
MATHEMATICS OF COMPUTATION
Volume 66, Number 218, April 1997, Pages 787–805
S 0025-5718(97)00812-0

COMPUTING CANONICAL HEIGHTS

WITH LITTLE (OR NO) FACTORIZATION

JOSEPH H. SILVERMAN

Abstract. Let E/Q be an elliptic curve with discriminant ∆, and let P ∈
E(Q). The standard method for computing the canonical height ĥ(P) is as

a sum of local heights ĥ(P) = λ̂∞(P) +
∑
p λ̂p(P). There are well-known

series for computing the archimedean height λ̂∞(P), and the non-archimedean

heights λ̂p(P) are easily computed as soon as all prime factors of ∆ have been
determined. However, for curves with large coefficients it may be difficult or
impossible to factor ∆. In this note we give a method for computing the non-

archimedean contribution to ĥ(P) which is quite practical and requires little
or no factorization. We also give some numerical examples illustrating the
algorithm.

Let E be an elliptic curve defined over a number field K, say given by a Weier-
strass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.(1)

The canonical height on E is a quadratic form

ĥ : E(K) −→ R.
The canonical height is an extremely important theoretical and computational tool
in the arithmetic study of elliptic curves. See [18, Chapter VIII, Section 9] for

the definition and basic properties of ĥ, and [20], [21], and [23] for some discussion

of how to compute ĥ in practice. In this paper, which may be considered as a
continuation of our earlier note [20], we will discuss the computation of the canonical
height for curves E whose coefficients a1, . . . , a6 are large. We note that this is not
a mere intellectual exercise, since curves with huge integer coefficients have already
made their appearance in the search for curves whose Mordell-Weil group E(Q) has
large rank [5], [11], [12], [13], [14], and the standard tool for proving that a set of
points P1, . . . , Pr ∈ E(Q) is linearly independent is to check the non-vanishing of
the height regulator matrix det

(
〈Pi, Pj〉

)
. Here the height pairing 〈 · , ·〉 is defined

(up to a normalizing factor) by the formula

〈P,Q〉 = ĥ(P +Q)− ĥ(P)− ĥ(Q).

Tate’s definition ĥ(P) = limn→∞ 4−nh
(
x(2nP)

)
of the canonical height is not

practical for numerical computations. Instead, one uses the Néron-Tate decom-
position of the canonical height into a sum of local heights, one for each distinct

Received by the editor October 24, 1995.
1991 Mathematics Subject Classification. Primary 11G05, 11Y50.
Key words and phrases. Elliptic curve, canonical height.
Research partially supported by NSF DMS-9424642.

c©1997 American Mathematical Society

787

788 JOSEPH H. SILVERMAN

absolute value v on K:

ĥ(P) =
∑
v

nvλ̂v(P).(2)

See [19, Chapter VI] for the definition and existence of the λ̂v’s, as well as the
choice of the nv multiplicities.

In order to explain the purpose of this article, we briefly recall the existing meth-
ods for computing the λ̂v’s. (A more detailed account will be given in Section 1.)
To ease notation, we will take K = Q and will assume that E is given by a minimal
Weierstrass equation (1) with discriminant ∆. Let P ∈ E(Q) be a rational point
on E, and write the coordinates of P as P = (a/d2, b/d3). Then the decomposition

of ĥ(P) can be written as the finite sum

ĥ(P) = λ̂∞(P) + log(d) +
∑

p|∆, p-d
λ̂p(P).(3)

The archimedean local height λ̂∞(P) is easily computed using a rapidly conver-
gent series, so it poses no problem. Further, for any given prime p, it is extremely
easy to calculate the local height λ̂p(P). However, and it is this caveat which

motivates the present article, in order to use the sum (3) to compute ĥ(P), one
must first find all of the prime divisors of ∆. As is well known, factorization of
large integers is a time-consuming process. In this article we will explain how to
compute ĥ(P) without factoring ∆, essentially by grouping together terms in (3)

whose λ̂p’s have the same form. Our method is not completely factorization free,
since it does require the prime factorization of the quantity gcd(c4, c6); but in prac-
tice, it is usually feasible to factor gcd(c4, c6) even when ∆ is far too large to be
effectively factored.

1. Description of the algorithm

Let K be a number field, E/K an elliptic curve given by a Weierstrass equa-
tion (1), and let P ∈ E(K). We begin by briefly reviewing how to compute the

local heights λ̂v(P) whose sum is the canonical height (2). See [20] for details.
First, if v is an archimedean absolute value v, there are two standard methods
for computing λ̂v(P). One method, due to Tate (for real absolute values, with a
modification for complex absolute values by the author) can be found in [20]. It

expresses λ̂v(P) as an easily computed series which converges geometrically. An
alternative series, which is somewhat more complicated but much faster converging,
can be found in [3, Algorithm 7.5.7]. It uses the original formulas of Néron and

Tate to express λ̂v(P) in terms of a theta function attached to E. The necessary
elliptic integrals can be rapidly computed using the AGM. Using either method,
the numerical computation of λ̂v(P) for archimedean v is easily accomplished.

Next suppose that v is non-archimedean. The first step in computing λ̂v(P) is to
replace the Weierstrass equation (1) by an equation which is minimal at v. (See [18,
Chapter VIII, Section 1].) For any given v, this is easily accomplished using any one
of a variety of methods [3, Section 7.5.1], [19, Chapter IV, Section 9], [4, Section 3.2],
[9]. Having done this, one computes certain (explicitly given) polynomials in terms
of the ai coefficients of (1) and the coordinates of P , and then one takes the ordv of
these values to obtain certain integers N,A,B,C. (See [20, Section 5] for details.)

COMPUTING CANONICAL HEIGHTS 789

The local height, up to an appropriate scaling factor, is then given by the following
simple algorithm:

• (Good Reduction)

If min{A,B} ≤ 0, then λ̂v(P) = max
{

0,− 1
2 ordv(xP)

}
.

• (Multiplicative Reduction)

Else if ordv(c4) = 0, let n = min{B, 1
2N}, then λ̂v(P) = −n(N − n)/2N .

• (Additive Reduction)

Else if C ≥ 3B, then λ̂v(P) = − 1
3B. Else λ̂v(P) = − 1

8C.

