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We present division and square root algorithms for calculations with more bits than are handled
by the 
oating point hardware. These algorithms avoid the need to multiply two high precision
numbers, speeding up the last iteration by as much as a factor of ten. We also show how to produce
the 
oating point number closest to the exact result with relatively few additional operations.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: Computer Arithmetic; G.4
[Mathematical Software]: Algorithm Analysis
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1. INTRODUCTION

Floating point division and square root take considerably longer to compute than
addition and multiplication. The latter two are computed directly while the former
are usually computed with an iterative algorithm. The most common approach
is to use a division-free Newton-Raphson iteration to get an approximation to the
reciprocal of the denominator (division) or the reciprocal square root, and then
multiply by the numerator (division) or input argument (square root). Done care-
fully, this approach can return a 
oating point number within 1 or 2 ULPs (Units
in the Last Place) of the 
oating point number closest to the exact result. With
more work, sometimes a lot more, the error can be reduced to half an ULP or less.
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The usual approach works quite well when the results are computed to no more
precision than the hardware addition and multiplication. Typically, division and
square root take 10 to 20 machine cycles on a processor that does a multiplication
in the same precision in 2 or 3 cycles. The situation is not so good for higher
precision results because the cost of the �nal multiplication is much higher. The
key feature of our algorithm is that it avoids this expensive multiplication.
Section 2 discusses some methods used to do division and square root. Section 3

describes the 
oating point arithmetic and the assumptions we are making about
the 
oating point hardware. Section 4 describes our new algorithms. In Section 5
we present an analysis of the accuracy of the algorithm. Next, we show how to
get the correctly rounded results with relatively few additional operations, on av-
erage, in Section 6. The procedures we use for testing are described in Section 7.
Programs written in the programming language of the Unix desk top calculator
utility bc[Hewlett-Packard 1991] that implement these algorithms are included in
an appendix.

2. ALGORITHMIC CHOICES

There are a number of ways to perform division and square root. In this section
we will discuss these methods with emphasis on results that exceed the precision
of the 
oating point hardware.
One approach is to do school-boy long division, a scheme identical to successive

subtraction for base 2 arithmetic[Goldberg 1990]. The procedure is straightforward.
To compute B=A, we initialize a remainder to R = 0. Let S be a shift register
containing R concatenated with B. Then, for each bit we do the following steps:

(1) Shift S left one bit so that the high order bit of B becomes the low order bit
of R.

(2) Subtract A from from the R part of S.

(3) If the result is negative, set the low order bit of the B part of S to zero;
otherwise set it to 1.

(4) If the result of the subtraction is negative, add A to the R part of S.

At the end of N steps, the N-bit quotient is in B, and the remainder is in R.
A similar scheme can be used for square root[Monuschi and Mezzalama 1990].

We start with the input value A and a �rst guess Y = 0. For each bit we compute
the residual, R = A � Y 2. Inspection of R at the k'th step is used to select a
value for the k'th bit of Y . The selection rules give some 
exibility in tuning the
algorithm.
There are improvements to these approaches. For example, non-restoring division

avoids adding A to R. The SRT algorithm[Patterson and Hennessy 1990] is an opti-
mization based on a carry-sum intermediate representation. Higher radix methods
compute several bits per step. Unfortunately, these improvements can't overcome
the drawback that we only get a �xed number of bits per step, a particularly serious
shortcoming for high precision computations.
Polynomial approximations can also be used[Monuschi and Mezzalama 1990].

Chebyshev polynomials are most often used because they form an approximation
with a guaranteed bound on the maximum error. However, each term in the series
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adds about the same number of bits to the precision of the result, so this approach
is impractical for high precision results.
Another approach is one of the CORDIC methods which were originally derived

for trigonometric functions but can be applied to square root[Monuschi and Mez-
zalama 1990]. These methods treat the input as a vector in a particular coordinate
system. The result is then computed by adding and shifting some tabulated num-
bers. However, the tables would have to be inconveniently large for high precision
results.
There are two methods in common use that converge quadratically instead of

linearly as do these other methods, Goldschmidt's method and Newton iteration.
Quadratic convergence is particularly important for high precision calculations be-
cause the number of steps is proportional to the logarithm of the number of digits.
Goldschmidt's algorithm[Patterson and Hennessy 1990] is based on a dual iter-

ation. To compute B=A we �rst �nd an approximation to 1=A = A0. We then
initialize x = BA0 and y = AA0. Next, we iterate until convergence.

(1) r = 2� y.

(2) y = ry.

(3) x = rx.

If 0 � AA0 < 2, the iteration converges quadratically. A similar algorithm
can be derived for square root. Round-o� errors will not be damped out because
Goldschmidt's algorithm is not self-correcting. In order to get accurate results,
we will have to maintain throughout the calculation more digits than appear in
the �nal result. While carrying an extra word of precision is not a problem in a
multiprecision calculation, the extra digits required will slow down a calculation
that could have been done with quad precision hardware.
Newton's method for computing B=A is to approximate 1=A, apply several itera-

tions of the Newton-Raphson method, and multiply the result by B. The iteration
for the reciprocal of A is

xn+1 = xn + xn(1� Axn): (1)

Newton's method for computing
p
A is to approximate 1=

p
A, apply several

iterations of the Newton-Raphson method, and multiply the result by A. The
iteration for the reciprocal square root of A is

xn+1 = xn +
xn
2
(1� Ax2n): (2)

Newton's method is quadratically convergent and self-correcting. Thus, round-
o� errors made in early iterations damp out. In particular, if we know that the �rst
guess is accurate to N bits, the result of iteration k will be accurate to almost 2kN
bits.

3. FLOATING POINT ARITHMETIC

Our modi�cation to the standard Newton method for division and square root
makes some assumptions about the 
oating point arithmetic. In this section we
introduce some terminology, describe the hardware requirements to implement our
algorithm, and show how to use software to overcome any de�ciencies.
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We assume that we have a 
oating point arithmetic that allows us to write any
representable number

x = �e
NX

k=0

��kfk; (3)

where � is the number base, the integer e is the exponent, and the integers fk are
in the interval [0; �).
As will be seen in Section 4, we compute a 2N -bit approximation to our function

from an N -bit approximation. We will refer to these as full precision and half
precision numbers, respectively. In the special case where the operations on half
precision numbers are done in hardware, we will refer to 2N -bit numbers as quad
precision and N -bit numbers as hardware precision. The term high precision will
be used to denote both quad and multiprecision operations.
Note that N is not necessarily the number of mantissa bits in the memory or

register format. In IBM hexadecimal 
oating point and on the RS/6000, a quad
number is stored as two doubles. The former has 28 hexadecimal digits; the latter,
106 bits. In contrast, IEEE-type quad precision numbers might have 113 bits
of mantissa while a double precision number has 53 bits, and a double extended
number has 64 bits of precision.
We won't be precise in counting bits until we get to the proofs. For the remainder

of this section, we'll assume that N is at least half the number of bits required for
the result. Hence, for quad numbers represented in double-double format, N is the
number of mantissa bits in a double. For quad numbers in an IEEE-style 113-bit
format, we'll assume N � 57.
Our algorithm won't be particularly useful if it requires special properties of

the 
oating point arithmetic, especially if the required properties aren't widely
available. We'll now describe what our algorithm needs from the hardware and
how we can code around any de�ciencies.
There are several ways to implement 
oating point arithmetic. We can round the

