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University of Washington
Abstract
Caches and Algorithms

by Anthony G. LaMarca

Chairperson of Supervisory Committee: Professor Richard E. Ladner
Department of Computer Science

and Engineering

This thesis investigates the design and analysis of algorithms in the presence of caching.
Since the introduction of caches, miss penalties have been steadily increasing relative to cycle
times and have grown to the point where good performance cannot be achieved without good
cache performance. Unfortunately, many fundamental algorithms were developed without
considering caching. Worse still, most new algorithms being written do not take cache
performance into account. Despite the complexity that caching adds to the programming
and performance models, cache miss penalties have grown to the point that algorithm
designers can no longer ignore the interaction between caches and algorithms.

To show the importance of this paradigm shift, this thesis focuses on demonstrating
the potential performance gains of cache-conscious design. Efficient implementations of
classic searching and sorting algorithms are examined for inefficiencies in their memory
behavior, and simple memory optimizations are applied to them. The performance results
demonstrate that these memory optimizations significantly reduce cache misses and improve
overall performance. Reductions in cache misses range from 40% to 90%, and although these
reductions come with an increase in instruction count, they translate into execution time
speedups of up to a factor of two.

Since cache-conscious algorithm design is uncommon, it is not surprising that there is
a lack of analytical tools to help algorithm designers understand the memory behavior of
algorithms. This thesis also investigates techniques for analyzing the cache performance of
algorithms. To explore the feasibility of a purely analytical technique, this thesis introduces
collective analysis, a framework within which cache performance can be predicted as a

function of both cache and algorithm configuration.
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Chapter 1

Introduction

Since the introduction of caches, main memory has continued to grow slower rel-
ative to processor cycle times. The time to service a cache miss to memory has
grown from 6 cycles for the Vax 11/780 to 120 for the AlphaServer 8400 [Clark 83,
Fenwick et al. 95]. Cache miss penalties have grown to the point where good overall
performance cannot be achieved without good cache performance. Unfortunately,
many fundamental algorithms were developed without considering caching. The re-

sult is that “optimal” algorithms often perform poorly due to cache behavior.

Even today, most new algorithms being written do not take cache performance into
account. Caches were originally introduced as a way to speed up memory accesses and
these caches were transparent to the programmer. As a result, very few programmers
had knowledge of the caching mechanism and the effects their programming decisions
had on cache performance. Even though cache performance is now a major factor
in overall performance, programmers still have little understanding of how caching
works. Bad cache performance is often attributed to “cache effects” and is dismissed
as randomness in the execution rather than a factor that can be understood and

controlled.

In this thesis, I investigate how caches affect the performance of algorithms. I
design and optimize algorithms for good cache behavior as well as analyze algorithm

performance in models that take caching into account.



1.1 Caches

In order to speed up memory accesses, small high speed memories called caches are
placed between the processor and the main memory. Accessing the cache is typically
much faster than accessing main memory. Unfortunately, since caches are smaller
than main memory they can hold only a subset of its contents. Memory accesses first
consult the cache to see if it contains the desired data. If the data is found in the
cache, the main memory need not be consulted and the access is considered to be a
cache hit. If the data is not in the cache it is considered a miss, and the data must
be loaded from main memory. On a miss, the block containing the accessed data is
loaded into the cache in the hope that it will be used again in the future. The hit
ratio is a measure of cache performance and is the total number of hits divided by
the total number of accesses.

The major design parameters of caches are:

e Clapacity which is the total number of bytes that the cache can hold.

e Block size which is the number of bytes that are loaded from and written to

memory at a time.

o Associativity which indicates the number of different locations in the cache
where a particular block can be loaded. In an N-way set-associative cache, a
particular block can be loaded in N different cache locations. Direct-mapped
caches have an associativity of one, and can load a particular block only in a
single location. Fully associative caches are at the other extreme and can load

blocks anywhere in the cache.

In most modern machines, more than one cache is placed between the processor
and main memory. These hierarchies of caches are configured with the smallest,
fastest cache next to the processor and the largest, slowest cache next to main memory.
The smallest cache is typically on the same chip as the processor and accessing its
data takes one or two cycles. These first level caches may be direct-mapped or set
associative. The remaining caches are usually off chip and are slower to access than
the level one cache but still much faster than main memory. These lower level caches

are typically direct-mapped.



High cache hit ratios depend on a program’s stream of memory references exhibit-
ing locality. A program exhibits temporal locality if there is a good chance that an
accessed data item will be accessed again in the near future. A program exhibits spa-
tial locality if there is good chance that subsequently accessed data items are located
closely together in memory. Most programs tend to exhibit both kinds of locality and
typical hit ratios are greater than 90% [Lebeck & Wood 94].

1.2 Methodology

In this section I present the methodology I use in the design and analysis of algorithms

and contrast it with approaches that have been used in the past.

1.2.1 Designing for Performance

Even when an algorithm is designed with performance in mind, its memory behavior
is seldom considered. Typical design and optimization techniques only attempt to
reduce the number of instructions that are executed. In this thesis, I investigate the
benefits of designs which optimize cache performance as well as instruction count. The
cache performance optimizations presented in this thesis focus exclusively on eliminat-
ing misses in the data reference stream and do not attempt to eliminate misses in the
instruction stream. I do not attempt to reduce instruction cache misses as instruction
cache behavior is usually quite good and there are effective compiler optimizations
for improving instruction cache performance when it is not good [Hwu & Chang 89].

Cache locality is a good thing. When spatial and temporal locality can be im-
proved at no cost it should always be done. In this thesis, however, I consider im-
proving locality even when it results in an increase in the total number of executed
instructions. This represents a significant departure from traditional design and op-
timization methodology. I take this approach in order to show how large an impact
cache performance can have on overall performance. In Chapter 6 for instance, |
show how restructuring iterative mergesort can increase the number of instructions
executed by 70%, yet still produce an algorithm that sorts up to 75% faster due to a
reduction in cache misses.

A drawback of designing algorithms for cache performance is that often none of

the cache parameters are available to the programmer. This raises a dilemma. A



programmer might know that it would be more efficient to process the data in cache
size blocks but cannot do so if the capacity of the cache is unknown. One approach
used by some is to make a conservative assumption and rely on the cache to be
some minimum size. | take a different approach, and assume that the exact cache
parameters are exported to the programmer by the system. That is, | assume that
the capacity, block size, associativity and miss penalty of the caches are known by
the programmer.

This change clearly increases the complexity of the programmer’s environment.
Caches, which have traditionally been transparent to the programmer, are now ex-
posed. This change also raises portability issues. While correctness is still preserved,
codes compiled for one memory system may perform poorly if executed on a machine
with a different memory system.

Despite these drawbacks, exporting cache parameters has the potential to greatly
aid efficient algorithm design. In this thesis, I show how algorithms that are already
efficient can be made to perform even better if specific architectural characteristics are
known. I show how efficiency can be improved by making decisions at both compile
time and at run time.

Programmers do not always need to think about cache behavior when writing
code. Performance is a low priority for most code that is written. There are, however,
bodies of code for which performance is an important factor and exporting the cache

parameters offers a significant advantage in the development of efficient algorithms.

1.2.2  Analyzing Performance

The true test of performance is execution time, and numerous researchers investigate
algorithm performance by comparing execution times. Unfortunately, execution times
offer very little insight into the reasons for performance gains or losses. In Chapter 6,
I propose a change to quicksort which increases instruction counts and reduces cache
misses. While the resulting algorithm has very similar execution times to the standard
quicksort, its performance tradeoffs are very different. While execution time is indeed
the final measure of performance, as a metric it is too coarse-grained to use in the
intermediate stages of analysis and optimization of algorithms.