What, then, are the computational difficulties which one encounters in comput-
ing the canonical height ĥ(P)? Recall that attached to a Weierstrass equation (1)
are certain quantities which we list here for the convenience of the reader:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

(4)

We may assume that the coefficients of the Weierstrass equation lie in the ring of
integers of K. Then the procedure in [20] as described above can be used to rapidly

compute ĥ(P) as soon as one knows exactly which absolute values v contribute

non-zero local terms λ̂v(P). More precisely, it suffices to determine exactly which
prime ideals of K divide the discriminant ∆. So if the prime factorization of (∆)
can be accomplished, we have nothing to add to [20].

However, if the coefficients of E are of even moderate size, then the discrimi-
nant ∆ may be quite large and difficult to factor. Further, even if it is feasible
to factor ∆ using current techniques, it would still be preferable to compute ĥ(P)
without that factorization, since the time required to perform the factorization is
likely to be orders of magnitude larger than the time required for the rest of the
computation.

Unfortunately, we are not able to give an entirely “factorization-free” algorithm,
but we will discuss various techniques to reduce the amount of factorization required
to a minimum. In principle, our techniques would be factorization free if one had
an a priori way of verifying that a given Weierstrass equation is minimal; but in
practice we have found that it is most efficient to combine our method with a small
amount of factorization. And since we do not know a non-factorization way to check
a Weierstrass equation for minimality, our algorithm must begin with a factorization
of gcd(c4, c6). In practice, this quantity tends to be quite small compared to ∆.

Remark. It is worth noting that the algorithm described in this paper (with a
few minor modifications) does give a factorization-free method for computing the
canonical height of points on elliptic curves defined over function fields such as Fq(T)
or Q(T). The reason is that in such a function field, it is possible to efficiently write
any element f ∈ k[T] as a product f1f

2
2 f

3
3 · · · frr , where the fi’s are squarefree. This

is done by the standard method of taking derivatives and gcd’s. If it were possible to
perform a similar decomposition in number fields, the algorithm for ĥ over number
fields would also become completely factorization free.

Remark. We should also mention that the local heights which we compute in this
paper are non-normalized heights. For theoretical work, it is usually preferable to

790 JOSEPH H. SILVERMAN

work with normalized heights, so the reader should be aware that in the literature
the symbol “λ̂v” may differ from our λ̂v by v(∆). (See [19], for example.) Of
course, the extra v(∆) will cancel out when the local heights are summed to form
the global height.

For the remainder of this paper, we will restrict attention to K = Q. This has
the advantage of greatly simplifying our exposition, while covering the situation
most commonly encountered in the literature. The ideas which we use can easily
be adapted to other number (or function) fields by the interested reader. We now

describe, step-by-step, our algorithm for computing ĥ(P), with an explanation of
why each step works. In section 2 we will give a concise summary of the algorithm
suitable for implementation, and section 3 contains some numerical examples.

Step 1. Initial Data. The algorithm requires an elliptic curve E/Q given by a
Weierstrass equation (1) with coefficients ai ∈ Z, and a rational point P =
(x1, y1) ∈ E(Q). No assumption is made concerning the minimality of the equa-
tion (1).

Step 2. Compute Associated Quantities. Compute the quantities b2, b4, b6, b8, c4,
c6,∆ listed in (4).

Step 3. Find Minimal Equation. Factor gcd(c4, c6) completely. Use this factoriza-
tion to find a minimal Weierstrass equation for E over Z. The fastest way to do this
is a short algorithm of Connell and Kraus [4, Section 3.2] which has superceded an
earlier method of Laska [9]. (Remark. In the Connell-Kraus algorithm as presented
in [4], one of the steps asks for all prime factors of the quantity 6 gcd(c26,∆). This
is the same as the set of primes dividing 6 gcd(c4, c6).) An alternative algorithm of
Tate [3, Section 7.5.1][19, Chapter IV, Section 9] is more complicated, but has the
advantage of also computing the conductor and reduction types for E. Regardless
of the method chosen, make the appropriate change of coordinates to the point P
and recompute the associated quantities (4). We now have a minimal Weierstrass
equation (1), a point P = (x1, y1) ∈ E(Q), and a factorization of the quantity
gcd(c4, c6).

Step 4. Archimedean Height. Compute the height λ̂∞(P) corresponding to the
archimedean absolute value on Q. This can be done using either Tate’s series [20] or

theta functions [3, Algorithm 7.5.7]. Set H ← λ̂∞(P). We will use H to accumulate

the pieces of the canonical height ĥ(P).

Step 5. Formal Group Contributions. The primes p for which P = (x1, y1) lies in
the formal group E1(Qp) contribute to the canonical height, but luckily we don’t
need to know exactly which primes these are, since all of the required information
is contained in the (denominator) of the rational number x1. So we augment H by

H ← H +
1

2
log(denominator of x1).

Step 6. Contributions From Small Primes. The only remaining non-zero local
heights λ̂p(P) are for primes p which divide the discriminant ∆. Our goal is to
try to avoid factoring ∆, but it makes sense to do a little bit of factoring at this
point. So we choose some bound p0 and find all primes p < p0 dividing ∆. In
principle, it will suffice to take p0 = 5. However, if ∆ is divisible by large powers,
later portions of the algorithm may be inefficient, so it is probably better to take

COMPUTING CANONICAL HEIGHTS 791

at least p0 = 100. Alternatively, one can just take p0 = 5, and if a later part of the
algorithm bogs down, one can return to this step and search for additional small
primes dividing ∆ to high powers. In any case, for each p < p0 dividing ∆, use the
algorithm in [20] to compute λ̂p(P) and add it onto the accumulating total, while
also removing these primes from ∆:

H ← H +
∑
p|∆
p<p0

λ̂p(P), ∆← ∆
∏
p<p0

p− ordp(∆).

Step 7. Additive Reduction Contributions. For primes p ≥ 5, so in particular for
p ≥ p0, the primes of additive reduction are precisely the primes dividing both c4
and c6. We already found these primes in step (2) when we factored gcd(c4, c6), so

we can use the algorithm [20] to compute the λ̂p(P)’s and add them onto the total,
while also removing them from ∆:

H ← H +
∑

p| gcd(c4,c6)
p≥p0

λ̂p(P), ∆← ∆
∏

p| gcd(c4,c6)
p≥p0

p− ordp(∆).