result of every operation to the 
oating point number nearest the exact result. We
can truncate the result by throwing away any digits beyond the number of digits
in the input format. When we truncate, we can use a guard digit to improve the
average accuracy.
It is possible to do a multiply-add as a multiplication followed by an addition,

which has two roundings, or as a fused operation with only one rounding. The fused
multiply-add operation can be done with full precision or with only some of the
digits in the intermediate result. Our algorithms are insensitive to what choices are
made. Surprisingly enough, we are able to get accurate results even if we truncate
all intermediate operations. Further, we will show a rounding algorithm that is
most e�cient if the intermediate results are truncated.
Our algorithms are based on the premise that we can compute the full precision

product or sum of two half precision numbers, all 2N bits. Implementing these
sums and products is tedious but straightforward for multiprecision arithmetic. If
we want a quad precision result, we can exploit special hardware available on some
machines. Also, we avoid computing digits we don't need by using the high and
low order parts of full precision numbers. How we extract these pieces from a quad
precision number depends on hardware features of the machine.
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void prod(a,b,c) /* All digits of c = a*b */

double a, b, c[]

f
long double t;

t = (long double) a * (long double) b;

c[0] = t;

c[1] = t - c[0];

g

Fig. 1. One way to get the high and low parts of the product of two double precision numbers on
a machine that supports quad precision variables. The result is returned as two double precision
numbers.

void prod(a,b,c) /* All digits of c = a*b */

double a, b, c[]

f
c[0] = a*b;

c[1] = a*b - c[0];

g

Fig. 2. One way to get the high and low parts of the product of two double precision numbers
on a machine that does a fused multiply-add but does not support a quad datatype. The result
is returned as two double precision numbers.

Some machines, such as the IBM S/370, provide quad arithmetic. On these
machines, we get the bits we want by promoting the double precision inputs to
quad, doing the arithmetic operation, and selecting the bits we need. Note that we
don't use the fact that the inputs are double precision numbers. Promoting them
to quads sets the low order bits to zero, a fact the hardware ignores. Hence, this
approach is slow because multiplying quads takes four times as long as multiplying
doubles. In addition, we need extra arithmetic operations to select the bits we want
as shown in Figure 1.
Other machines have a fused multiply-add instruction[Olsson et al. 1990]. These

instructions compute the 2N bits of the product, add the addend, and round or
truncate the result. We get the high order part of a product from the normal
arithmetic operations; we get the low order part using the trick shown in Figure 2
which takes only twice as long as hardware precision multiplication. Note that if
the �rst product is rounded to produce c[0], the two elements of c may be of
di�erent sign.
At least one machine, the IBM S/370, has a special instruction that returns

all the bits in the product of two doubles. This operation is more e�cient than
promoting to quad since the hardware uses the fact that the inputs are doubles. We
can still compute the low order bits by doing a quad subtraction similar to what
we show in Figure 2.
On machines that don't support any of these operations, we can still simulate

the operations we need, but we must use a single-single representation as our hard-
ware format. In this representation, a double precision number is represented
as the sum of two singles. No bits are lost on machines that have an exponent
range independent of the numerical precision, such as the S/370. Unfortunately,
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void prod(a,b,c) /* All digits of c = a*b */

float a[], b[], c[]

f
double t, u, v, w, x, y;

u = (double) a[0]*(double) b[0];

v = (double) a[0]*(double) b[1];

w = (double) a[1]*(double) b[0];

x = (double) a[1]*(double) b[1];

y = v + w + (float) x;

t = u + y;

c[0] = t;

t -= c[0];

c[1] = t;

t = t - c[1] + x - (float) x;

c[2] = t;

c[3] = t - c[2];

g

Fig. 3. One way to get all the digits of the product of two double precision numbers stored in
single-single format. The result is returned as four single precision numbers.

in IEEE[American National Standards Institute, Inc. 1985] arithmetic two singles
hold fewer mantissa bits than a double, so we only get a 96-bit quad result.
Figure 3 shows one way to multiply two single-single precision numbers and

return both the high and low order parts of the product. We have assumed that
the hardware supports double precision arithmetic and that the double precision
format holds at least two digits more than in the product of two single precision
numbers, a condition met by IEEE 
oating point[American National Standards
Institute, Inc. 1985].
Addition is di�erent. The sum of two 
oating point numbers can have a very

large number of digits in the result if the exponents di�er by a lot. Figure 4 shows
one way to add two numbers in the single-single format and return the leading quad
precision part of the result in four single precision numbers. Each such addition
takes 12 
oating point operations.
There are signi�cant di�erences in the implementations of multiprecision and

quad precision addition and multiplication. Full precision multiplication takes up
to 4 times longer than half precision multiplication; quad precision multiplication
takes at least 4 times longer than hardware precision multiplication with hard-
ware support and as much as 100 times longer without. On the other hand, carry
propagation is much simpler in quad precision since we are dealing with only two
numbers.
Our algorithms use many of the combinations of precisions shown in Table 1. In

this table, the subscript indicates the number of digits in the result, d denoting
the hardware (double) precision. We can compute Vd in hardware. U2d is available
in hardware on some systems. If it is not, we will have to use software. The
cost estimates are for double precision operations that return quad results done in
hardware (Qh), these operations done in software (Qs), multiprecision numbers of
up to a few hundred digits (denoted C since we use the conventional approach),
and multiprecision numbers of more than a few hundred digits (denoted F since we
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void sum(a,b,c) /* Leading 2N digits of c = a+b */

float a[], b[], c[]

f
double cl, ch, max, min, t;

max = (fabs(a[0])>fabs(b[0])?a[0]:b[0]);

min = (fabs(a[0])<=fabs(b[0])?a[0]:b[0]);

ch = a[0] + b[0];

t = min - (ch - max);

cl = a[1] + b[1] + t;

t = ch + cl;

cl = cl - (t - ch);

c[0] = t;

c[1] = t - c[0];

c[2] = cl;

c[3] = cl - c[2];

g

Fig. 4. One way to get the leading 2N digits of the sum of two numbers stored in the single-single
format. We store the high and low order parts of the inputs in separate single precision words,
add the high and low order parts, and propagate any carries from the low order part to the high
order part of the result. The result is returned as 4 single precision numbers.

Table 1. Di�erent multiplications. Entries are listed in order of decreasing cost. A and B are
full precision numbers of 2N digits while a and b are half precision numbers of N digits. The
subscript kd denotes a number consisting of k half precision words.

Relative Cost
Input Input Output Operation Qh Qs C F

Full Full All bits P4d = A �B 11 132 8 4
Full Full Full R2d = A �B 8 84 4 4
Full Half All bits Q3d = A � b 7 96 3 2
Full Half Full S2d = A � b 4 48 2 2
Full Half Half Td = A � b 3 36 2 1
Half Half Full U2d = a � b 1 12 2 1
Half Half Half Vd = a � b 1 1 1 1

use an FFT method).
Henceforth we will assume that our hardware returns all the bits we need. If

it doesn't, we will have to implement functions such as the ones shown for all
unsupported operations.