The majority of researchers in the algorithm community compare algorithm per-

formance using analyses in a unit-cost model. The RAM model [Aho & Ullman 83] is



used most commonly, and in this abstract architecture all basic operations, including
reads and writes to memory, have unit cost. Unit-cost models have the advantage
that they are simple to understand, easy to use and produce results that are easily
compared. A serious drawback is that unit-cost models do not adequately represent
the cost of memory hierarchies present in modern computers. In the past, they may

have been fair indicators of performance, but that is no longer true.

It is also common for the analyses of algorithms in a specific area to only count par-
ticular expensive operations. Analyses of searching algorithms, for example, typically
count only the number of comparisons performed. The motivation behind counting
only expensive operations is a sound one. It allows the analyses to be simplified yet
retain accuracy since the bulk of the costs are captured. The problem with this ap-
proach is that shifts in technology can render the expensive operations inexpensive
and vice versa. Such is the case with the compare instructions performed in searching
algorithms. On modern machines comparing two values is no more expensive than
copying or adding them. In Chapter 3, I show how this type of analysis can lead to

incorrect conclusions regarding performance.

In this thesis, I employ an incremental approach to evaluating algorithm per-
formance. Rather than discard existing analyses and perform them again in a new
comprehensive model, I leverage as much as possible off of existing analyses and aug-
ment them where they are weak. An incremental approach involves less work than
a complete re-evaluation and offers an easy transition for those interested in a more

accurate analysis.

A major weakness of unit-cost analysis is that it fails to measure the cost of
cache misses that algorithms incur. For this reason, I divide total execution time
into two parts. The first part is the time the algorithm would spend executing in
a system where cache misses do not occur. I refer to this as the instruction cost of
the algorithm. The second part is the time spent servicing the cache misses that do

occur, and I call this the memory overhead.

[ measure instruction cost in two ways: with analyses in a unit-cost model and with
dynamic instruction counts from actual implementations. Neither unit-cost analyses
or dynamic instruction counts will measure instruction cost perfectly. Execution
delays such as branch delay stalls and TLB misses are not measured with either of

these methods, nor do they capture variance in the cycle times of different types



of instructions. Despite these shortcomings they both provide a good indication of
relative execution time ignoring cache misses.

[ measure memory overhead using trace-driven cache simulation. Cache simula-
tions have the benefit that they are easy to run and that the results are accurate. In
Chapters 4 and 7, I also explore ways in which the memory overhead of an algorithm
might be predicted without address traces or implementations. When both analyti-
cal predictions and simulation results are available, I compare them to validate the
accuracy of the predictions.

All of the dynamic instruction counts and cache simulation results in this thesis
were measured using Atom [Srivastava & Eustace 94]. Atom is a toolkit developed
by DEC for instrumenting program executables on Alpha workstations. Dynamic
instruction counts were obtained by inserting an increment to an instruction counter
after each instruction executed by the algorithm. Cache performance was determined
by inserting calls after every load and store to maintain the state of a simulated
cache and to keep track of hit and miss statistics. In all cases, I configured the
simulated cache’s block size and capacity to be the same as the second level cache of
the architecture used to measure execution time. The majority of the experiments in
this dissertation were run on a DEC Alphastation 250. In Chapter 3 a number of other

architectures are used to demonstrate the general applicability of my optimizations.

1.3 Thesis Contributions

This dissertation makes the following contributions:

o An illustration of how architectural trends have affected the relative performance

of algorithms

I revisit Jones’s performance study of priority queues [Jones 86] and reproduce
a subset of his experiments. The relative performance result I obtain on today’s
machine differ greatly from the machines of only ten years ago. In the original
study, heaps performed only marginally and pointer-based self-balancing struc-
tures such as splay trees performed best overall. Due to high cache miss rates,
however, the pointer based structures performed poorly in my experiments. The

compact structure and memory-efficient behavior of implicit heaps gives them



a significant advantage and they outperformed all other priority queues in my

evaluation.

A demonstration of the potential performance gains of cache-conscious algo-

rithm design

I begin with efficient implementations of classic searching and sorting algo-
rithms. I then show how applying simple memory optimizations can greatly
reduce cache misses and improve overall performance. My simple techniques
reduce cache misses by as much as 90% and speedup execution time by as much
a factor of two. The majority of my studies are performed in a uniprocessor
environment. In Chapter 7, I examine the impact that cache-conscious design

has on lock-free synchronization in a shared-memory multiprocessor.

A set of optimizations that can be used to improve the cache performance of

algorithms

These represent a set of optimizations that are both easy to apply and have
a significant impact on performance. None of these optimizations is new. My
contribution is a demonstration of how these techniques can be applied to real

algorithms and evidence of the performance benefits they provide.

Algorithms and data structures with excellent performance

A byproduct of my study of cache-conscious design is a number of algorithms
with excellent performance. Chapter 3 presents an implicit heap that performs
add and remove operations up to twice as fast as traditional implicit heaps.
Chapter 6 presents an improved mergesort which sorts up to 75% faster than a

traditionally optimized iterative mergesort.

An analytical tool that can be used to predict the cache performance of algorithms

I develop collective analysis, a framework that allows cache performance to be
analyzed as a function of both cache and algorithm configuration. Collective
analysis is performed directly on the algorithm without implementations and

address traces and predicts cache hit ratios for direct-mapped caches.



1.4 Overview

Chapter 2 surveys existing research that considers the effects that caches have on
algorithm performance. The survey includes studies of particular algorithms as well
as tools that enable cache-conscious design in general. It also identifies areas in which
the effects of caching have not been sufficiently considered.

Chapter 3 presents an optimization of the memory system performance of heaps.
I test the performance of both traditional heaps and memory optimized heaps using
heapsort and by using them as a simulation event queue. In order to demonstrate the
robustness of the optimizations, I measure the speedups the improved heaps provide
for five different architectures with varying memory systems.

Chapter 4 introduces collective analysis, a framework that can be used to predict
an algorithm’s cache performance. I perform collective analysis on the heaps devel-
oped in Chapter 3, and its predictions are compared with the results of a trace-driven
cache simulation.

Chapter 5 reproduces a subset of Jones’s performance study of priority queues
[Jones 86]. I compare the performance of implicit heaps, skew heaps and both top-
down and bottom-up splay trees in the hold model. My work illustrates how shifts
in technology can change the relative performance of algorithms. I point out the
differences between my results and Jones’s and explain why they occur.

Chapter 6 studies the cache performance of the heapsort, mergesort and quicksort
algorithms. For each algorithm, I begin with implementations that have been heavily
optimized using traditional techniques. I then show how the performance of all three
algorithms can be improved by optimizing their cache behavior.

Chapter 7 examines the impact that caching has on the performance of lock-
free synchronization in shared-memory multiprocessors. It presents a simple model
of performance based only on the number of memory operations performed. It then
shows that this simple model is a fair indicator of the relative performance of lock-free
synchronization algorithms.

Finally, Chapter 8 offers concluding remarks.



Chapter 2

Caches and Algorithms

In this chapter, I examine previous work that considers the effects caches have on
the performance of sequential algorithms. This work includes both studies of partic-
ular algorithms as well as tools and models that help facilitate cache-conscious design
in general. Having reviewed previous work on this topic, I then identify important

areas in which the effects of caching have not been considered sufficiently.