Step 8. Additional “Good Reduction” Contributions. Here “good reduction”
means primes for which the point P has good reduction, or in fancier terminol-
ogy, primes p for which the point P lies in the identity component E0(Qp) of the
Néron model of E/Qp. (See [18, Chapter VII] and [19, Chapter IV] for details.) We
can determine these primes and remove them from ∆ with no factorization. First
we compute

A1 = (numerator of 3x2
1 + 2a2x1 + a4 − a1y1),

B1 = (numerator of 2y1 + a1x1 + a3),

where recall that P = (x1, y1). Then P lies in E0(Qp) if and only if gcd(A1, B1) is
prime to p. Further, since we already took care of the formal group contributions
in Step (5), the primes with P ∈ E0(Qp) contribute nothing further to ĥ(P). (This
follows from [19, Theorem VI.4.1].) Hence we may remove from ∆ that part which
is prime to A1 and B1. In other words, we may replace ∆ by

∆1 ← gcd(∆, A∞1 , B
∞
1).

Remark. For any integers M and N , the notation gcd(M,N∞) is an abbreviation
for the quantity

gcd(M,N∞)
def
= max

n≥1
gcd(M,Nn) =

∏
p|N

pordp(M).

In other words, it is that part of M composed of primes which also divide N . In
practice, we want to be able to compute gcd(M,N∞) without factoring N . This
can be accomplished by computing gcd(M,Nn) for n = 0, 1, 2, . . . until reaching
an n satisfying

gcd(M,Nn) = gcd(M,Nn+1).

(A more efficient method is described in section 2.) This gcd is then equal to
gcd(M,N∞). We define gcd(M,N∞1 , N∞2) similarly.

It follows from general principles that ∆1 is a powerful number; that is, every
prime which divides ∆1 will divide it to at least the second power. In particular,

792 JOSEPH H. SILVERMAN

the square-free part of the discriminant ∆ has been eliminated. It turns out that
many of the large curves which have appeared in the literature have a discriminant
which is mostly squarefree. (We will discuss some examples in section 3.) So it
will frequently happen that ∆1 = 1, especially if p0 in Step (6) was chosen to be

of reasonable size. If ∆1 = 1, the algorithm terminates and we have H = ĥ(P).
In any case, we have avoided the necessity of factoring the square-free part of ∆,
which is generally a big savings.

Step 9. Multiplicative Reduction Contributions. If ∆1 > 1, then E has multiplica-
tive reduction of type INp for each prime p dividing ∆1, where Np = ordp(∆1) ≥ 2.
The algorithm described in [20] says that the local height is given by

λ̂p(P) =
−np(Np − np)

2Np
log p = −1

2
· np
Np

(
1− np

Np

)
log pNp ,

where

np = min {ordp(B1), Np/2} .
(Recall that B1 = 2y1 + a1x1 + a3.) Of course, in practice we won’t know the
prime divisors of ∆1. However, we can exploit this formula by considering the
multiples 2P, 3P, . . . , since it turns out that the map

tp : E(Q) −→ Q, Q 7−→ np(Q)

Np
,

(more or less) satisfies

tp(mQ) ≡ mtp(Q) (mod {±1}Z).

We illustrate the procedure for 2P . The first step is to compute 2P = (x2, y2).
However, we should note that as we take larger multiples, the size of the coordinates
will become unwieldy. So instead all that we really need to do is to compute

2P ≡ (x2, y2) mod ∆1,

and similarly for higher multiples. There is, of course, a slight chance that as
we attempt to compute 2P mod ∆1, we will run into a problem because we are
required to compute an inverse z−1 mod ∆1 for some z with gcd(z,∆1) > 1. If this
happens, it will almost certainly lead to a factorization of ∆1, and we can then deal
with each factor of ∆1 separately. (The reader will undoubtedly recognize that this
“unusual situation” is the underlying basis for Lenstra’s elliptic curve factorization
method [10].) Assuming now that we are able to compute 2P mod ∆1, we set

B2 = 2y2 + a1x2 + a3 (mod ∆1).

We then define

∆2 = gcd(∆1, B
∞
2) and ∆′2 = ∆1/∆2.

These last two partial discriminants have the following interpretation:

p|∆2 ⇐⇒ P /∈ E0(Qp) and 2P /∈ E0(Qp),
p|∆′2 ⇐⇒ P /∈ E0(Qp) and 2P ∈ E0(Qp).

This enables us to deal with the primes dividing ∆′2, since for those primes we have
np/Np = 1/2. Hence the local height for such primes is

λ̂p(P) = −(1/8) ordp(∆
′
2) log(p),

COMPUTING CANONICAL HEIGHTS 793

and adding them all up means that we have no need to determine the actual primes
dividing ∆′2. In other words, at this step of the algorithm we augment our running
total H by

H ← H − 1

8
log ∆′2.

It remains to deal with the primes dividing ∆2. Of course, if we’re lucky, then
∆2 = 1 and we’re done. Otherwise we repeat the process using 3P, 4P, Here
are the next few steps of the algorithm:

• Compute 3P ≡ (x3, y3) (mod ∆2). Let B3 = 2y3 + a1x3 + a3.
Let ∆3 = gcd(∆2, B

∞
3) and ∆′3 = ∆2/∆3.

Augment H ← H − 1
9 log ∆′3.

If ∆3 = 1, then stop, otherwise continue.
• Compute 4P ≡ (x4, y4) (mod ∆3). Let B4 = 2y4 + a1x4 + a3.

Let ∆4 = gcd(∆3, B
∞
4) and ∆′4 = ∆3/∆4.

Augment H ← H − 3
32 log ∆′4.

If ∆4 = 1, then stop, otherwise continue.
• Compute 5P ≡ (x5, y5) (mod ∆4). Let B5 = 2y5 + a1x5 + a3.

Let ∆5 = gcd(∆4, B
∞
5) and ∆′5 = ∆4/∆5.

It is tempting to write “and so on,” but a new phenomenon occurs here!

To describe this new phenomenon, we first explain the contributions from 3P
and 4P . The primes p dividing ∆′3 are those primes for which P, 2P /∈ E0(Qp)
and 3P ∈ E0(Qp). It follows for these primes that np/Np = 1/3, so λ̂p(P) =
−(1/9) ordp(∆

′
3) log(p), and adding them up gives the specified contribution of

−(1/9) log ∆′3. Similarly, if p divides ∆′4, then P, 2P, 3P /∈ E0(Qp) and 4P ∈
E0(Qp), from which we deduce that np/Np = 1/4, yielding a contribution of
−(3/32) log ∆′4.