3.1 Quad

Quad precision is the number format with approximately twice as many digits as
the largest format handled in hardware. Some systems have a true quad precision
data type; others use a double-double representation. Some do quad arithmetic in
hardware; others use software. In almost all cases, quad operations are built up
out of operations on hardware precision numbers stored in registers.
We will assume that our quad numbers are either in double-double format or in

an IEEE style with 113 mantissa bits. Our numbers will be written as A = Ah+�Al

where � is the precision of our half precision numbers, � = 2�53 for IEEE double
precision on most machines, but � = 2�64 for machines with a double-extended
format like the Intel x87. We assume the latter for IEEE-style quad inputs.
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In order to round our results correctly, we need two additional computations
not shown in Table 1. These operations, Wd = C � AB and X2d = C � AB,
are each a multiply-add of three, full precision numbers, where AB � C. The
approximation is such that Wd is less than 2 ULPs of Ch and X2d is less than 2
ULPs of C. We exploit the special structure of the result by proceeding from high
order terms to low order terms, something we can not do without these conditions.
Our implementation shown in Figure 12 makes use of the fact that there is a lot of
cancellation of terms. For example, g[8] can have at most two nonzero digits. In
addition, we don't always have to �nish the calculation, as we show in Section 6.

3.2 Multiprecision

Our discussion is based on the public domain package mpfun[Bailey 1992]. A mul-
tiprecision number is stored in a single precision 
oating point array. The �rst
word is an integer valued 
oating point number whose absolute value represents
the number of words in the mantissa; the sign of this word is the sign of the multi-
precision number. The next word contains an integer valued 
oating point number
representing the exponent of the number base, �. In contrast to the notation of
Equation 3, the decimal point follows the �rst mantissa word, not the �rst digit.
Multiplication is based on the fact that virtually every 
oating point system in

existence will return all the digits of the product of two single precision numbers.
Converting this double precision result into two single precision numbers gets us
ready for the next operation. A similar trick can be used for addition; all interme-
diate sums are computed in double precision and carries are propagated to single
precision numbers.
Since we are interested in the e�ciency of our algorithms, we must consider the

cost of the basic operations. Adding two 2N -bit numbers takes about two times as
long as adding two N -bit numbers. The procedure is straightforward. First, align
the numbers by scaling one of them until their exponents are the same. Next, add
corresponding elements. Finally, we propagate the carries. The value returned is
the leading 2N bits of the result.
Multiplication is more complicated. The time to compute the product of an N -

digit number and an M -digit number scales as NM if we use the direct method.
Methods based on fast Fourier transforms (FFT) for the product of two N -digit
numbers take a time proportional to N logN log logN [Bailey 1992]. Of course, the
coe�cient of these scalings are much larger for multiplication than for addition.
Hence, algorithms that avoid multiplying full precision numbers together will run
faster than those that need such products.

4. NEW ALGORITHMS

We have seen how complicated high precision arithmetic can be. It is clear that
our algorithm should avoid such operations whenever possible. The algorithms
presented in this Section perform high precision division and square root with no
full multiplications of the precision of the desired result.
First look at the standard Newton method for division and square root shown

in Equations 1 and 2. If we are doing a high precision calculation, we can imple-
ment these iterations without doing any operations on two numbers in the longest
precision. First of all, in the early iterations, when the approximation is less accu-
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rate than the base number format, we use hardware addition and multiplication.
At each iteration beyond this accuracy, we double the number of digits carried to
match the accuracy of the approximation.[Bailey 1992]
The last iteration needs some care to avoid multiplying two long precision num-

bers. Look at the square root. First we compute u = Axn as a full times a half
keeping a full precision result, then v = uxn the same way. Since xn is a very good
approximation to

p
A, 1� v will have at most 1 more bit than xn. Hence, we can

compute xn(1 � v) as a half times a half. We don't even need to compute more
than half the digits in the product since this quantity is a small correction to the
current estimate. Hence, both the last multiplication and the last addition can be
done in half precision.
The problem comes in computing the desired result from the last iteration. For

division, we must multiply the full xn+1 times the full B; for square root, we
multiply by the full A. These operations are expensive, anywhere from 2 to 100
times the time of half precision operations.
There is a simple way to avoid these long multiplications; do them before the

last iteration rather than after. Now the last iteration for square root becomes

yn+1 = yn +
xn
2
(A � y2n): (4)

with yn = Axn, while for division,

yn+1 = yn + xn(B � Ayn); (5)

where yn = Bxn.
The key to this approach is that, in both cases, these are the Newton iterations

for the �nal result, quotient and square root, respectively. Hence, yn+1 is the de-
sired approximate result accurate to nearly the number of digits in a full precision
number. Since the Newton iteration is self-correcting, we don't even need an ac-
curate value for yn. In our implementations we compute yn as the half precision
result of multiplying two half precision numbers.
There is a subtle point in the way the terms have been collected in the �nal

iterations. In both cases, we have brought the multiplicand inside the parentheses.
In this way, we compute the residual based on yn, the number we are correcting. If
we had made the other choice, we would be correcting yn with a residual computed
from xn. This choice would have forced us to compute yn as the product of a full
and a half precision number in order to get the right answer.
We can now see the savings. For square root, we compute y2n as the full precision

product of two half precision numbers. After subtracting the result from A, we are
left with at most one bit more than a half precision number so we can use a half
times half to half precision result when we multiply by xn. We do a little bit more
work for division. Here we must multiply the full precision number A times the
half yn, but the rest of the operations are the same as for square root.
The savings are summarized in Table 2, much of which was supplied by David

Bailey. We look at division and square root for three precisions { quad (Q), up to
a few hundred digits (C since we use the conventional multiplication algorithm),
and more than a few hundred digits (F since we use FFT-based multiplication).
Times if hardware returns the quad result of the product or sum of two doubles are
in the Qh column; times without hardware assist are in the Qs column. In each
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Table 2. Comparison of cost of new versus standard algorithms for three di�erent precisions.
Division B=A

Standard Approach New Approach
Xn+1 = xn + xn(1� Axn) yn = Bxn
B=A � BXn+1 Yn+1 = yn + xn(B � Ayn)

Operation Qh Qs C F Operation Qh Qs C F
T = Axn 4 48 2 2 yn = Bxn 1 1 1 1
t = 1� T 1 2 0 0 T = Ayn 4 48 2 2
t = xnt 1 1 1 1 t = B � T 1 2 0 0
Xn+1 = xn + t 1 3 0 0 t = xnt 1 1 1 1
T = BXn+1 8 96 4 2 Yn+1 = yn + t 1 3 0 0
Total 15 150 7 5 Total 8 55 4 4

Square root
p
A

Standard Approach New Approach
Xn+1 = xn +

xn

2
(1� Ax2n) yn = Axnp

A � AXn+1 Yn+1 = yn + xn

2
(A� y2

n
)

Operation Qh Qs C F Operation Qh Qs C F
T = x2n - 12 - 1 yn = Axn 1 1 1 1
T = AT - 96 - 2 T = y2

n
1 12 2 1

T = Axn 4 - 2 - t = A� T 1 2 0 0
T = Txn 4 - 2 - t = xnt=2 2 2 2 2
t = 1� T 1 2 0 0 Yn+1 = yn + t 1 3 0 0
t = xnt=2 2 2 2 2
Xn+1 = xn + t 1 3 0 0
T = AXn+1 8 96 4 2
Total 20 211 10 7 Total 6 20 5 4

column, the unit used is the time to compute the half precision product of two half
precision numbers. For quad precision, the unit is the hardware multiplication time.
Hardware precision addition is assumed to take as long as hardware multiplication,
and the time to do addition is ignored for multiple precision calculations. Upper
case letters denote full precision numbers; lower case, half precision numbers. If
assignment is made to a half precision number, we need calculate only the leading
digits of the result. We only count the operations in the last iteration because that
is the only place we modify the standard algorithm.

