of columns occupied by Ti to these last m - r columns.
Hence, the last n - r rows of the work matrix (those occupied by B) remain un-
changed during stage r. Furthermore, since the principal (r - k)th submatrix of
A (r) is the identity, we can limit our attention the submatrix of A or) comprised of
Ti and ~, namely the k × (m - r) matrix

T = [Tj lT2] =

"al tl

a2 t2

"..

ak-I tk-I

tk

* * . . . , "

* :¢ . . . ,

* * . . . ,

Use the algorithm of Theorem 6 to transform T to an equivalent matrix with
principal k x k submatrix in Smith form and off-diagonals in each row reduced
modulo the diagonal entry in each column. By Theorem 6, the cost of one stage
is O(m log 2 D) bit operations. This stage is repeated for r = l, 2 , . . . , n, leading
to a total cost for phase one of O(nm log 2 D) bit operations•

After phase one, the work matrix either has principal nth submatrix the
identity and all other entries zero (in which case we are finished) or has the
form

where Si is a k x k matrix in Smith form with k chosen so that the leading
diagonal entry of S! is greater than one. Furthermore, off-diagonal entries in each
row (i.e. the entries in B~) are reduced modulo the diagonal entry in the same
row. Use the algorithm Theorem l0 to transform the submatrix [$1 I BI] to an
equivalent matrix with first k columns lower triangular and all other columns
zero. By Theorem 10, the cost of the translbrmation is O(m log 2 D) bit opera-
tions. After phase two the work matrix has the form

where A~ ,~ a k x k lower triangular with magnitude of determinant and all en-
tries bounded by D. Finally, use the reduction of phase one to reduce the
square non-singular matrix ,41 to Smith form at a cost of O(n 2 log-, D) bit op-
erations. Combining these phases, the total cost for the reduction is seen to be
bounded by O(nm log-' D) bit operations. ~

A. Storjohann I Lhtear Algebra and its Applications 282 (1998) 25 45 43

4. An algorithm for the Smith normal form

Let A be an n × m input matrix. The first step in computing the Smith nor-
mal form is to transform A to a row equivalent matrix H which satisfies the fol-
lowing conditions:

(el) Let r be the rank of H. . "hen the first r rows of H are non-zero.
(e2) For !~ i<~ r let H[i,j~] be the first non-zero entry in row i. Then

j l < j2 < - " <j,-.

A matrix H which satisfies (el) and (e2) and is row equivalent to A is said to bc
a row echelon form of A. In [17] we give a fast, practical and deterministic al-
gorithm for recovering r and a row echelon form H of A in
O(nmr 2 log 2 rllAII + r4 log 3 rllAII) bit operations. Furthermore, both IIHII and
D =] I-I~=~ n[i, ji]] will be bounded in length by O(r log ,'IIAII) bits. Let P be
a permutation matrix such that column i of HP is column ji of H for
1 ~< i ~< r. The Smith normal form of HP (which is equivalent to A) can be com-
puted in O(rm log 2 D) bit operations by applying the algorithm of Theorem I 1
to the submatrix comprised of the first r rows of HP. Noting that O(rm log-' D)
is bounded by O(nmr 2 log 2 ,'IIA II) yields the following result.

Theorem 12. There exists a determini.~tic algorithm that takes as #1put an n × m
integer input matrix A and recovers the rank r and Smith normal form S of A.
The cost of the algorithm is O(nmr 2 log 2 rllA II + r4 log 3 rllA II) bit operations
assuming standard h)teger anti matrix arithmetic.

Proof. Follows from Theorem II and [17] (Theorem 16). []

5. Conclusio~ls and open problems

By combining the triangular Smith form algorithm presented here with the
triangularization algorithm in [17] we were able to get an improved practical
algorithm for computing Smith forms of a dense input matrix with arbitrary
shape and rank profile. This Smith form algorithm seems to be inherently
sequential, and like previous deterministic algorithms [5,6,11], requires about
a factor of O(n) more space than is required to write down the input or output
matrix. An important advantage of Giesbrecht's [10,18] Monte Carlo probabi-
listic Smith normal form algorithms, in addition to allowing a simple coarse
grain parallelization, is an improved space complexity.

To compare the various algorithms, consider the case of an n x n input ma-
trix A with small entries, that is, with log IIAII < c for some fixed constant c in-
dependent of n. Previous deterministic algorithms, including the algorithm we
have presented here, require on the order of O-(n 3) additional bits of storage

44 A. Storjohmm I Linear Algebra and its Applications 282 (i998) 25 45

space to compute the Smith form S of A. The algorithm in [10] requires only
about O(n-') additional bits of storage.