Next consider a prime p dividing ∆′5. Then P, 2P, 3P, 4P /∈ E0(Qp) and 5P ∈
E0(Qp), but now there are two possibilities for np/Np, namely 1/5 and 2/5. So we
need to separate ∆′5 into two parts without, of course, performing a full factoriza-
tion. Here is the procedure. From the definition of the np’s, we see that

gcd(∆′5, B1) = α1α
2
2,

where the primes dividing α1 correspond to np/Np = 1/5 and the primes dividing α2

correspond to np/Np = 2/5. If we replace P by 2P , we find that the roles are
reversed,

gcd(∆′5, B2) = α2
1α2.

Thus we can recover α1 and α2 merely by computing some gcd’s,

α3
1 =

gcd(∆′5, B2)2

gcd(∆′5, B1)
and α3

2 =
gcd(∆′5, B1)2

gcd(∆′5, B2)
.

Having computed α1 and α2, we get the local heights for primes dividing ∆′5,

H ← H − 2

25
log gcd(∆′5, α

∞
1)− 3

25
log gcd(∆′5, α

∞
2).

Of course, if ∆5 = 1, we’re done, and if not, we continue in a similar vein.
For completeness, we describe how to deal with the primes which arise when

we consider the multiple mP . So suppose that we have dealt with all primes p for
which one of the multiples P, 2P, . . . , (m−1)P lies in E0(Qp), and we are left with a

794 JOSEPH H. SILVERMAN

piece of the discriminant ∆m−1 divisible by the remaining primes of multiplicative
reduction. As before, we compute

mP ≡ (xm, ym) (mod ∆m−1) and Bm = 2ym + a1xm + a3,

and we divide the remaining discriminant into the two pieces

∆m = gcd(∆m−1, B
∞
m) and ∆′m = ∆m−1/∆m.

The primes p dividing ∆′m are those with mP ∈ E0(Qp) and no lower multiple of P
in E0(Qp). This means that there is a factorization

gcd(∆′m, B1) = α1α
2
2α

3
3 · · ·αrr,

where r = bm/2c, αi = 1 if gcd(i,m) > 1, and the primes dividing αi are the
primes for which np/Np = i/m. As before, we want to determine the αi’s without
performing a factorization, since once we know the αi’s, we know the appropriate
amount to add onto H, namely

H ← H − 1

2

bm/2c∑
i=1

i(m− i)
m2

log gcd(∆′m, α
∞
i).

(In the sum, it’s only necessary to take i’s with gcd(i,m) = 1.)
In order to find the αi’s, we consider also the multiples of P . We have already

computed the quantities B1, B2, . . . , Br, and if we were to factor gcd(∆′m, Bk), we
would find that it equals

gcd(∆′m, Bk) = α
{k}m
1 α

{2k}m
2 α

{3k}m
3 · · ·α{rk}mr ,

where

{A}m =
{

min |A−mK| : K ∈ Z
}
.

In other words, {A}m is the magnitude of the least residue of A modulo m, where
the least residue is taken between −m/2 and m/2. Taking k = 1, 2, . . . , r, we
obtain r equations for the r variables α1, . . . , αr. More precisely, consider the
matrix

Mm =

{1}m {2}m · · · {i}m · · · {r}m
{2}m {4}m · · · {2i}m · · · {2r}m

...
. . .

...
{j}m {2j}m · · · {ij}m · · · {rj}m

...
. . .

...
{r}m {2r}m · · · {ri}m · · · {r2}m

.

It is likely that Mm is invertible for all m, but in any case we have checked that
it is invertible for all m ≤ 50, which should suffice for most applicaitons. (We will
discuss Mm further below.) Write the adjoint matrix of Mm as

Madj
m =

(
tm(i, j)

)
1≤i,j≤r .

That is, Madj
m has integer coefficients and MmM

adj
m = (detMm)Ir . We can then

recover the αi’s from the relation

αdetMm
i =

r∏
k=1

gcd(∆′m, Bk)tm(i,k).(5)

COMPUTING CANONICAL HEIGHTS 795

There are two remarks to make concerning this formula. First, it follows from
the general theory that the product is a perfect det(Mm)th-power, so all operations
can be performed using integer arithmetic.

Second, it is unfortunately true that det(Mm) may be too large for these com-
putations to be performed in practice. For m’s of moderate size, there are various
ways to simplify the computations. Thus it sometimes happens that every entry
of the adjoint matrix has a factor in common with the determinant, in which case
the appropriate root can be extracted from both sides of (5). Another way to sim-
plify is to work instead with the matrix M ′m whose entries are the {ij}m’s with
gcd(i,m) = gcd(j,m) = 1. The M ′m’s are smaller matrices than the Mm’s, so their
adjoint entries and determinants tend to be smaller integers. If one also cancels
common factors from the entries of M ′adj

m and det(M ′m), then one finds that the
exponents in (5) are at most 18 for all m ≤ 10, and in that range they are at most 8
except for m = 7. However, when m = 11, the left-hand side of the analogue of (5)
will be α2325

i , and the exponents on the right-hand side will be as large as 391.
Further, we should mention that although it appears that the matrix Mm is invert-
ible for all m, it also appears that M ′m fails to be invertible for precisely those m’s
satisfying 4|m and m ≥ 16.

This concludes our description of the “factorization-free” canonical height algo-
rithm. In the next section we will give pseudo-code implementing the algorithm.

Remark. Although it is not of immediate use in calculating the canonical height,
we should mention that the partial discriminant ∆′m will be a perfect mth power.
However, it need not be true that m

√
∆′m is squarefree.

Remark. There is one additional strategy which may be employed as one computes
the multiples of P . At each stage one can compute

gcd(∆m, B1, B2, . . . , Bm).

It is possible that at some point this number will become small enough to factor
completely, thereby yielding all of the remaining primes of bad reduction.

Remark. The matrices Mm and M ′m which appear above would seem to have some
relation to the Demjanenko matrices used by Folz and Zimmer [6] in studying tor-
sion points on elliptic curves and used by other authors ([7], [16], [17]) to investigate
the class number of (abelian) number fields.