5. ANALYSIS

Several of our results depend on properties of quotients, square roots, and Newton
Raphson approximation methods. In this section we will sketch proofs of these
properties.

Theorem 1. In k-digit 
oating point arithmetic, using a prime radix, a quotient
cannot be exact in k + 1 digits in which the low order result digit is signi�cant.

Proof. Suppose that the quotient c = a=b is exactly c = pe
Pk

i=0 cip
�i. If

b = pf
Pk�1

i=0 bip
�i, it must be the case that

a = b� c

= pe+f
Pk

i=0 cip
�iPk�1

i=0 bip
�i

= pe+f (c0b0 + � � �+ ckbjp
�(k+j));
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where j is the lowest order non-zero digit in b. Since ck and bj are both non-zero,
ckbj is not divisible by the radix, so that this quantity requires at least k + j + 1
digits. But a was representable as a k-digit number.

The same line of reasoning shows that a square root cannot be representable as a
(k+1)-digit result. (Exercise for the reader: Why does this proof fail for non-prime
radices? It does not hold for hex 
oating point arithmetic, for example).

Theorem 2. To round a quotient correctly to k bits, the quotient must be com-
puted correctly to at least 2k + 1 bits.

Proof. A proof of this proposition has been published previously[Kahan 1987].
With certain precautions, 2k bits su�ce[Markstein 1990].

For binary radix, the following empirical evidence suggests this proposition. Con-
sider the quotient 1=(1� 2�k). The closest binary fraction to the result, up to 2k
bits, is 1+ 2�k (a k+ 1 bit number). To get the correctly rounded result (either 1,
or 1 + 2�k+1), we must know whether 1 + 2�k is an overestimate or an underesti-
mate, a task which takes almost as much computation as to establish the quotient
to 2k + 1 bits. Only when the quotient is computed to 2k + 1 bits (or more), is it
clear that the closest binary fraction to the quotient is 1 + 2�k + 2�2k (up to 3k
bits), which clearly should be rounded to 1 + 2�k+1.

Theorem 3. To round a square root correctly to k bits, the square root must be
computed correctly to at least 2k + 3 bits.

Proof. As before, with certain precautions, 2k bits su�ce[Markstein 1990].

Again, empirical evidence suggested this proposition. Consider the square root
of 1� 2�k. The closest binary fraction to the result, using k + 1 to 2k + 2 bits, is
1�2�k�1. Just as in the case of division, the decision whether to round up or down
depends on whether this approximation is an overestimate or an underestimate,
which requires almost as much computation as to establish the quotient to 2k + 3
bits. Computing further shows that the best approximation is 1� 2�k�1� 2�2k�3

(up to 3k + 4 bits), so that the best k-bit approximation is 1� 2�k.
Theorems 2 and 3 imply that the trick of looking at a few extra bits in the result

to decide on the rounding direction[Patterson and Hennessy 1990] will only work
most of the time, not all of the time as we would like.
In Section 3 we claim that using truncating arithmetic also will produce accept-

able results. For square root, if the reciprocal square root is known to n bits using
n-bit arithmetic, how much error can be introduced in the application of Equation 4
if truncated arithmetic is used? Our next result addresses that question directly.

Theorem 4. If xn approximates 1=
p
A with relative error �, yn = Axn is com-

puted with relative error � (due to rounding or truncation), the residual r = A� y2n
is computed with relative error �21, and xn times the residual r is computed with
error �2, an application of Equation 4 computes an approximation to

p
A with a

relative error of approximately

�(3�2 + 4�� + �2 + 2��2 + 2�2�)=2;

where �, �, �1, and �2 are all of the order of the half precision truncation error �.



12 � Alan H. Karp and Peter Markstein

Proof. Note that we compute y2n as the full precision result of the product of
two half precision numbers, so there is no error in this computation. Also, yn is a
very good approximation to the square root so the error in the residual is of order
�2.
We can write xn = (1 + �)=

p
A, yn = Axn(1 + �), r = (A � y2n)(1 + �21), and

z = xnr(1 + �2) as a means of expressing the relative errors given in the statement
of the theorem. We now have

yn+1 = yn +
xn
2
(A � y2n)(1 + �21)(1 + �2)

= Axn(1 + �) + xn
2 fA� [Axn(1 + �)]2g(1 + �21)(1 + �2)

= Ap
A
(1 + �)(1 + �) + 1+�

2
p
A
[A�A(1 + �)2(1 + �)2](1 + �21)(1 + �2)

=
p
A(1 + �)

�
1 + � + 1

2 [1� (1 + �)2(1 + �)2](1 + �21)(1 + �2)
	

=
p
A
�
1� 1

2 [3�
2 + 4�� + �2 + 2��2 + 2�2� + O(�3)]	

If we set � = �2 = 0 in Theorem 4, we see that yn+1 would approach
p
A

from below, and the coe�cient of the leading error term, �3�2=2, is the standard
error term for the reciprocal square root[Hildebrand 1965]. If all operations used
truncating arithmetic, making �, and �2 nonpositive, all the terms of O(�2) would
be nonpositive if xn underestimates 1=

p
A, and Equation 4 would still approach

p
A

from below. When round-to-nearest is used, some of the terms could be negative,
and could cause Equation 4 to overestimate the square root.
Unless we're careful in the handling of the early iterations, xn can be an overes-

timate. We can guarantee that � � 0 by using the full precision A in the iterations
through n, but this approach is computationally expensive. Another approach is to
round A to half precision away from zero. We are now evaluating Equation 2 with
a value for A that is slightly too large. Backward error analysis guarantees that xn
has the same accuracy as if we truncated A; the error we make is less than a half
precision ULP in both cases.
Interestingly, we are guaranteed to have an underestimate no matter what sign we

have for the initial guess or how accurate that guess is. The convexity and curvature
of the square root function guarantee that in exact arithmetic an application of
Equation 2 underestimates the true result. Using truncating arithmetic guarantees
that using �nite precision can never make the result larger. Hence, we know that
xn in Equation 4 is always an underestimate.
If both xn and yn are known to n bits of precision, that is to say, j�j < 2�n and

j�j < 2�n, and the truncation error is such that j�2j < 2�n, our proof of Theorems 4
shows that the relative error due to Equation 4 may be as large as

�6 � 2�2n + O �2�3n� : (6)

Using Equation 4 will leave a result with an error less than 6 units in the 2n'th bit.
In other words, Equation 4 is expected to yield an approximation good to at least
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2n� 3 bits.
We can improve this result by computing xn times the residual as the full precision

result of the product of two half precision numbers, which makes the error �2 =
O(�2). This change makes the error

�4 � 2�2n + O(2�3n);

giving us an underestimate with at most 2 bits in error. In Section 6 we describe
a method for rounding this result that, on average, is almost as e�cient when the
error is 3 bits as when it is 2 bits. Hence, we will assume we use the algorithm that
leaves us with the slightly higher residual of Equation 6.

If we had used round-to-nearest arithmetic, then j�j < 2�n�1 and j�j < 2�n�1.
The error in using Equation 5 would then be bounded by 2�2n + O(2�3n), giving
almost 2n good bits, but we are no longer guaranteed convergence from below. We'll
see in Section 6 that we can make use of the fact that the result is an underestimate.