2.1 Swuccesses

This section contains what I consider to be the successes in the area of cache-conscious
algorithm design and analysis. I have divided the work into six rough categories: case
studies of the cache performance of existing applications, compiler optimizations for
improving locality, system support for improving cache performance, architectural
models that account for caches, and external algorithms which can be converted to

cache-efficient algorithms.

2.1.1 Case Studies

There are a number of case studies of the cache performance of specific applications.
In most cases, the memory system behavior of the piece of code is investigated using
profiling tools. Typically, this investigation leads to optimizations that speed up
the application by a factor of two or more. Agarwal et al. optimized a library of
linear algebra routines by tuning its memory behavior to the Power2 architecture
[Agarwal et al. 94]. Martonosi et al. reorder data in order to optimize part of a

sparse matrix equation solver [Martonosi et al. 95].
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The vast majority of these studies focuses on codes with execution times that are
dominated by loops over arrays. There are very few studies of the cache performance
of applications that predominantly use pointer-based structures or that access arrays
in irregular ways. One exception was a study by Koopman et al., in which trace
driven simulation was used to study the impact that different cache parameters have

on the performance of combinator graph reduction [Koopman et al. 92].

2.1.2  Optimizing Compilers

There are a number of compiler optimizations for improving the cache locality of code.
The framework for these optimizations was originally developed for parallelizing code,
but it became clear that the same techniques could be used to improve the cache lo-
cality of code on a sequential machine. Changing the data layout of an array can
greatly increase spatial locality [Cierniak & Li 95], interchanging loops has the poten-
tial to increase both spatial and temporal locality [Carr et al. 94], and loop tiling can
increase temporal locality by deepening a loop nest and reducing the number of cache
misses between data reuses [Wolfe 89]. Models have been developed that predict the
locality of a set of loops and these models are used to guide the loop restructuring
process [Kennedy & McKinley 92, Carr et al. 94, Gannon et al. 88]. These locality
improving optimizations have been implemented in research systems including Stan-
ford’s SUIF compiler [Wolf & Lam 91] and the Memoria source-to-source translator

[Carr et al. 94].

Using compiler optimizations to improve cache performance is clearly a worthwhile
goal. If the difficult task of analyzing and improving cache performance can be
hidden in the compiler, programmers are free to express programs in a natural way
and not concern themselves with the associativity and block sizes of their caches.
Unfortunately, existing compiler optimizations have very limited scope. With few
exceptions these optimizations are restricted to loops over arrays, and most restrict
the indices used to access the array. The result is that these optimizing compilers
are targeted for scientific applications that tend to loop over arrays in very regular
ways. Due to the difficultly of program analysis, however, these compilers offer little
benefit to the myriad applications that use pointer-based structures and access arrays

in irregular ways.
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2.1.3  System Support

Most machines have physically indexed caches and support paged virtual memory.
Many operating systems implement virtual to physical page mapping policies that
attempt to minimize cache misses [Taylor et al. 90]. Careful page mapping policies
have been shown to reduce cache misses by as much as 20% over random mappings
[Kessler & Hill 92]. In the event that a bad mapping decision is made, Bershad et al.
have developed techniques for detecting when heavily accessed pages conflict in the
cache and for dynamically remapping them [Bershad et al. 94b].

Careful consideration has also been given to the effect that the runtime system
has on cache performance. Grunwald et al. investigate the impact that memory
allocation algorithms have on cache performance [Grunwald et al. 93]. They show
that allocation algorithms that coalesce free blocks result in better locality that the
traditional sequential first-fit algorithm. Similarly, there have been a number of
studies investigating the impact that garbage collection algorithms have on cache

performance [Diwan et al. 94].

2.1.4 Cache Performance Tools

There are a number of tools that can be used to investigate the cache performance
of algorithms. These tools fall into different categories based on their strengths and
weaknesses. In this section these categories are discussed and are evaluated based on

the following criteria:

o Usability indicating how easy it is to apply the tool to algorithms to obtain

performance predictions.
e Accuracy indicating how accurate the performance predictions of the tool are.

e [ntuition indicating how much insight the tools provide as to why the algorithm

performs the way it does.

o Restrictions identifying any limitations on the class of algorithms that the tool

can be applied to.

A summary of the evaluation of the categories of tools according to these criteria is
shown in Table 2.1.
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Table 2.1: A comparison of cache-performance tools.

Techniques Usability |  Accuracy Intuition | Restrictions
Hardware monitoring and easy high low -
trace-driven simulation

Enhanced trace-driven easy high medium -
Hybrid easy low-medium | low-medium -

Pure analytical hard med-high high oblivious

Hardware monitoring of a machine is a fast and accurate way to determine cache
performance. Some architectures provide support for this in the form of counters that
record the number of accesses, the number of cache misses and other performance
metrics [Welbon et al. 94, Dig 92]. To allow more detailed monitoring, Horowitz et al.
propose changes to the architecture that allow programs to execute special case code
when cache misses occur [Horowitz et al. 96]. In the absence of such architectural
support, expensive hardware can be used to monitor the cache behavior of a machine
[Uhlig et al. 94]. The disadvantage of hardware monitoring, aside from potential cost,

is that it usually can provide results only for an existing hardware configuration.

Most analysis of cache performance is currently done with trace-driven simulation
[Mattson et al. 70, Smith 85]. Since the cache is simulated, this technique offers the
flexibility to investigate arbitrary cache configurations, and data structures have been
developed to allow a number of cache configurations to be simulated simultaneously
[Hill & Smith 89]. The only real drawback of trace-driven simulation is that running

the simulations can be time consuming.

Martonosi et al. augment trace-driven cache simulation by categorizing the cache
misses by the type of miss and by the name of the data structure incurring the miss
[Martonosi et al. 95]. The Memspy system they developed allows the programmer
to see a breakdown of cache misses for each data structure. Tools like this are ideal
for a programmer interested in optimizing an application’s memory performance. In

Table 2.1, I label these the enhanced trace-driven techniques. Systems with similar

features include include Cprof [Lebeck & Wood 94] and SHMAP [Dongarra et al. 90].
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Neither hardware monitoring nor trace-driven simulation offer the benefits of an
analytical cache model, namely the ability to quickly obtain estimates of cache per-
formance for varying configurations. An analytical cache model also has the inherent
advantage that it helps a designer understand the algorithm and helps point out
possible optimizations. A number of researchers have tried, with varying degrees
of success, to combine trace-driven cache simulation with an analytical performance
model. These techniques process an address trace and reduce it to a few key param-
eters describing an application’s behavior. These parameters are then used as input
to an analytical cache model from which predictions are made. In Table 2.1, T label
these as hybrid techniques. Singh et al. compress an address trace into four quantities
representing the working set size, the spatial locality, the temporal locality and the
spatial-temporal interactivity of the application [Singh et al. 92]. These four quanti-
ties are then plugged into a formula to predict cache hit ratios. Unfortunately, either
their quantities or their formula was poorly chosen and their predictions are inaccu-
rate when the predicted cache configuration differs significantly from the measured

configuration.

Agarwal et al. use a similar approach and reduce traces to quantities representing
the rate of memory references, the rate of references to new cache blocks and the
rate of cache misses [Agarwal et al. 89]. Unlike Singh’s formula, which was chosen
by curve fitting data, Agarwal’s cache predictions come from a simple but sound
cache model they derive. Given the small number of factors to which they reduce an

address trace, their predictions match observed performance surprisingly well.