2. Programming the algorithm

In this section we give pseudo-code to implement the algorithm described in
section 1. After giving the main algorithm, we briefly explain how to compute
some of the subsidiary quantities which it requires.

PROGRAM to Compute the Canonical Height of P ∈ E(Q)
DATA required by the algorithm

a1, a2, a3, a4, a6 ∈ Z, Weierstrass coefficients for E/Q
x1, y1 ∈ Q, coordinates for P = (x1, y1) ∈ E(Q)
p0 ≥ 4, a quantity for which one can easily find prime factors < p0

ALGORITHM
Compute the quantities c4, c6,∆ given in (4).
Factor completely gcd(c4, c6).
If necessary, replace the given equation with a Minimal Weierstrass Equation,

making the appropriate coordinate change to P = (x1, y1).

796 JOSEPH H. SILVERMAN

Compute the Archimedean Height λ̂∞(P) of P .
Set

H ← λ̂∞(P) +
1

2
log(denominator of x1).

Compute

A1 ← (numerator of 3x2
1 + 2a2x1 + a4 − a1y1),

B1 ← (numerator of 2y1 + a1x1 + a3),

∆1 ← gcd(∆, A∞1 , B
∞
1).

IF ∆1 = 1 THEN EXIT RETURNING H
Find the set P of all Small Primes p < p0 which divide ∆1 and all primes which

divide gcd(c4, c6,∆1). For each prime p ∈ P , compute the Non-archimedean

Local Height λ̂p(P). Set

H ← H +
∑
p∈P

λ̂p(P) and ∆1 ← ∆
∏
p∈P

p− ordp(∆1).

IF ∆1 = 1 THEN EXIT RETURNING H
DO m = 2 TO m = 4

Compute mP ≡ (xm, ym) (mod ∆m−1).
Set Bm ← 2ym + a1xm + a3.
Set ∆m ← gcd(∆m−1, B

∞
m) and ∆′m ← ∆m−1/∆m.

Set H ← H − m− 1

2m2
log ∆′m.

IF ∆m = 1 THEN EXIT RETURNING H
END DO m LOOP
DO m = 5 TO m = 10

Compute mP ≡ (xm, ym) (mod ∆m−1).
Set Bm ← 2ym + a1xm + a3.
Set ∆m ← gcd(∆m−1, B

∞
m) and ∆′m ← ∆m−1/∆m.

Form the matrix M whose dimensions are 1
2φ(m)-by- 1

2φ(m) and whose
entries are given by

Mij = {ij}m with 1 ≤ i, j < m/2 and gcd(i,m) = gcd(j,m) = 1.

Here {k}m is defined as follows. First write k = mq+ r with 0 ≤ r <
m. Then {k}m = min{r,m− r}.

Compute the adjoint matrix Madj. Let

µ1 ← content(Madj) = gcd of the entries of Madj,

µ2 ← gcd
(
µ1, det(M)

)
,

M ′ ← µ−1
2 Madj,

µ← µ−1
2 det(M).

DO i = 1 TO bm/2cWITH gcd(i,m) = 1
Set

αi ←
(∏

1≤k<m/2
gcd(k,m)=1

gcd(∆′m, Bk)M
′
ik

)1/µ

(Note: The αi’s will be integers.)

COMPUTING CANONICAL HEIGHTS 797

END DO i LOOP
Set

H ← H − 1

2

∑
1≤i<m/2

gcd(i,m)=1

i(m− i)
m2

log gcd(∆′m, α
∞
i).

IF ∆m = 1 THEN EXIT RETURNING H
END DO m LOOP
EXIT RETURNING MESSAGE “Numbers Too Large”
END OF PROGRAM

Remarks. (1) The program for computing ĥ(P) given above refers to a number
of subsidiary algorithms. We have listed these required subroutines below,
with appropriate references or pseudo-code.

(2) Depending on the particular implementation, it is permissible to have the
last m-loop go up to m = 15. However, this may require the computation of
numbers with a tremendous number of digits.

(3) The last m-loop will certainly fail for m = 16, because the associated ma-
trix M turns out to be non-invertible. The larger matrix(

{ij}
)
1≤i,j≤m/2

is invertible, at least for m ≤ 50, and it can be used in place of M . However,
the powers necessary for computing the αi’s will probably be too large to
make this a practical alternative.

(4) In the unlikely event that the algorithm fails with ∆10 > 1, it will be true
that every prime dividing ∆10 divides it to at least the 11th power. This may
be helpful in trying to factor ∆10. Of course, if one can effect a complete
factorization of ∆10, then the computation of the canonical height of P is
completed by computing

H ← H +
∑
p|∆10

λ̂p(P).

We now list the subroutines needed to implement the canonical height algorithm
as described above.

SUBROUTINE: Compute gcd(M,N∞) = supk≥1 gcd(M,Nk)
N2 ← gcd(M,N)
IF N2 = 1 THEN EXIT RETURNING 1
N1 ← 1
WHILE N1 6= N2

N1 ← N2

N2 ← gcd(M,N2
2)

END WHILE
EXIT RETURNING N1

SUBROUTINE: Minimal Model
INPUT: a1, a2, a3, a4, a6 ∈ Z, Weierstrass coefficients for E/Q
OUTPUT:

u, r, s, t ∈ Z so that a minimal Weierstrass equation is obtained by
the change of variables u2x′ = x+ r and u3y′ = y + sx+ t

798 JOSEPH H. SILVERMAN

ALGORITHM: There are a number of efficient algorithms in the litera-
ture for finding a minimal model, although they all require a complete
factorization of gcd(c4, c6). The quickest is due to Connell and Kraus,
see [4, Section 3.2] and [8]

SUBROUTINE: Archimedean local height λ̂∞(P)
INPUT:

a1, a2, a3, a4, a6 ∈ R, Weierstrass coefficients for E/R
x1, y1 ∈ R, coordinates for P = (x1, y1) ∈ E(R)

OUTPUT: The archimedean local height λ̂∞(P) of P (non-normalized)
ALGORITHM: There are two standard algorithms for computing ar-

chimedean local heights. The most efficient uses theta functions and
q-expansions. It is described in [3, Algorithm 7.5.7] and is especially
good when high precision output is desired and when computing the
heights of several points on a single elliptic curve. The second algo-
rithm, given by a series of Tate, is described in [20] and [4].