When we are computing results in round-to-nearest mode, we can save some
computation by allowing xn to be an overestimate of 1=

p
A by as much as a half

precision ULP. The procedure shown in Appendix B does this by using the truncated
value of A in the early iterations. In this case, yn+1 may overestimate the square
root by as much as 1/6 of a full precision ULP as shown in Appendix C.

We now know that yn+1 is either an underestimate or the correctly rounded
result. We save computation when the result is an overestimate, because the �rst
stage of the Tuckerman test tells us we are done. If yn+1 is guaranteed to be
an underestimate, we get the correctly rounded result only for exact quotients.
Unfortunately, we can't use this approach for other roundings because we can end
up with a double rounding.

Theorem 5. If xn approximates 1=A with relative error �, and yn = Bxn is
computed with relative error � (due to rounding or truncation), the product Ayn
is computed with relative error �23, the residual r = B � Ayn is computed with
relative error �21, and the product xnr is computed with relative error �2, an appli-
cation of Equation 5 computes an approximation to B=A with a relative error of
approximately

��2 � �� � ��2 � �2�;

where �, �, �k; k = 1; 2; 3 are all of the order of the half precision truncation error
�.

Proof. We compute Ayn as the full precision result of the product of a full
precision and a half precision number making the error O(�2). Also, yn is a very
good approximation to the ratio so the error in the residual is of order �2.

We can write xn = (1 + �)=A, yn = Bxn(1 + �), w = Ayn(1 + �23), r = (B �
Ayn)(1+�21), and z = xnr(1+�2) as a means of expressing the relative errors given
in the statement of the theorem. We now have
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yn+1 = yn + xn(B �Ayn(1 + �23))(1 + �21)(1 + �2)

= Bxn(1 + �) + xnfB � [ABxn(1 + �)(1 + �23)]g(1 + �21)(1 + �2)

= B
A
(1 + �)(1 + �) + 1+�

A
[B � B(1 + �)(1 + �23)(1 + �)](1 + �21)(1 + �2)

= B
A
(1 + �)f1 + � + [1� (1 + �)(1 + �23)(1 + �)](1 + �21)(1 + �2)g

= B
A
[1� �2 � �� � ��2 � ��2 + O(�3)]

Theorem 5 shows that for division Equation 5 always approaches the result from
below when results are truncated as long as xn underestimates 1=A. (As with
square root, we guarantee an underestimate by computing xn with a value of A
rounded to a half precision ULP away from zero.) If the arithmetic operations
round, the solution may be approached from above. As is the case for square
root, an application of the Newton-Raphson iteration in Equation 1 guarantees an
underestimate in exact arithmetic, and using truncating arithmetic preserves this
property.
If both xn and yn are known to n bits of precision, that is to say, j�j < 2�n and

j�j < 2�n, our proof of Theorem 5 shows that the relative error due to Equation 5
may be as large as �4 � 2�2n + O(�3). So, using Equation 5 will leave a result with
an error less than 4 units in the 2n'th bit. In other words, Equations 5 is expected
to yield an approximation good to at least 2n� 2 bits.
As with square root, we can improve this result by computing xn times the

residual as the full precision result of the product of two half precision numbers,
which makes the error �2 � 2�2n + O(2�3n), leaving only 1 bit in error. As with
square root, we will be more computationally e�cient with the larger error when we
want correctly rounded results. However, if a 1 ULP error su�ces, our algorithm
requires no additional steps if we use the higher precision product.
If we had used round-to-nearest arithmetic, then j�j < 2�n�1 and j�j < 2�n�1.

The error in using Equation 5 would then be bounded by 2�2n + O(2�3n), giving
almost 2n good bits, but we are no longer guaranteed convergence from below.
Under special circumstances, the results fromEquations 4 and 5 will then produce

correctly round-to-nearest 2n-bit results[Markstein 1990] even though Theorems 2
and 3 require more precision than these equations normally deliver.
When we are computing results in round-to-nearest mode, we will obtain correctly

rounded results more often by allowing xn to be an overestimate of 1=A by as much
as a half precision ULP. The procedure shown in Appendix B does this by using the
truncated value of A in the early iterations. In this case, yn+1 may overestimate
the quotient by as much as 1/4 of a full precision ULP as shown in Appendix C.
Unfortunately, we can't use this approach for other roundings because we can end
up with a double rounding.
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6. ROUNDING

We have shown how to get the quotient and square root accurate to a few Units
in the Last Place (ULPs). This accuracy usually su�ces for isolated evaluations,
but there are times when more accuracy is needed. For example, if the result is not
correct to half an ULP or less, the computed value for the function may not satisfy
such algebraic properties as monotonicity. In addition, if the result returned is not
the 
oating point number closest to the exact result, future implementations may
not return the same value causing confusion among users.
The need to maintain monotonicity and the identical results for di�erent imple-

mentations is important for both quad and high precision arithmetic. In the latter
case, simply asking the user to use one more word precision than the application
needs is not a major inconvenience. However, if the user takes all the words in the
multiprecision result and doesn't round to the needed number of bits, the desired
arithmetic properties may be lost. In addition, in the worst case, the rounding
can't be done correctly unless twice as many bits as needed are known. In the case
of quad precision we have no choice; we can't return more digits than the user asks
for so we must do the rounding ourselves.
Quad precision rounding depends on how numbers are stored in registers. Most

machines have registers with the same number of digits as the storage format of the
numbers; others, such as the Intel x87 
oating point co-processors, implement the
IEEE standard[American National Standards Institute, Inc. 1985] recommended
extended format which keeps extra bits for numbers in the registers. We will con-
sider both these implementations. First, we look at getting the correct value on a
machine that keeps more digits in the registers than in the memory format. We
will also show how to get the correct result on a machine that keeps no additional
digits in the register.
For concreteness, we will look at the problem of computing the quad precision

quotient and square root. For simplicity, we ignore error conditions and operations
on the characteristics of the 
oating point numbers since these are the same for
both the usual algorithm and ours. We will also assume that the machine has an
instruction that returns the quad precision result of arithmetic operations on two
double precision numbers. If we do not have this capability, we will have to build
up the algorithm using the double precision product of two single precision numbers
as shown in Figures 3 and 4.
As shown in Section 5, our algorithm produces a 2N -bit mantissa with all but the

last few bits correct. We also showed that there are some numbers we can't round
correctly without computing at least 4N+3 bits of the result. The implementations
are di�erent if our registers are wider than our words in memory or not so we
describe them separately.

6.1 Long Registers

Here we will show how to compute the 
oating point number closest to the exact
square root or quotient when the output from our �nal iteration has more bits than
we need return to the user. In a multiprecision calculation we can always carry an
additional word of precision but return a result with the same number of digits as
the input parameters. For quad results we assume we are running on a machine
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that does base 2 arithmetic and keeps more bits in the registers than in memory.
More speci�cally, we assume that a double precision number has 53 mantissa bits
in memory and 64 in the registers. Our input is assumed to have 113 mantissa bits.
Our goal is to return the correctly rounded 113-bit result.
As shown in Section 5 our algorithm produces a mantissa with at least 125 correct

bits. We also showed that there are square roots that we can't round correctly unless
we know the result to at least 229 bits. Rather than do an additional, expensive
iteration, we use the fact that we have underestimated the correct result. Hence,
we know the correctly rounded value is the 128-bit number we have computed
truncated to 113 bits or that 113-bit number plus one ULP.
One way to �nd out which is correct is to compute the residual with the computed

value yn+1 and with yn+1 + �113, where �113 is one ULP of a 113-bit number.
The smaller residual belongs to the correct result. This approach is expensive,
both because we must compute two residuals and because each residual needs the
product of two quad precision numbers.
Tuckerman rounding[Agarwal et al. 1986; Markstein 1990] avoids this problem.