Finally, Temam et al. have developed an approach for quantifying the cache per-
formance of algorithms using purely analytical techniques, and their method requires
no implementations or address traces [Temam et al. 94]. In their model, the memory
reference patterns are determined by studying the algorithm, and cache performance
is predicted by determining when each data item is reused and how often this reuse is
disrupted. Their model is similar but more complicated and accurate than the mod-
els automatically applied by current compilers. The main limitation of their work is
that the algorithm to be analyzed is restricted to loop nests with oblivious reference
patterns. No data dependent control flow or reference patterns are allowed. While
the authors show good results for matrix multiply [Temam et al. 95], the restriction

of an oblivious reference pattern limits the applicability of their model.
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2.1.5 Architectural Models

The majority of algorithms have been designed and analyzed in an abstract architec-
ture in which all operations have unit cost. While this may have been a reasonable
model in the past, increasing cache-miss penalties have rendered this model a poor
abstraction of the modern machine. Accordingly, a number of abstract architectures
for sequential machines have been introduced that take into account the memory

hierarchies present in modern machines.

The uniform memory hierarchy [Alpern et al. 94] models the memory system as
a series of increasingly large memory modules. Computation can take place only
in the smallest of these modules. Communication takes place via busses of varying
bandwidth that connect neighboring modules. As well as the computation that is to
occur, an algorithm describes when blocks of data should be moved between modules.
The efficiency of a program in the uniform memory hierarchy is defined to be the
percentage of time that computation occurs in the smallest module compared to the

time spent waiting for a communication to finish.

The hierarchical memory model [Aggarwal et al. 87b] has a single address space in
which an access to location ¢ takes time [log¢]. Efficient programming in this model
requires commonly used data items to be copied from high addresses to low addresses
during their periods of high use. Upper and lower bounds for FFT and matrix
multiply are given for the model. Aggarawal et al. also developed the hierarchical
memory model with block transfer [Aggarwal et al. 87a]. The addition of a block
transfer to their original hierarchical memory model is intended to capture the way

physical memory incurs a high latency followed by high throughput.

Finally, others have used an even simpler model to determine the upper and lower
bound for the communication complexity of various common tasks. The research
assumes that a computation only has a space S in which to perform its work. A piece
of memory may be brought in and out of this work space and the total number of
these 1/0 operations is C'. Tak et al. show that multiplying two n by n matrices
exhibits the space communication tradeoff C'S = ©(n?) [Lam et al. 89]. Aggarwal
and Vitter prove lower bounds on the communication complexity of sorting and have
developed variants of mergesort and distribution sort that are within a constant factor

of optimal in this model [Aggarwal & Vitter 88].
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2.1.6 External Algorithms

A final area that is relevant to cache-conscious design is the large body of algorithms
optimized to minimize the number of disk accesses. Numerous papers study exter-
nal sorting and searching algorithms [Knuth 73, Verkamo 88, Wegner & Teuhola 89,
Verkamo 89]. Despite the difference in scale between pages and cache blocks, tech-
niques used to reduce disk accesses can be used to reduce cache misses. Changing the
word “page” to “cache block” in Gotlieb’s paper on search trees [Gotlieb 81] produces
a multi-way search tree that minimizes the number of cache blocks touched during
an access.

One difficulty that can arise in the conversion of an external algorithm is that
external algorithms assume control over the page replacement policy. With hardware
caches, however, when misses occur the algorithm has no choice as to where that new
block is loaded or which block is ejected. Thus external algorithms that depend on
particular replacement policies for efficiency will likely not be of much use.

Another difficulty with this conversion is that disk accesses are far more expensive
than cache misses. Because disk accesses are thousands of times more expensive
than instructions, external algorithms can afford to greatly increase instruction cost
to reduce the number of disk accesses. A straightforward adaption of an external
technique may result in a low number of cache misses but bad overall performance

due to high instruction cost.

2.2 Opportunities

The community that designs and analyzes practical algorithms has almost completely
ignored caching. Considering the effect that caching has on algorithm performance,
optimizing cache behavior offers one of the best opportunities for improving perfor-
mance. At this point it is important to make a distinction between what I consider
to be practical algorithms and theoretical algorithms. 1 call the algorithms found
in programming textbooks and standard code libraries practical algorithms. They
are algorithms that are developed for use in practice and are often tuned for per-
formance. Theoretical algorithms, on the other hand, are designed with asymptotic
performance in mind, and constant factors in their performance are irrelevant. These

algorithms are intended as proofs of upper bounds on the complexity of problems. As
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we saw in the previous section, researchers have produced cache-conscious theoretical
algorithms for common problems. With very few exceptions, however, the design of
practical algorithms has completely ignored caching.

A related opportunity lies in the area of characterizing the memory behavior of
algorithms. A practitioner choosing between two algorithms can draw on a wealth of
existing analyses to compare their expected instruction counts. Knuth, for instance,
tells us that in the MIX model which has unit-cost memory references, mergesort
executes at an average cost of 14.43n log n verses 10.63n log n for quicksort [Knuth 73].
Unfortunately, no such analyses exist for these algorithms in a model that takes
caching into account.

Characterization of memory behavior is an important part of depicting how an
algorithm performs. This characterization of memory system behavior might take
the form of an analysis in a model that has as parameters cache size, block size and
associativity. It might be as simple as a graph of cache miss ratios from a trace-driven
simulation for a popular memory-system configuration. It is difficult to predict what
level of detail the algorithm community will adopt, but these characterizations are

needed so that informed decisions can be made regarding algorithm performance.

2.3 Summary

This chapter reviews existing work on caches and their effect on algorithm perfor-
mance. [t examines studies of the memory system performance of specific algorithms
as well as compiler optimizations for improving the locality of algorithms in general.
It also examines existing tools for analyzing the cache performance of algorithms and
architectural models that account for caching.

The chapter identifies two important areas in which the effects of caching have
not been seriously considered. First, the designers of algorithms for use in practice
have paid little attention to caching. Due to high miss penalties, reducing cache
misses represents an excellent opportunity for improving overall performance. The
second opportunity lies in the characterization of the memory performance of algo-
rithms. Existing analyses ignore caching and use models in which memory accesses
have unit cost. A characterization of performance that includes cache overhead as
well as instruction count will lead to a more accurate assessment of an algorithm’s

performance in practice.



Chapter 3

Optimizing Implicit Heaps

In this chapter, I examine and optimize the memory system performance of im-
plicit heaps [Williams 64]. Heaps are a classic data-structure and are commonly used
as event queues and for sorting. One of the goals of this thesis is to demonstrate
the gains of cache-conscious design. Towards this goal, I develop two memory opti-
mizations that can be applied to heaps and test the effects they have on performance
using both cache simulations and actual executions. A byproduct of this performance

study is a heap implementation with excellent overall performance.

3.1 Implicit Heaps

I begin by describing the implicit binary heap, and throughout this dissertation I
refer to this as a traditional heap. The traditional heap is an array representation of a
complete binary tree with N elements. All levels of the tree are completely full except
for the lowest, which is filled from left to right. The tree has depth [log,(N + 1)].
Each element ¢ in the heap has a key value Keyli] and optionally some associated
data. The N heap elements are stored in array elements 0--- N — 1; the root is in

position 0, and the elements have the following relationships (see Figure 3.1)
Parent(1) = L%J, if1 >0
LeftChild(e) =2i + 1

RightChild(i) = 2i + 2
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A heap must satisfy the heap property, which says that for all elements 2 except
the root, Key[Parent(i)] < Key[i]. It follows that the minimum key in the data
structure must be at the root.