SUBROUTINE: Non-archimedean local height λ̂p(P)
INPUT:

a1, a2, a3, a4, a6 ∈ Z, Weierstrass coefficients for a minimal equa-
tion for E/Q

x1, y1 ∈ Q, coordinates for P = (x1, y1) ∈ E(Q)
a prime p

OUTPUT: The non-archimedean local height λ̂p(P) of P (non-
normalized)

ALGORITHM: There is a short efficient algorithm for computing λ̂p(P)
due to the author. See [3, Algorithm 7.5.6], [4], or [20].

SUBROUTINE: Find Small Prime Factors
INPUT: An integer N > 0 to factor and a bound p0

OUTPUT: A list of small prime factors of N , including all primes ≤ p0

ALGORITHM: There are many algorithms currently in use for finding
prime factors of a given number N , some of which are especially
efficient at finding small prime factors. We refer the reader to [3,
Chapters 8 and 10] and [15] and to the additional references cited in
those works.

SUBROUTINE: Compute mP Modulo D on E
INPUT:

a1, a2, a3, a4, a6 ∈ Z, Weierstrass coefficients for E/Q
x1, y1 ∈ Q, coordinates for P = (x1, y1) ∈ E(Q)
The multiple m and the modulus D > 0

OUTPUT: Integers 0 ≤ xm, ym < D so that mP1 ≡ (xm, ym) (mod D)
(or a non-trivial factorization of D)

ALGORITHM: Using the standard addition formulas on E, together
with any favorite tricks for speeding the computation of a multiple
of an element of an abelian group, one computes mP1 modulo D.
For small values of m, this will almost always be possible. In rare
instances, there may be a problem due to the necessity of inverting
a number d mod D with gcd(d,D) > 1. In this case, it will almost
always be true that gcd(d,D) < D, yielding a non-trivial factorization
of D. For further discussion, see [3, Section 10.3] or [10].

COMPUTING CANONICAL HEIGHTS 799

3. Numerical examples

The examples in this section are designed to illustrate the algorithm described
in this paper. In order to keep the numbers to a manageable size for exposition, we
give examples which can in principle be computed via a complete factorization of
the discriminant using existing factorization techniques. However, even when such
a factorization is possible, the time spent performing the factorization will generally
far exceed the time required for the remainder of the algorithm. Further, as the
search for curves of ever higher rank continues, it is quite likely that people will
want to compute canonical heights on curves for which a complete factorization of
the discriminant is beyond current methods. All computations in this section were
performed using PARI-GP [1].

Example 1. For our first example we will take the curve with Mordell-Weil rank
≥ 21 discovered by Nagao and Kouya [14],

E : y2 + xy + y = x3 + x2 − 215843772422443922015169952702159835x

− 19474361277787151947255961435459054151501792241320535.

We will compute the height of the first point in their list of 21 independent points,

P = (x1, y1) = (800843008889340065933/16,

22662214190910903990783584765347/64) ∈ E(Q).

We first compute

c4 = 10360501076277308256728157729703672081,

c6 = 16825848144008099204725392608156810861436365523723401479,

∆ = 47973775404376774653692377 . . .500948985175040000≈ 4.8× 10107.

Since gcd(c4, c6) = 1, we know that the given Weierstrass equation is minimal at
all primes. Further, 2 and 3 are the only possible primes of additive reduction, and
since gcd(c4, 6) = 1, even they are not primes of additive reduction.

We will accumulate the canonical height in the variable H, starting with the
contribution from the archimedean local height and the denominator of the coordi-
nates. (The latter can be thought of as the piece coming from primes for which P
lies in the formal group.)

H ← λ̂∞(P) +
1

2
log(denominator of x1) = 23.37537990122540238111.

This value was computed using 50 terms of the modified Tate series [20] with 28
digits of accuracy for all intermediate calculations.

The next step is to compute the quantities

A1 = (numerator of 3x2
1 + 2a2x1 + a4 − a1y1)

= 1923993318564405833210937014218571151612175,

B1 = (numerator of 2y1 + a1x1 + a3) = 22662214192512590008562264897245,

∆1 = gcd(∆, A∞1 , B
∞
1) = 2561980729714144375.

800 JOSEPH H. SILVERMAN

We are not done, since ∆1 6= 1, but at least we are able to discard the 108 digit
discriminant ∆ and work instead with the 19 digit partial discriminant ∆1.

As noted above, gcd(c4, c6) = 1, so at this stage we do a brief search for small
primes dividing ∆1. Even the briefest of searches leads to a complete factorization,

∆1 = 54 · 74 · 134 · 173 · 233.

It is now a simple matter to use the algorithm in [20] to compute the local heights

λ̂p(P) for each of the primes dividing ∆1. Thus setting

Np = ordp(∆1) and np = min{ordp(B1), Np/2},

we have the formula

λ̂p(P) = −np(Np − np)
2Np

log p.

Using the values

n5 = 1 n7 = 1 n13 = 2 n17 = 1 n23 = 1

N5 = 4 N7 = 4 N13 = 4 N17 = 3 N23 = 3

we compute

H ← H − 3

8
log 5− 3

8
log 7− 1

2
log 13− 1

3
log 17− 1

3
log 23

= 18.77008051277431529284.

This value is the canonical height, ĥ(P) = 18.77008051277431529284.

Example 2. For our second example we will use the following curve constructed
by Mark van Hoeij (private communication):

y2 = x3 − 4076083021652228852170062877062961491179952x

+ 4091000816808637826375202064853265315925248411524553675846823296.

He constructs 12 points on this curve and asks how many of them are independent.
Before listing the points, we observe that the given equation is not minimal, since
gcd(c4, c6) = 20736 = 28 · 34. Using the Connell-Kraus algorithm (or simply asking
PARI [1]), we find that the change of variables

x = 122X + 12 and y = 123Y + 6 · 122X

leads to the minimal equation

Y 2 +XY = X3 − 196570361769494061157892692759594979320X

+ 1370067896147011446252320531052222171886790973092889358400.