We need only compute the residual for yn+1 + �113=2. If the sign is positive, the
larger number is the desired result; if negative, we want the smaller. As shown in
Section 5 the value can not be exactly zero for a machine with a prime number base
so we don't have to worry about breaking ties.
The full Tuckerman test for precisions with more digits than the hardware can

handle is expensive. For example, for square root, even if we make the simpli�cation
that

(yn+1 + �113=2)
2 � yn+1(yn+1 + �113); (7)

we must compute a lot of terms. These operations are almost exactly what we must
do �rst to do another iteration, but we need only look at the sign of the result.
Finishing the iteration would require only a half precision multiplication and an
addition.
Computing the residual is expensive, but if we have extra bits in the registers,

we can avoid doing the test most of the time. We know that the �rst 125 bits of
our result are correct and that we have underestimated the correct answer. Hence,
if bit 114, the rounding bit, is a 1, we know we must round up. If the rounding bit
is a 0 and any of the bits 115 through 125 is a zero, we know that we should return
the smaller value. Only if bit 114 is a 0 and bits 115 through 125 are all ones do
we need further computation. In other words, there is exactly one pattern of 12
bits that we can't round properly. If the trailing bits are random, we need do extra
work for only 1 in 2,048 numbers.
Even in the rare cases where we can't decide which way to round from the 128-bit

result, we can often avoid doing the full Tuckerman test. Any time the intermediate
result becomes negative or zero we can stop because we know we should return the
smaller value, a case which occurs half the time for random bit patterns. We can
also stop if the intermediate result is positive and larger in magnitude than a bound
on the magnitude of the remaining terms which are all negative.
There are two convenient places to check { after accumulating all terms larger

than �2, and again after computing all terms larger than �3. If we are using
normalized, IEEE 
oating point, double precision numbers which have an implicit
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leading 1, mantissas lie in the interval [1; 2). This means that the coe�cient of �2

and �3 are less than 10. (See Figure 12.) Therefore, we can stop after computing
the �rst set of terms unless the residual is positive and less than 10� or after the
second set unless the residual is positive and less than 10�2.
For randomly distributed residuals we need the test only one time out of 2,048

inputs. We can stop after 9 operations, 3 of them multiplications, all but once
in 16,384 times. The next test will determine the rounding in all but one case in
264 trials. Hence, the average performance for correctly rounded results is almost
exactly the same as that for results accurate to one ULP, although in the worst
case we must do a large number of additional operations.
The situation is even better for multiprecision calculations. First of all, there are

only 4 half precision multiplications in the test; all the rest of the operations are
additions. Secondly, it is a simple matter to do all the intermediate calculations
with a single extra word. In this case, the only bad situation is when the lowest
order word of the result, when normalized to be an extension of the next higher
order word, has a leading zero followed by all ones. Since this situation arises
only once in 264 evaluations for random trailing bits, we almost never need the
Tuckerman test. When we do need the test, the early tests catch an even larger
percentage of the cases than for quad precision. However, there is no escaping the
fact that there are some input values that require us to compute the full Tuckerman
test to decide which way to round.
As originally formulated, Tuckerman rounding can be used only for square root,

not division. That formulation uses the approximation in Equation 7. We have
no such identity for division, but we do have extra bits in our registers so our test
is to check the sign of (B � Ayn+1) + A�113=2. This version is what appears in
Appendix B.

6.2 Short Registers

We can also compute the 
oating point number closest to the exact result on a
machine that does not keep extra bits in the registers. In this case we will assume
that our quad precision numbers are stored as two double precision numbers each
having 53 mantissa bits in both memory and the registers. Our input is 106 bits
long, and we wish to compute the correctly rounded 106-bit result.
We know from Section 5 that the algorithm described in Section 4 has produced

a result with at least 103 correct bits. We would have to do two more iterations to
get the correct result, a very expensive proposition, but we can't apply standard
Tuckerman rounding since there may be bits in error. Fortunately, we can apply
Tuckerman rounding six times at di�erent bit positions at a modest average number
of operations.
The procedure is simple. We take the output of the Newton iteration and set

the low order 3 bits to zero. Since we have an underestimate of the correct result,
we know that the correctly rounded 103-bit result is either the number we have or
that number plus �103, the ULP of a 103-bit number. If the Tuckerman test tells
us to use the larger number, we know that bit 103 must be a one so we add �103
to set this bit. We now have an underestimate of the correct result but with 104
correct bits. Now we repeat at the 104'th and 105'th bits. One more application of
the test at the 106'th bit does the trick, but now we add �106 if the test indicates
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that our result is too small.
We need to be careful at the start. Say that the correctly rounded result ends in

the hexadecimal string 8000001. If we make a 2 ULP underestimate, our working
value would be 7FFFFFF. If we use the procedure just described, we would return
8000000. Although we have made only a 2 ULP error, the last correct bit is 28
positions from the end. We account for this situation by testing our initial estimate,
7FFFFF0 in our example, plus one in the position of the lowest order correct bit,
hexadecimal 10 in the example. If the Tuckerman test indicates that we have an
underestimate, we continue with the larger value, e.g., 8000000. Otherwise, we
continue with the smaller, e.g., 7FFFFF0.
Notice that we are repeating a lot of the calculations in the subsequent Tuckerman

tests. The formulation of the test in Figure 12 was chosen to minimize the number
of operations that must be repeated between applications. Only terms that depend
on �k, the point at which the test is being applied, must be recomputed. Hence, in
the best case where the �rst test succeeds, the �rst application takes 9 operations,
and each additional takes 1 more for a total of 14 operations. In the worst case,
we need 36 operations for the �rst test and 8 for each remaining test, a total of 76
operations. In the most common case, the second test is de�nitive so we need 18
operations for the �rst application and 5 for each additional one for a total of 43.
Fortunately, none of the repeated operations is a multiplication.
The alternative to get the error down to a half ULP or less is to do 2 more

Newton iterations since we need compute 215 bits to get a 106 bit result. Since we
only have 102 bits correct, the �rst extra iteration only gives us 204-bit accuracy.
Repeated application of the Tuckerman test is clearly faster.
Division is a bit trickier. If we had extra bits in the register, we could form

yn+1+�106=2. We don't, so we compute the residual from (B�Ayn+1)�A�106=2.
Since yn+1 is a very good approximation to B=A, the �rst two terms will nearly
cancel leaving a positive value since we have underestimated the exact quotient.
We have no problem computing A�106=2, barring under
ow, since the result is just
a rescaling of A.

6.3 Other Roundings

All the discussion has assumed we want to return the 
oating point result closest
to the exact answer, round-to-nearest. The IEEE 
oating point standard[American
National Standards Institute, Inc. 1985] includes three other rounding modes. We
can also return the result in any of these modes as well.
If we have extra bits in the registers, we handle the di�erent roundings in the

following way.

|Round to zero: Return the output from the Newton iteration.

|Round to positive in�nity: If the result is positive, add one ULP to the output
from the Newton iteration. If the result is negative, return the output of the
Newton iteration.

|Round to negative in�nity: If the result is negative, subtract one ULP from the
output of the Newton iteration. If the result is positive, return the output of the
Newton iteration.