In my performance evaluation, I use heaps as priority queues that provide the
add and remove-min operations. In my implementation of add, the new element is
added to the end of the array and is then percolated up the tree until the heap
property is restored. In my remove-min implementation, the root is replaced with
the last element in the array which is percolated down the tree by swapping it with
the minimum of its children until the heap property is restored. I do not consider the
implication nor the optimization of other priority queue operations such as reduce-
min or the merging of two queues. Heaps have been well studied, and there are
numerous extensions and more sophisticated algorithms for adding and removing
elements [Knuth 73, De Graffe & Kosters 92, Carlsson 91, Gonnet & Munro 86]. In
practice, however, few of these extensions improve the performance of heaps for the

tasks I consider in this study.

3.2 A Motivating Example

Traditional algorithm design and analysis has for the most part ignored caches. One
of the goals of this dissertation is to show that ignoring cache behavior can result
in misleading conclusions regarding an algorithm’s performance. In order to demon-
strate this I present an examination of algorithms for building heaps.

Building a heap from a set of unordered keys is typically done using one of two
algorithms. The first algorithm is the obvious and naive way, namely to start with

an empty heap and repeatedly perform adds until the heap is built. I call this the

0
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3 4 5 6
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789 10 - -~

Figure 3.1: The structure of a binary heap.
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Repeated-Adds algorithm.

The second algorithm for building a heap is due to Floyd [Floyd 64] and builds a
heap in fewer instructions than Repeated-Adds. Floyd’s method begins by treating
the array of unordered keys as if it were a heap. It then starts half-way into the
heap and re-heapifies subtrees from the middle up until the entire heap is valid.
The general consensus is that due to its low instruction cost and linear worst case
behavior Floyd’s method is the preferred algorithm for building a heap from a set of
keys [Sedgewick 88, Weiss 95, Cormen et al. 90].

To validate this, I executed both build-heap algorithms on a set of uniformly
distributed keys varying in size from 8,000 to 4,096,000 elements. As the literature
suggests, Floyd’s method executes far fewer instructions per key than does Repeated-
Adds. Runs on a DEC Alphastation 250 showed that for uniformly distributed keys,
both algorithms executed a number of instructions linear in the number of elements
in the heap. Floyd’s algorithm executed 22 instructions per element on average while
Repeated-Adds averaged 33 instructions per element. An evaluation based only on
instruction cost thus indicates that Floyd’s method is the algorithm of choice. When
we consider cache performance, however, we see a very different picture.

First consider the locality of the Repeated-Adds algorithm. An add operation
can only touch a chain of elements from the new node at the bottom up to the
root. Given that an element has just been added, the expected number of uncached
elements touched on the next add is likely to be very small (Figure 3.2). There is a

50% chance that the previously added element and the new element have the same

L A

Figure 3.2: Building heaps with  Figure 3.3: Building heaps with Floyd’s
Repeated-Adds. method.
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Figure 3.4: Cache performance of Repeated-Adds vs Floyd’s method. Simulated

cache size is 2 megabytes, block size is 32 bytes and heap element size is 8 bytes.
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Figure 3.5: Execution times for Repeated-Adds vs Floyd’s method. Executions were
run on a DEC Alphastation 250 using 8 byte heap element.
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parent, a 75% chance that they have the same grand-parent and so on. Thus, we
expect the number of new heap elements that need to be brought into the cache for

each add operation to be small on average.

Now consider the cache locality of Floyd’s method. Recall that Floyd’s method
works its way up the heap, re-heapifying subtrees until it reaches the root. For ¢ > 1,
the subtree rooted at 2 does not share a single heap element with the subtree rooted at
i—1 (Figure 3.3). Thus, as the algorithm progresses re-heapifying successive subtrees,

it should exhibit poor temporal locality and incur a large number of cache misses.

To test this, I perform a trace driven cache simulation of these two algorithms for
building a heap. Figure 3.4 shows a graph of the cache misses per element for a two
megabyte direct-mapped cache with a 32 byte block size using 8 byte heap elements
and varying the heap size from 8,000 to 4,096,000 elements. In this configuration,
2 megabytes / 8 bytes = 262,144 heap elements fit in the cache. This graph shows
that up to this size, both algorithms only incur 0.25 cache misses per element. These
represent the compulsory misses and since 4 heap elements fit per cache block, com-
pulsory misses average out to 0.25 per element. Once the heap is larger than the
cache, however, Floyd’s method incurs significantly more misses per element than

Repeated-Adds as our informal analysis suggested.

Figure 3.5 shows the execution times of these two algorithms on a DEC Alphasta-
tion 250 using 8 byte heap elements and varying the heap size from 8,000 to 4,096,000
elements. When the heap fits in the cache, both algorithms incur only compulsory
misses and Floyd’s method is the clear choice. When the heap is larger than the
cache, however, the difference in cache misses outweighs the difference in instruction

cost and the Repeated-Adds algorithm prevails.

This simple examination of algorithms for building heaps is strong motivation
for analyses which account for the effects of caching. I examined seven algorithm
textbooks and all of them recommend Floyd’s method as the preferred technique
for building heaps [Cormen et al. 90, Sedgewick 88, Weiss 95, Knuth 73, Manber 89,
Aho & Ullman 83, Reingold & Wilfred 86]. If their authors had considered caching,
as this example did, they would have been able to point out that due to poor locality,
Floyd’s method may perform worse than the Repeated-Adds algorithm for data sets
that do not fit in the cache.
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3.3 Optimizing Remove-min

This section examines the memory behavior of heaps and develops memory optimiza-
tions that increase their spatial and temporal reuse of data. In almost all cases,
the proposed memory optimizations reduce memory overhead and either increase or
do not change instruction cost. Optimizations are considered to be beneficial if the
reduction in memory overhead outweighs the increase in instruction cost.

For a stream of operations on a heap where the number of adds and the number
of removes are roughly equal, the work performed will be dominated by the cost of
the removes. Doberkat [Doberkat 81] shows that independent of N, if the keys are
uniformly distributed, add operations percolate the new item up only 1.6 levels on
average. Doberkat [Doberkat 82] also studies the cost of the remove-min operation on
a heap chosen at random from the set of legal heaps. He shows that after remove-min
swaps the last element to the root, the swapped element is percolated down more
than (depth — 1) levels on average. Accordingly, I focus on reducing the memory
overhead of the remove-min operation.

The first observation about the memory behavior of remove-min is that we do not
want siblings to reside on different cache blocks. Recall that remove-min moves down
the tree by finding the minimum of a pair of unsorted siblings and then swapping
that child with the parent. Since both children need to be loaded into the cache, 1
would like to guarantee that both children are in the same cache block.

Figure 3.6 shows the way a heap will lay in the cache if four heap elements fit in a
cache block and the heap starts at the beginning of a cache block. Unfortunately, in
this configuration, half of the sets of siblings cross cache block boundaries. The result
is that we will often need to bring two blocks into the cache despite the fact that
we need less than one block of data. Lebeck and Wood refer to these as alignment
misses [Lebeck & Wood 94]. Similar behavior occurs for other cache configurations
where the cache block size is an even multiple of heap element size and the memory
allocated for the heap starts a cache block.