Now consider the case when A is sparse, with on the order of O(n log n)
non-zero entries. The algorithm for sparse matrices in [18] also requires only
about O'(n-') additional bits of storage. Moreover, only about O-(n 3) bit oper-
ations are required to recover S; a running time which is factor of about O-(n)
faster than the algorithm we have presented here for dense matrices. This is a
significant breakthrough since large sparse input matrices with small entries
arise very often in practice.

The disadvantage of the algorithms in [10,18] is that they require randomiza-
tion and return a Smith form which may, with controllable, exponentially small
probability of error, be incorrect. An important open problem is to find a fast
algorithm for computing S~nith normal forms of sparse integer input matrices
which guarantees correctness and also admits near-optimal space complexity.
Since finding the Smith normal form also recovers the rank of the input matrix,
a simpler open problem to consider is a Las Vegas probabilistic algorithm that
requires O-(n 3) bit operations using standard arithmetic to recover only the
rank of A. The currently fastest rank algorithm which guarantees correctness
requires O(n °'l) bit operations.

References

[I] C. Hermite, Sur rintroduction des variables continues dans la thdorie des .lombres, J. Reine
Angew. Math. 41 (1851)191 216.

[2] A. Schfnhage, V. Strassen, Schnelle mt, ltiplikation grosser zahlen, Computing 7 (1971) 281
292.

[3] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic
Comput. 9 (1990) 251 280.

[4] P.D. Domich, R. Kannan, L.E. Trotter, Jr., Hermile normal form computation using modulo
determinant arithmetic, Math. Oper. Res. 12 (1) (1987) 5059.

[5] J.L. Halher, K.S. McCurley, Asymptotically fast triangularization of matrices over rings,
SIAM J. Comput. 20 (6) (1991) 1068 1083.

[6] C.S. Iliopoulos, Worst-case complexity bounds on algorithms for computing the canonical
structure of finite abelian groups and the Hermite and Smith normal Ibrms of an integer
matrix, SIAM J. Comput. 18 (4) (1989) 658669.

[7] A. Storjohann, G. Labahn, Asymptotically fast computation of Hermite normal forms of
integer matrices, in: Y.N. Lakshman (Ed.), Proceedings of the International Symposium on
Symbolic and Algebraic Computation: lSSAC'96. ACM (Assoc. Comput. Machi~ery), New
York, 1996. pp, 259 266.

[8] tt.J.S. Smilh, On systems of linear indeterminate equations and congruences, Philos. Trans.
Roy. Soc. London 151 ~1861) 293 326.

[9] M. Newman, The ~.;.nith normal form, Linear Algebra Appl. 254 (1997) 367381.
[lOJ M. Giesbrecht, Fast computation of the Smith normal form of an integer matrix, in: A.H.M.

Levelt (Ed.), Proceedings of the International Symposium on Symbolic and Algebraic
Computation: ISSAC'95, 19")5, pp. I I(~ 118.

A. Storiohann I L#war Algebra and its AMgicatimts 2,~2 (19c),s'/ 25 15 45

[11] A. Storjohann, Near optimal algorithms for computing Smith normal forms of integer
matrices, in: Y.N. Lakshman (Ed.). Proceedings of the International Symposium on Symbolic
and Algebraic Computation: ISSAC'96. ACM (Assoc. Comput. Machinery), New York. 1996,
pp. 267 274.

[12] G.E. Collins, Computing time analyses Ibr some arithmetic and algebraic algorithms,
Technical Report 36, University of Wisconsin, Madison; Computer Sciences, July 1968: in:
Proceedings of 1968 Summer Institute on Symbolic Mathematical Computations, IBM
Federal Systems Center, 1968, pp. 195-231.

[13] E. Bach, J. Shallit, Algorithmic Number Theory, vol. 1: Efficient Algorithms, MIT Press,
Cambridge, MA, 1996.

[14] T.-W.J. Chou. G.E. Collins, Algorithms for the solutions of systems of linear diophantine
equations, SIAM J. Comput. 11 (1982) 687-708.

[15] E. Bach, Linear algebra modulo N, unpublished manuscript, December 1992.
[16] E. Bach, J. Driscoll, J.O. Shallit, Factor refinement, J. Algorithms 15 (1993) 199-222.
[17] A. Storjohann, A fast. practical and deterministic algorithm for tria,lgularizing integer

matrices, Technical Report 255. Departement Informatik, ETH Zi.irich, December 1996.
[18] M. Giesbrecht, Probabalistic computation of the Smith normal form of a sparse integer

matrix, in: H. Cohen (Ed.), Algorithmic Number Theory: Secend International Symposium,
1996, pp. 175 188.