If we don't have extra bits in the registers, the following method returns values
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with these other roundings. Our computed result is the value obtained after the
�rst 5 Tuckerman roundings.

|Round to zero: Return the computed value.

|Round to negative in�nity: If the result is positive, add one ULP to the computed
result. If the result is negative, return the computed value.

|Round to positive in�nity: If the result is negative, subtract one ULP from the
computed result. If the result is positive, return the computed value.

These procedures don't handle exact results correctly, e.g. 6.0/3.0. The result of
our Newton iteration is guaranteed to be an underestimate, so we know the correct
bits beyond our desired precision are all ones when the result is exact.
Our procedure is similar to that for round-to-nearest mode. Whenever the trail-

ing bits in a long register are all 1, we add one ULP and apply the Tuckerman test,
a result of zero indicating an exact result. As before, we can stop when the current
value and the bound on the remaining terms guarantees that the result can not be
zero. When we have short registers, we need to apply the test every time the last
bit is a 1. The upshot is that those quotients or square roots that are easiest to
compute by hand take the most time in any rounding other than round to nearest.

7. TEST PROCEDURES

To test our algorithms, we generated division and square root problems which pre-
sented di�cult rounding problems. For division an algorithm is known for generat-
ing divisors and dividends so that the correct quotient is almost exactly 1/2 ULP
more than a representable 
oating point number[Kahan 1987]. This is accomplished
by solving the diophantine equation

2k�jA = BQ + r mod 2k (8)

for a given odd divisor B, where r is chosen to be an integer near B=2, and where
k is the precision of the 
oating point arithmetic. B is chosen to satisfy

2k�1 � B < 2k;

and solutions of Equation 8 are sought for A and Q satisfying the same inequality
(with j = 0 or 1).
Some di�cult square root problems are given by numbers of the form

1 + 2�k+1(2j + 1) and 1� 2�k(2j + 1)

whose square roots are slightly less than

1 + 2�k+1(j + 1=2) and 1� 2�k(j + 1=2);

respectively. These almost-exact square roots require k+1 bits, making the round-
ing decision di�cult (in all cases the result must be rounded downward). To gen-
erate cases requiring close rounding decisions, we attempt to �nd an integer x
satisfying

2k�1 � x < 2k
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for which (x+1=2)2 is close to a multiple of 2k. We seek solutions of the diophantine
equation

(x+ 1=2)2 = 2k+jy + � mod 2k

or, multiplying by 4 to remove fractions,

(2x+ 1)2 = 2k+j+2y + 1 + 8m mod 2k

for various small integer values of m, in which j can be 0 or 1. (4� must be one
more than a multiple of eight, since all odd squares are congruent to 1 mod 8). We
require y to satisfy the same inequality as x. For any y which satis�es the above
diophantine equation,

p
2k+jy = x+ 1=2 + o(�m=x);

so that the correctly rounded result is x+ 1 when m < 0, and x when m � 0.
Using these techniques, a large number of test cases were generated both for

division and square root, and our implementations of the algorithms presented in
this paper successfully rounded each example correctly.

8. CONCLUSIONS

Division and square root account for a small percentage of all 
oating point op-
erations, but the time it takes to execute them dominates some calculations. The
extra time is even more noticeable for quad and multiple precision arithmetic. In
this paper we have shown how to speed up these calculations by an appreciable
amount.
The primary improvementmade to the standard Newton algorithm is to multiply

by the appropriate factor, the numerator for division and the input argument for
square root, before the last iteration instead of after. This trick works because the
modi�ed equation is almost exactly the Newton iteration for the desired function
instead of a reciprocal approximation. The key observation is that the reciprocal
approximation from the penultimate iteration is su�ciently accurate to be used in
the last iteration.
The performance improvement comes from avoiding any multiplications of full

precision numbers. An interesting result is that it becomes practical to do quad
division and square root in hardware because we can use the existing 
oating point
hardware. Implementing hardware to multiply two full precision numbers is im-
practical.
We have also shown how to compute the correctly rounded result with a minimum

of additional arithmetic. The method presented is a modi�cation of the Tuckerman
test which works for both division and square root. We showed how to extend
Tuckerman rounding to the case where the registers do not hold any extra bits.
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void prod(a,b,c)

double a[], b, c

f
long double t;

t = a[0]*b + a[1]*b;

c = (double t);

g

Fig. 5. Full times half to half.

void prod(a,b,c)

double a[], b, c[]

f
long double d, t;

d = a[0]*b;

t = d + a[1]*b;

c[0] = (double t);

c[1] = t - c[0];

g

Fig. 6. Full times half to full.

APPENDIX

A. BASIC OPERATIONS

The �gures in this section contain the code used for the operation counts of the
various multiplications in Table 1. These �gures assume that the hardware will
provide all the bits of the product and the leading quad precision part of the sum
of two double precision numbers. If the hardware does not have this capability,
the multiplication and addition operations must be replaced with functions such as
those shown in Figures 3 and 4, respectively. In this case, each addition counts as
4 operations and each multiplication as 12.

B. A BC IMPLEMENTATION

These algorithms have been tested using the Unix desk top calculator bc with
programs written in its C-like language. This utility does integer operations with
an arbitrary number of digits and 
oating point to any desired accuracy. We chose

void prod(a,b,c)

double a[], b, c[]

f
long double s, t, u;

s = a[0]*b;

t = a[1]*b;

u = s + t;

c[0] = (double u);

c[1] = u - c[0];

c[2] = t + ((u-s)-(double t));

g

Fig. 7. All bits of full times half.
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void prod(a,b,c)

double a[], b[], c[]

f
long double t, u;

t = a[0]*b[0]+a[0]*b[1]+a[1]*b[0]+a[1]*b[1];

c[0] = (double t);

c[1] = t - c[0];

g

Fig. 8. Full times full to full.

void prod(a,b,c)

double a[], b[], c[]

f
long double s, t, u, v, w;

s = a[0]*b[0];

t = a[0]*b[1]+a[1]*b[0];

u = a[1]*b[1];

v = t + s;

w = t - (v-s) + (u - (double u));

c[0] = (double t);

c[1] = t - c[0];

c[2] = (double w);

c[3] = w - c[2];

g

Fig. 9. All bits of full times full.

to implement the algorithms with integers because it a�orded complete control over
the bits included in the operations.
The programs that follow use a few utility routines. The routine h(a,n) returns

the �rst n base obase digits in a, where obase is the number base used for output;
l(a,n), the second n base obase digits of a. The function table look up is a place
holder for the usual procedure for getting the �rst guess.

C. BOUND ON OVERESTIMATES

The handling of the iterations done in half precision determines whether or not
the �nal result can overestimate the true value even if all intermediate values are
truncated. In this Section we'll prove that this overestimate is bounded by 1/4 of
a full precision ULP for division and by 1/6 of a full precision ULP for square root.
The basic cause of the overestimate is the decision to use a truncated value of

A in the early iterations. Since this value underestimates A, the value for xn can
overestimate 1=A or 1=

p
A by as much as a half precision ULP, denoted �. The

following theorems quantify the e�ect on the computed result.