There is a straightforward solution to this problem, namely to pad the array so
that the heap does not start a cache block. Figure 3.7 shows this padding and its
effect on the layout of the heap in the cache. This optimization will have its biggest
impact when the number of heap elements per cache block is two. When two elements

fit on a cache block, every pair of siblings will cross a cache block boundary with an
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Figure 3.6: The cache layout of a binary  Figure 3.7: An improved cache layout of
heap. a binary heap.

unaligned layout. As the number of heap elements per cache block grows larger,
the percentage of siblings that cross block boundaries is reduced and there is less
inefficiency that can be eliminated. As this optimization represents a change in data
layout only, it will not change the instruction cost of the heap operations.

The second observation about remove-min is that we want to fully utilize the
cache blocks that are brought in from memory. Consider a remove-min operation on
a cache-aligned heap that is at element 3 and is trying to decide between element 7 and
element 8 as its minimum child. If four elements fit per cache block and a cache miss
occurs while looking at element 7, we will have to bring the block containing elements
5-8 into the cache. Unfortunately, we will look only at two of the four elements in
this cache block to find the minimum child. We are using only two elements even
though we paid to bring in four.

As before, there is a straightforward solution to the problem, and the inefficiency
can be eliminated by increasing the fanout of the heap so that a set of siblings fills a
cache block. The remove-min operation will no longer load elements into the cache
and not look at them. A d-heap is the generalization of a heap with fanout d rather
than two. The d-heap was first introduced by Johnson as a way to reduce the cost of
the Reduce-Min operation [Johnson 75]. Naor et al. suggest using d-heaps with large
d as a way to reduce the number of page faults that heaps incur in a virtual memory
environment [Naor et al. 91]. Figure 3.8 shows a 4-heap and the way it lays in the
cache when four elements fit per cache block.

Unlike the previous optimization, this change will definitely have an impact on the
instruction cost of heap operations. The add operation should strictly benefit from
an increased fanout. Adds percolate an element from the bottom up and look at only
one element per heap level. Therefore the shallower tree that results from a larger

fanout will cause the add operation to execute fewer instructions. The instruction
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cost of the remove-min operation, on the other hand, can be increased by this change.
In the limit as d grows large, the heap turns into an unsorted array which requires a
linear number of comparisons. Recall that the remove-min operation moves the last
element of the array to the root, and then for each level finds the minimum of the d
children and swaps this smallest element with its parent. Since the children are stored
in an unsorted manner, d comparisons must be performed to find the minimum of
the d children and the parent. The cost of a swap can vary depending on how much
data is stored with each element. I give the swap a cost of a relative to the cost
of a comparison. Thus, the total cost at each level is d + a. 1 estimate the total
cost of remove-min as d + a multiplied by the number of levels traversed. In this
simple analysis, I assume that the tail element is always percolated back down to the
lowest level in the heap. The total expected cost for remove-min counting swaps and

comparisons is

(d+a)log,((d—1)N +1) =
(d+ ) logy(dV) =
(d+a)log; N 4+ (d+a) =

£mllogQN—l—d—l—a

logad

For large N, the remove-min cost is proportional to loga N by a factor of (d +
a)/log, d. This factor is made up of two components: the cost of the comparisons
and the cost of the swaps. Increasing d increases the time spent comparing children
(d/logad). Increasing d also reduces the total cost of the swaps (a/logzd). Figure 3.9
shows a graph of (d + a)/log, d for various values of a. For remove-min operations

with a swap cost of at least one comparison, increasing fanout initially reduces swap
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Figure 3.8: The layout of a 4-heap padded for cache alignment.
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Figure 3.9: Remove-min cost as a function of d.

costs by more than it increases comparison costs, resulting in an overall speedup.
For a swap cost of two comparisons, the remove-min cost is reduced by a quarter by
changing the fanout from two to four and does not grow to its initial level until the
fanout is larger than twelve. As long as fanouts are kept small, the instruction cost

of remove-min should be the same or lower than for heaps with fanout two.

This graph also points out the dangers of an analysis that only considers one type
of operation. It clearly shows that even if caching is not considered, a heap with fanout
four should perform better than a heap with fanout two. This would not be evident
however, if the number of comparisons performed were the only factor considered,
as is commonly done. The curve on the graph which has swap cost of zero is the
equivalent of counting only comparisons. This curve does not take swap costs into
account and suggests the misleading conclusion that larger fanouts are not beneficial.

Due to the prevalence of this style of analysis, the only reference I found that proposed
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larger fanout heaps due to their reduced instruction cost was an exercise by Knuth
in which he shows that 3-heaps perform better than 2-heaps [Knuth 73, Ex. 28 Pg.
158]. Knuth’s analysis is performed in the MIX model [Knuth 73], and all instruction

are accounted for, thus the benefits of larger fanouts are properly predicted.

3.4 Evaluation

To understand the impact these optimizations have on both memory system and
overall performance, I measured the dynamic instruction count, the cache misses
incurred and the execution time of both traditional heaps and cache-aligned d-heaps.
Dynamic instruction counts and cache performance data were collected using Atom
[Srivastava & Eustace 94]. Executions were run on a DEC Alphastation 250. The
simulated cache was direct-mapped with a total capacity of two megabytes with a 32

byte block size, the same as the second level cache of the Alphastation 250.

3.4.1 Heaps in the Hold Model

Heaps are often used in discrete event simulations as a priority queue to store the
events. In order to measure the performance of heaps operating as an event queue, |
first test the heaps using the hold model [Jones 86]. In the hold model, the heap is
initially seeded with some number of keys. The system then loops repeatedly, each
time removing the minimum key from the heap, optionally performing some other
outside work, and finally adding a random value to the element’s key and adding the
element back into to the heap. It is called the hold model because the size of the

heap holds constant over the course of the run.

The heaps were initially seeded with uniformly distributed keys, and the heaps
were run in the hold model for 3,000,000 iterations to allow the system to reach steady
state. The performance of the heaps were then measured for 200,000 iterations. I
first examine the performance of heaps in the hold model when no outside work is
performed between iterations. I then measure the cache interactions that occur when

outside work occurs between iterations.
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Figure 3.10: Instruction counts for heaps in the hold model with no outside work.

No Outside Work

Figure 3.10 shows the number of instructions executed per iteration for a traditional
heap and an aligned 2, 4 and 8-heap running in the hold model with no outside work.
The heap size is varied from 1,000 to 8,192,000. The number of instructions per
element for all four heaps grows with the log of the number of elements as expected.
The traditional heap and the aligned 2-heap execute the same number of instructions
since their only difference is in the layout of data. Changing the fanout of the heap
from two to four provides a sizable reduction in instruction cost as Figure 3.9 predicts.
Also as predicted, changing the fanout from four to eight increased the instruction

cost, but not higher than the heaps with fanout two.

The wobble in the curve for the 8-heap occurs because a heap’s performance is
based in part on how full the bottom heap level is. This graph plots the performance
of heaps that successively double in size. In the case of the 2-heap, doubling the
size always adds a new heap level. With the 8-heap on the other hand doubling the
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number of elements may only change how full the bottom level is. The result is that
the curve for the 8-heap has a wobble with a period of three data points. There is a
similar wobble of period two for the 4-heap, but it is far less noticeable.