COMPUTING CANONICAL HEIGHTS 801

With these new coordinates, van Hoeij’s 12 points are

P1 = (−15382802087488234960,−27455949782890791352389030520),

P2 = (−16733492223754210,−37058834305478910033970898770),

P3 = (14181468265809374240,−37874845955500053287677993720),

P4 = (8829512271896634740, 17966601929235299971063379480),

P5 = (9754615013879173610,−19513478328652166909182739470),

P6 = (14239349028193298690, 38186266384267741536181276580),

P7 = (−774866341119340293535/256,

180285459483470635615744221233705/4096),

P8 = (12010508378700149540, 27234197525885990193801702980),

P9 = (333708543266811281840, 6090814453500307779108886841480),

P10 = (1846561087864399790, 31833710066236063558369500980),

P11 = (32244843999188965160,−168989993073827482030469137720),

P12 = (−14047442794238129440, 36869876653997578860733393160).

Happily, we now find that gcd(c4, c6) = 1 and gcd(c4, 6) = 1, so there are no
primes of additive reduction. Searching for small prime factors (< 104) of the
discriminant, we obtain

∆ = −213 · 310 · 57 · 292 · 592 ·∆′,

where ∆′ ≈ 3 · 1096 is not prime. However, it turns out that for all of the Pi’s, and
hence also for all of the Pi + Pj ’s, the quantity

BP = (numerator of 2YP +XP)

is relatively prime to ∆′, so the primes dividing ∆′ contribute nothing to the sum
of local heights. Hence for each of these points we have

ĥ(P) = λ̂∞(P) + λ̂2(P) + λ̂3(P) + λ̂5(P) + λ̂29(P) + λ̂59(P).

We have computed the archimedean heights using Tate’s series [20]. Setting Np =
ordp(∆), the non-archimedean heights are easily computed using the formulas

np(P) = min{ordp(BP), Np/2} and λ̂p(P) = −
np(P)

(
Np − np(P)

)
2Np

log p.

For example, for the point P1 we find

n2 = 6, n3 = 5, n5 = 3, n29 = 0, n59 = 1,

and so

ĥ(P1) = λ̂∞(P1)− 21

13
log 2− 5

4
log 3− 6

7
log 5− 0 · log 29− 1

4
log 59

= 17.43328753223294397933.

In a similar fashion we can compute the height pairings

〈Pi, Pj〉 = ĥ(Pi + Pj)− ĥ(Pi)− ĥ(Pj)

802 JOSEPH H. SILVERMAN

and find the (approximate) rank of the resulting height regulator matrix. Using
only the first nine points gives

det
(
〈Pi, Pj〉

)
1≤i,j≤9

≈ 515284729781.21216435,

so these nine points are independent. On the other hand, the 10 × 10 matrices
obtained using P1, . . . , P9 together with any one of P10, P11, or P12 all have deter-
minant < 10−14 (i.e., approximately 0). Hence the 12 points P1, . . . , P12 (probably)
generate a subgroup of rank 9 in E(Q). Indeed, using the LLL-lattice reduction
algorithm on the height regulator matrix, it is not hard to find the dependencies

P10 = P3 − P4 + P5, P11 = P8 + P9 − P10, P12 = −P3 + P4 + P9,

which proves that the Pi’s generate a group of exact rank 9.

Example 3. In this example we want to illustrate all of the facets of the height
algorithm, while at the same time using numbers of only moderate size. For this
reason we will make the (unrealistic) assumption that it is impractical to factor
a number if all of its prime divisors are greater than 1000. The reader desiring a
more realistic example is free to replace the 4 digit primes which we use by 100
digit primes of their choice.

We will consider the elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with Weierstrass coefficients

a1 = 1, a2 = 8072861327939044382, a3 = 0,

a4 = 102753168093635567954617665231,

a6 = 2561205010932280074798844773518884423268802356937732.

The associated c4, c6, and ∆ are

c4 = 1042737435389987948873285775671716614753,

c6 = −33673711670912972520736651177974292415915897253548519625009,

∆ = −86242445247101430848 . . .289502959078997005043≈ 10110.

We are going to compute the height of the point

P = (x1, y1) = (2006053, 50608349221568967126010205).

The first step is to compute

gcd(c4, c6) = 9 = 32.

This immediately implies that the given Weierstrass equation is minimal, since any
non-minimal prime p would satisfy p4|c4 and p6|c6.

We now begin the computation of ĥ(P), building up the value in the variable H.
The coordinates of P have no denominators, so we start with the archimedean local
height

H ← λ̂∞(P) = 20.41170720883318698063.

This value was computed using 100 terms of the modified Tate series [20] with 100
digits of accuracy for all intermediate calculations.

COMPUTING CANONICAL HEIGHTS 803

Next we compute the values

A1 = 3x2
1 + 2a2x1 + a4 − a1y1 = 102734948919785003267836859945,

B1 = 2y1 + a1x1 + a3 = 101216698443137934254026463,

∆1 = gcd(∆, A∞1 , B
∞
1)

= 14553325197808847254470055095771266571313

65014494918725071860737095822414≈ 1074.

Notice we have already saved ourselves the necessity of factoring the quantity

∆/∆1 = −592596152940264934942419702225524379.

This is a considerable savings, since although it turns out that

∆/∆1 = −33 · 2221 · 251056780425667 · 39361763713243511,

it took a Power Macintosh 7100/80 using Lenstra’s algorithm [2] more than 24 min-
utes to find the last two prime factors.

Since gcd(c4, c6,∆1) = 1 and ∆1 is not divisible by any primes less than 1000
(which is our assumed maximum factoring capability), we do not need to compute
any local heights for small primes or for additive reduction primes.

It’s time to take multiples of our point.

2P = (x2, y2) = (−8072861327942025248,−50600147194459775992214442),

B2 = 2y2 + a1x2 + a3 = −101200302461780879926454132,

∆2 = gcd(∆1, B
∞
2) = ∆1,

∆′2 = ∆1/∆2 = 1.

So 2P contributes nothing to the height. We move on to 3P . (Note that although in
principle we can compute the multiple mP modulo ∆m−1, these first few multiples
are computed exactly because their coordinates are smaller than ∆m−1.)

3P = (x3, y3) = (1414560438036121/9,−1366478631510734532555457702/27),

B3 = (numerator of 2y3 + a1x3 + a3) = −2732957263017225383796807041,

∆3 = gcd(∆2, B
∞
3)

= 37288283068467913271619929304342047747913129462215843,

∆′3 = ∆2/∆3 = 3902921776013756462819.