Theorem 6. If we compute xn in Equation 1 using the value of A truncated to
half precision, the error in yn+1 is

��2 < yn+1 < �2=4:

Proof. The extreme values of the error are the maximum and minimum of the
error term given in Theorem 5 in the cube bounded by the limits on the three
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Fig. 10. Program in bc to compute the square root of the full precision number A to nearly 2n

bits.

define s(A,n)f
auto b,c,d,E,x,y,z

b = h(A,n)

x = table look up(b) /* (n/4)-bits */

y = h(x*x,n)/n^2

z = (n^6-h(b*y,n)/2)/n^4

x = (x*n^2+h(x*z,n))/n^2 /* (n/2)-bits */

y = h(x*x,n)/n^2

z = ((n^6-h(b*y,n))/2)/n^4

x = h(x*n^2+h(x*z,n),n)/n^2 /* n-bits */

/* Last iteration */

y = h(b*x,n)/n^4 /* sqrt(h(A)) */

c = x/2 /* 1/(2y) */

d = h(A-y*y,n) /* A - y^2 */

E = (y*n^4+h(c*d,n))/n^4 /* Almost 2n bits */

return ( E )

g

Fig. 11. Program in bc to compute the quotient of two full precision numbers, B/A, to nearly 2n

bits.

define d(B,A,n)f
auto c,d,e,F,x,y,z

c = h(B,n)

d = h(A,n)

x = table look up(d) /* (n/4)-bits */

z = (n^4-h(d*x,n))/n^2

x = (x*n^2+h(x*z,n))/n^2 /* (n/2)-bits */

z = (n^4-h(d*x,n))/n^2

x = x*n^2+h(x*z,n) /* n-bits */

/* Last iteration */

y = h(c*x,n)/n^4 /* h(B)/h(A) */

e = h(B*n^2-A*y,n)/n^2 /* B - A*h(y) */

F = (y*n^4+h(e*x,n))/n^4 /* Almost 2n bits */

return ( F )

g
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Fig. 12. Tuckerman test. The value of u determines the bit position for the test, �k .

define t(b,a,y,u)f
g[1] = h(a,n)*h(y,n); g[2] = h(a,n)*l(y,n)

g[3] = l(a,n)*h(y,n); g[4] = h(b,n)-h(g[1],n)

g[5] = h(g[4],n)-l(g[1],n); g[6] = h(g[5],n)-h(g[2],n)

g[7] = h(g[6],n)-h(g[3],n); g[8] = h(g[7],n)+l(b,n)

g[9] = h(g[8],n)-h(a,n)*u

if ( g[9] <= 0 ) return ( 0 )

if ( g[9] > 8*n^2 ) return ( 1 )

g[10] = l(a,n)*l(y,n); g[11] = l(g[2],n)+l(g[3],n)

g[12] = h(g[10],n)+h(g[11],n); g[13] = l(g[5],n)-h(g[12],n)

g[14] = l(g[6],n)+l(g[7],n); g[15] = h(g[13],n)+h(g[14],n)

g[16] = l(g[9],n)+h(g[15],n); g[17] = h(g[9],n)+h(g[16],n)

g[18] = h(g[17],n)-l(a,n)*u

if ( g[18] <= 0 ) return ( 0 )

if ( g[18] > 10*n ) return ( 1 )

g[19] = l(g[13],n)+l(g[14],n); g[20] = l(g[10],n)+l(g[11],n)

g[21] = h(g[20],n)+l(g[12],n); g[22] = h(g[19],n)-h(g[21],n)

g[23] = l(g[15],n)+h(g[22],n); g[24] = l(g[18],n)+h(g[23],n)

g[25] = l(g[17],n)+h(g[24],n); g[26] = l(g[16],n)+h(g[25],n)

g[27] = h(g[18],n)+h(g[26],n)

if ( g[27] <= 0 ) return ( 0 )

if ( g[27] > C ) return ( 1 )

g[28] = l(g[20],n)+l(g[21],n); g[29] = l(g[19],n)-h(g[28],n)

g[30] = l(g[22],n)+l(g[23],n); g[31] = h(g[29],n)+h(g[30],n)

g[32] = l(g[24],n)+l(g[25],n); g[33] = l(g[26],n)+h(g[31],n)

g[34] = h(g[32],n)+h(g[33],n); g[35] = l(g[27],n)+h(g[34],n)

g[36] = h(g[27],n)+h(g[35],n)

if ( g[36] <= 0 ) return ( 0 )

return ( 1 )
g

Fig. 13. Getting the error to half an ULP or less on a machine with extra bits in the registers.
The functions u(A) and d(B,A) return the square root and quotient, respectively, with at most
three bits in error. Routine t performs the Tuckerman test at a bit position given by the last
argument, 1 in these cases. F and G are the square root and quotient with an error no larger than
1/2 ULP.

R = u(A) /* 1 ULP square root */

F = R + t(A,R,R,u) /* 1/2 ULP square root */

S = d(B,A) /* 1 ULP quotient */

G = S + t(B*nV^2,A,S,u) /* 1/2 ULP quotient */
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Fig. 14. Getting the error to half an ULP or less on a machine without extra bits in the registers.
We assume an error as large as 15 ULPs.

R = u(A) /* Square root */

u = 10

V = u*(R/u) /* Set trailing bits to 0 */

if ( t(A,R,R,2*u) > 0 ) v = v + u /* Borrow? */

while ( u > 1 ) f
V = V + (u/2)*t(A,V,V,u)

u = u/2

g
F = V + t(A,V,V,1) /* Final rounding */

components of the error. More precisely,

F (�; �; �2) = ��2 � ��2 � ��2;

where �� < �; �2 � 0 and 0 � � < �. (If � < 0, we are guaranteed to have
underestimated the exact result.)
First we show that the extremal values lie on the boundaries of the cube. The

partial derivatives

@F

@�
= �2� � � � �2;

@F

@�
= �� � �2;

@F

@�2
= �� � �;

and the second derivatives

@2F

@�2
= �2; @2F

@�22
=

@2F

@�2
= 0;

@2F

@�@�
=

@2F

@�@�2
=

@2F

@�@�2
= �1

show that the �rst derivatives are zero only at saddle points in the interior of the
cube and on it faces. Hence, the extreme values must lie on the edges. We will now
�nd the extreme values along each of the 12 edges.
Edges 1-4 correspond to � = 0 so that F (0; �; �2) = ��2. Since this function is

linear in each term, the extreme values are determined by the end points so that
��2 < F (0; �; �2) < 0.
Edge 5 corresponds to � = � and � = 0, so that F (�; 0; �2) = ��2 � ��2. This

function is linear in �2 so that ��2 < F (�; 0; �2) < 0. By symmetry we get the same
result for edge 6 where � = � and �2 = 0.
Edges 7 and 8 correspond to � = �; � = ��, or �2 = �� where F = 0. On edge

9, � = �2 = 0 so that F (�; 0; 0) = ��2 and ��2 < F < 0. On edge 10 � = �2 = ��
giving F (�;��;��) = �(� � �)2 and ��2 < F < 0.
Finally, we come to the interesting cases of edges 11 and 12 where one of � and

�2 is zero and the other equals ��. Here we have F (�; 0;��) = ��2 + ��. The
maximum occurs when � = �=2 making 0 < F (�; 0;��) < �2=4.

We get a similar result for square root.
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Theorem 7. If we compute xn in Equation 2 using the value of A truncated to
half precision, the error in yn+1 is

��2 < yn+1 < �2=6:

Proof. The proof follows that for division.
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