Figure 3.11 shows the number of cache misses per iteration for a 2 megabyte
direct-mapped cache with a 32 byte block size and 4 byte heap elements (8 heap
elements fit in a cache block). With this cache size and heap element size, 524,288
heap elements fit in the cache. Since no outside work occurs, heaps up to this size
incur no cache misses once the system has warmed up. When the heap is larger than
524,288 elements, cache misses occur and the impact of the memory optimizations
can be seen. This graph shows that cache aligning the traditional heap reduces the
cache misses by around 15%. Increasing the heap fanout from two to four provides a
large reduction in cache misses, and increasing from four to eight reduces the misses
further still. This graph serves as a good indicator that the optimizations provide a
significant improvement in the memory system performance of heaps.

Figure 3.12 shows the execution time on an Alphastation 250 for heaps in the hold
model. No outside work is performed and the heap element size is 4 bytes. The cache-
aligned 4-heap significantly outperforms both binary heaps. The low instruction cost
results in a lower execution time initially and the difference in cache misses causes
this gap to grow as heap size is increased. The 8-heap initially starts out slower than
the 4-heap due to increased instruction cost. This difference is eventually overcome
by the difference in cache misses and the 8-heap performs best for large heap sizes.
The cache-aligned 2-heap did not perform significantly better than the traditional
heap in this experiment. For 8,192,000 elements, the 4-heap and the 8-heap exhibit
speedups of up to 46% and 57% respectively over the traditional heap.

Qutside Work

In the previous experiments, heaps were run in the hold model with no outside work.
In these runs none of the heap’s data was ejected from the cache unless the heap itself
ejected it. In reality, concurrently executing algorithms interact in the cache. Even
though two algorithms might exhibit good cache behavior running alone, composing
them may result in a single algorithm with bad cache behavior. Accordingly, I now
measure the performance of heaps in the hold model when outside work is performed

between the remove-min and the add in each iteration. The outside work performed
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Figure 3.13: Instruction counts for heaps in the hold model with outside work.

in these experiments consists of 25 uniformly-distributed random reads from a two
megabyte array. While this probably does not model a typical simulation event
handler, it is a reasonable approximation of outside work and helps to show the cache
interference between independent algorithms.

Figure 3.13 shows the dynamic instruction count for a traditional heap, and an
aligned 2, 4 and 8-heap running in the hold model with the outside work consisting of
25 random reads. The heap size is varied from 1,000 to 8,192,000. This graph is the
same as the previous instruction count graph with the exception that it is shifted up
due to the cost of performing the outside work. As before, the binary heaps execute
the same number of instructions, with the 8-heap performing fewer and the 4-heap
least of all.

Figure 3.14 shows the number of cache misses incurred per iteration for the heaps
when eight heap elements fit in a cache block. This graph shows that in contrast to
the previous experiments, the heaps incur cache misses even when the heap is smaller

than the cache. This is due to the interaction between the outside work and the heap,
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and this interaction is significant. When outside work is present, the traditional heap
of size 8,192,000 incurs 17.1 cache misses per iteration versus only 6.4 when there
is no outside work. Again, we see that the optimizations significantly reduce cache
misses. For large heaps, the aligned 2, 4 and 8-heaps incur 15%, 49% and 62% fewer

cache misses than the traditional heap respectively.

Figure 3.15 shows the execution time for heaps in the hold model with outside
work. This graph looks very much like a simple combination of the instruction count
and cache miss graphs. Aligning the traditional heap provides a small reduction in
execution time. Increasing the fanout from two to four provides a large reduction in
execution time due to both lower instruction cost and fewer cache misses. The 8-heap
executes more instructions than the 4-heap and consequently executes slower initially.
Eventually the reduction in cache misses overcomes the difference in instruction cost,
and the 8-heap performs best for large data sets. For 8,192,000 elements, the 4-
heap and the 8-heap exhibit speedups of up to 22% and 28% respectively over the
traditional heap.

To this point, [ have only considered heap configurations for which a set of siblings
fit in a single cache block. The result is that if the heap is cache-aligned, only one
cache block needs to be read per heap level. If the size of a set of siblings grows
larger than the cache, we will need to load at least two cache blocks per heap level. 1
expect that this will result in a increase in the number of cache misses per operation
and a decrease in overall performance. To test this, | measure the performance of a
traditional heap and a 2, 4 and 8-heap when only 4 heap elements fit per cache block.
Heap size was varied from 1,000 to 4,096,000 elements and outside work consisted of

25 random reads per iteration.

The only change between this experiment and the previous is the size of the heap
elements. As a result, the number of instructions executed per iteration is unchanged
from Figure 3.13. The main performance change is in the number of cache misses
incurred. Figure 3.16 shows the cache performance of heaps when 4 heap elements
fit in a cache block. The first thing to note is the larger gap between the traditional
heap and the aligned 2-heap. Since fewer heap elements fit per cache block, a higher
percentage of siblings cross cache block boundaries in the traditional heap. The
result is that aligning the traditional heap eliminates more misses than it did when

8 elements fit per block. As before, the 4-heap incurs fewer misses than the binary
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heaps. The graph shows that the 8-heap incurs more misses than the 4-heap. While
the 8-heap has a shallower tree to traverse, it incurs more misses per heap level,
resulting in worse cache performance than the 4-heap.

Figure 3.17 shows the execution times for heaps when 4 elements fit per cache
block. In this graph, the 4-heap outperforms all other heaps for all data set sizes.
The only difference between this graph and Figure 3.15 is the number of heap elements
that fit per cache block. These graphs show how architectural constants can be used

to configure an algorithm for the best performance.

The Interaction of Algorithms in the Cache

When two algorithms are composed together, the instruction count of the resulting
algorithm is simply the instruction count of the two algorithms added together. The
cache performance of the resulting algorithm, however, is not as easy to predict.
Since the performance of a memory reference is dependent on the previous references
and combining algorithms alters the sequence of memory references, algorithms can
combine in complicated ways, and the resulting algorithm’s cache performance is not
obvious.

An interesting aspect of this interaction is that memory optimizations can po-
tentially have a more significant impact on performance than traditional instruction
cost optimizations. For instance, if a particular algorithm accounts for only 10% of
the instructions executed, optimizing this algorithm can eliminate at most 10% of
the total instruction count. This is not the case with cache misses, and optimizing
an algorithm can potentially eliminate more than its share of the total cache misses
incurred by the system. This effect is demonstrated in the cache simulations of the
heaps operating in the hold model with outside work. When there are 8,192,000
elements in the heap and 8-heap elements fit per cache block, the traditional heap
incurs a total of 17.1 misses per iteration while the 8-heap incurs 6.4 (Figure 3.14). A
division of these misses between the heap and the outside work is shown in Table 3.1.
The first row shows that with a traditional heap, 9.6 misses per iteration occur while
accessing the heap and 7.5 occur while accessing the work array. Replacing the tradi-
tional heap with an 8-heap reduces the misses to 3.3 per iteration, but it also reduces
the misses of the unaltered outside work process to 3.1 per iteration. Even though

the heap only accounts for 56% of the total misses, optimization the heap reduces
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Table 3.1: Division of cache misses between heap and outside work process with

8,192,000 elements.

Method Misses for Heap | Misses for Outside Work | Misses Total
Traditional Heap 9.6 56% 7.5 44% 17.1
8-heap 3.3 52% 3.1 48% 6.4

misses from 17.1 to 6.4, a drop of 63%. This demonstrates that optimizing an algo-
rithm can improve both its own cache performance and the cache performance of the
algorithms it interacts with. This is an important effect and should be taken into
account when considering the potential impact of a memory optimization on overall

cache performance.