This gives a local contribution

H ← H − 1

9
log ∆′3 = 14.88770583118239162330.

(Remark. As predicted, ∆′3 = 157445393 is a perfect cube, but note that we
have computed the associated local contribution without using the factorization
15744539 = 3571 · 4409.)

In a similar fashion we compute 4P , 5P , and 6P , and we find that ∆3 = ∆4 =
∆5 = ∆6. (These computations may be performed modulo ∆3.) Finally, when we

804 JOSEPH H. SILVERMAN

compute 7P , we make some progress. Thus we find

7P ≡ (x7, y7) (mod ∆6) with

x7 = 33246232589947480078789732387854093328224250415808504,

y7 = 36461933382309843791454573060870589714095785205742589,

B7 ≡ 2y7 + a1x7 + a3 ≡ 31593533217631341118459019900911

177260589561902861996 (mod ∆6),

∆7 = gcd(∆6, B
∞
7) = 1,

∆′7 = ∆6/∆7 = ∆6.

Next we form the 3× 3 matrix M whose entries are {ij}7 and compute its adjoint,

M =

1 2 3
2 3 1
3 1 2

 , Madj =

 5 −1 −7
−1 −7 5
−7 5 −1

 .

The matrix M has determinant det(M) = −18, and its adjoint has content 1. We
also need the three quantities

gcd(∆′7, B1) = 6428686063347928717,

gcd(∆′7, B2) = 902252202074987,

gcd(∆′7, B3) = 198562664231.

From these we obtain three integers α1, α2, α3 using the formulas

α1 =
(
gcd(∆′7, B1)5 · gcd(∆′7, B2)−1 · gcd(∆′7, B3)−7

)−1/18
= 1,

α2 =
(
gcd(∆′7, B1)−1 · gcd(∆′7, B2)−7 · gcd(∆′7, B3)5

)−1/18
= 5279,

α3 =
(
gcd(∆′7, B1)−7 · gcd(∆′7, B2)5 · gcd(∆′7, B3)−1

)−1/18
= 6133.

It happens that 5279 and 6133 are primes, but we don’t need to know this, since
the αi’s alone are sufficient to compute the associated local heights,

H ← H − 1

2

3∑
i=1

i(7− i)
49

log gcd(∆′7, α
∞
i)

= H − 3

49
log gcd(∆′7, 1)− 5

49
log gcd(∆′7, 5279∞)− 6

49
log gcd(∆′7, 6133∞)

= 1.28969216577182254773.

Since ∆7 = 1, the algorithm terminates, returning the value

ĥ(P) = 1.28969216577182254773.

Acknowledgement

I would like to thank John Cremona for his helpful comments and Mark van
Hoeij for sending me the curve and points used in Example 2.

COMPUTING CANONICAL HEIGHTS 805

References

1. C. Batut, D. Bernardi, H. Cohen, M. Olivier, PARI-GP, Version 1.3.7.
2. D. Bernardi, Décomprime, Version 1.0, un program de décomposition des nombres en facteurs

premiers utilisant les courbes elliptiques.
3. H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math., vol.

138, Springer Verlag, Berlin, 1993. MR 94i:11105
4. J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge,

1992. MR 93m:11053
5. S. Fermiger, Un exemple de courbe elliptique definie sur Q de rang ≥ 19, C.R. Acad. Sci.

Paris 315 (1992), 719–722.
6. H.G. Folz and H.G. Zimmer, What is the rank of the Demjanenko matrix?, J. Symbolic

Computation 4 (1987), 53–67. MR 88k:11038
7. F. Hazama, Demjanenko matrix, class numbers, and Hodge group, J. Number Theory 34

(1990), 174–177. MR 90m:11090
8. A. Kraus, Quelques remarques a propos des invariants c4, c6, et ∆ d’une courbe elliptique,

Acta Arith. 54 (1989), 75–80. MR 90j:11045
9. M. Laska, An algorithm for finding a minimal Weierstrass equation for an elliptic curve,

Math. Comp. 38 (1982), 257–260. MR 84e:14033
10. H. Lenstra Jr., Factoring integers with elliptic curves, Annals of Math. 126 (1987), 649–673.

MR 89g:11125
11. J.-F. Mestre, Construction de courbes elliptique sur Q de rang ≥ 12, C.R. Acad. Sci. Paris

295 (1982), 643–644. MR 84b:14019
12. , Un exemple de courbes elliptique definie sur Q de rang ≥ 15, C.R. Acad. Sci. Paris

314 (1992), 453–455. MR 93b:11071
13. K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proc. Japan Acad. 69 (1993),

291–293. MR 95a:11052
14. K. Nagao and T. Kouya, An example of elliptic curve over Q with rank ≥ 21, Proc. Japan

Acad. 70 (1994), 104–105. MR 95e:11063
15. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston,

1985. MR 88k:11002
16. J. Sands and W. Schwarz, A Demjanenko matrix for abelian fields of prime power conductor,

J. Number Theory 52 (1995), 85–97. MR 96b:11141
17. W. Schwarz, Demjanenko matrix and 2-divisibility of class numbers, Arch. Math. 60 (1993),

154–156. MR 94g:11095
18. J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math., vol. 106, Sprin-

ger-Verlag, Berlin and New York, 1986. MR 87g:11070
19. , Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Math., vol.

151, Springer-Verlag, Berlin and New York, 1994. MR 96b:11074
20. , Computing heights on elliptic curves, Math. Comp. 51 (1988), 339–358. MR

89d:11049
21. H.M. Tschöpe and H.G. Zimmer, Computation of the Néron-Tate height on elliptic curves,

Math. Comp. 48 (1987), 351–370. MR 87m:14025
22. J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular

Functions of One Variable IV (B.J. Birch and W.Kuyk, eds.), (Antwerp, 1972, Lect. Notes in
Math. 272, Springer-Verlag, Berlin, 1975. MR 52:13850

23. H. Zimmer, A limit formula for the canonical height of an elliptic curve and its application
to height computations., Number Theory (R.A. Mollin, ed.), Walter de Gruyter, Berlin–New
York, 1990, pp. 641–659. MR 93d:11060

Mathematics Department, Box 1917, Brown University, Providence, Rhode Island

02912

E-mail address: jhs@gauss.math.brown.edu