3.4.2 Heapsort

Heaps are the core of the heapsort algorithm [Williams 64]. In Chapter 6, I closely
examine the memory system performance of a number of sorting algorithms, including
heapsort. For now, I provide only a graph of execution time to demonstrate the effects
the optimizations from this chapter have on the overall performance of heapsort.
Figure 3.18 shows the execution time of heapsort built from four different heaps
running on a DEC Alphastation 250 sorting uniformly distributed 32 bit integers. As
before, we see that increasing tfanout from two to four provides a large performance
gain. Again we see that the instruction count overhead of the 8-heap is overcome by
the reduced cache misses, and the 8-heap performs best for larger heap sizes. The
8-heap sorting 8,192,000 numbers nearly doubles the performance of the traditional
binary heap.

3.4.3 Generality of Results

So far all experiments have been performed on a DEC Alphastation 250. In
order to demonstrate the general applicability of these optimizations across modern
architectures, I now present data for the heaps running in the hold model on four
additional machines. Figure 3.19 shows the speedup of an aligned 4-heap over a

traditional heap running in the hold model with 8 byte heap elements and no outside
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Table 3.2: Clock rate and cache sizes of various machines.

Machine Processor Clock Rate | L1 Cache Size | L2 Cache Size
Alphastation 250 | Alpha 21064A | 266 MHz 8k 2048k
Pentium 90 Pentium 90 MHz 8k 256k

Alpha 3000/400 | Alpha 21064 133 MHz 8k 512k

Power PC MPC601 80 MHz 32k 512k

Sparc 20 SuperSparc 60 MHz 16k 1024k

work. The four additional machines were the Sparc 20, the IBM Power PC, the
DEC Alpha 3000/400 and a Pentium 90 PC. The clock rates of the machines tested
ranged from 60 to 266 megahertz, and the second level cache sizes ranged from 256k
to 2048k. Table 3.2 shows the processor, clock rate and cache size for the machines
I tested. Figure 3.19 shows that despite the differences in architecture, the 4-heaps

consistently achieve good speedups that increase with the size of the heap.

For heaps that fit entirely in the cache, we expect that no cache misses will occur
and all of the speedup will be due to the reduction in instruction cost. Larger than
that size, we expect the speedup curve to climb as the memory optimizations further
improve performance. For the Sparc and the Alphas, this knee in the curve occurs
around the size of the second level cache as expected. For the Power PC and the
Pentium, however, the speedup curve climbs almost immediately. These differences
might be due in part to differences in the number of first level cache misses. This
would not explain all of the difference, however, as the first level miss penalties in

these machines are small.

I believe these differences are primarily due to variations in the page mapping
policies of the operating systems. The early increase in speedup for the Power PC
and the Pentium indicates that for these two machines, cache misses occur even
when the heaps are considerably smaller than the cache. Some operating systems,
such as Digital Unix, have virtual to physical page mapping polices that attempt
to minimize cache misses [Taylor et al. 90]. These policies try to map pages so that
blocks of memory nearby in the virtual address space do not conflict in the cache. The

operating systems for the Power PC and the Pentium (AIX and Linux respectively)
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appear not to be as careful. The result is that even for small heaps, the allocated
memory conflicts in the cache, and this causes second level cache misses to occur
earlier than we expect. These cache misses provide an earlier opportunity for the

4-heap to reduce misses and account for the increased speedup.

3.5 Summary

The experiments in this chapter demonstrate the potential gains of cache conscious
algorithm design. Two memory optimizations of implicit heaps are motivated and
developed. The first optimization adjusts the data layout of heaps in order to pre-
vent heap siblings from crossing cache block boundaries. The second optimization
increases the fanout of the heap in order to improve spatial locality. The effectiveness
of these optimizations is tested by running a heap in the hold model and by running
heapsort. Cache simulations are used to demonstrate that these optimizations signif-
icantly reduce the cache misses that heaps incur, and executions on a Alphastation
250 show that these reductions in cache misses translate into in a corresponding im-
provement in overall performance. Finally, to demonstrate the general applicability
of these optimizations, heap performance was compared for five architectures with
varying memory systems. The memory-tuned heaps consistently outperformed the
traditional heaps in the hold model, and for all five architecture the memory-tuned

heaps provided speedups that increased as the heap size was increased.



Chapter 4

Collective Analysis

While simple and accurate, trace driven simulation does not offer the benefits of
an analytical cache model, namely the ability to quickly obtain estimates of cache per-
formance for varying cache and algorithm configurations. An analytical cache model
also has the inherent advantage that it helps a designer understand the algorithm and
helps suggest possible optimizations. As we saw in Chapter 3, the cache interactions
between concurrently executing algorithms can be substantial. For this reason, it
is important that an analytical model allow a system of algorithms to be analyzed
collectively as well as individually. Towards this goal, 1 develop collective analysis, a
framework for predicting the cache performance of a system of algorithms. Collective
analysis allows algorithms to be analyzed without implementations and without ad-
dress traces. In this way, collective analysis is more like the purely analytical models
of Temam et al. than the hybrid trace-driven techniques of Agarwal et al. and Singh
et al. [Temam et al. 94, Agarwal et al. 89, Singh et al. 92].

The main difference between the work in this chapter and Temam’s work is the
assumption made regarding the algorithm’s memory reference pattern. Temam’s
model assumes that the exact reference pattern of the algorithm can be determined
at analysis time, and no data dependent array accesses or control flow are allowed.
Collective analysis, on the other hand, is intended for algorithms whose general mem-
ory behavior is known but whose exact reference pattern is not. The result is that
the two techniques apply to different classes of algorithms. For algorithms with non-
oblivious reference patterns, collective analysis can be applied and Temam’s model
cannot. The performance of algorithms with oblivious reference patterns, however,

will be more accurately predicted using Temam’s model.
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In order to demonstrate its use, I apply collective analysis to cache-aligned and
unaligned d-heaps operating in the hold model. I validate the accuracy of the analysis
by comparing the predictions of collective analysis with the trace driven simulation

results from Chapter 3.

4.1 The Memory Model

Collective analysis is a framework that can be used to predict the cache perfor-
mance of a system of algorithms in a realistic memory model. Collective analysis
assumes that there is a single cache with a total capacity of C' bytes, where C is
a power of two. The cache has a block size of B bytes, where B < C and is also
a power of two. In order to simplify analysis, collective analysis only models di-
rect mapped caches [Hennesey & Patterson 90] and does not distinguish reads from
writes. It assumes that items that are contiguous in the virtual address space map
to contiguous cache locations, which means that it models a virtually indexed cache
[Hennesey & Patterson 90]. The memory model does not include a TLB, nor does it

attempt to capture page faults due to physical memory limitations.

4.2 Applying the Model

The goal of collective analysis is to approximate the memory behavior of an algorithm
and predict its cache performance characteristics from this approximation. The first
step is to partition the cache into a set of regions R, where regions are non-overlapping,
but not necessarily contiguous, sections in the cache. All cache blocks must belong
to a region, and a cache block cannot be split across regions. The cache should be
divided into regions in such a way that the accesses to a particular region are uni-
formly randomly distributed across that region. If the accesses are not uniformly
distributed, the region should be subdivided into multiple regions that do have uni-
form access patterns. Once the accesses within a region are uniformly distributed,
further subdivision should be avoided in order to minimize the complexity of the
analysis.

The next step is to break the system of algorithms to be analyzed into a set of
independent stochastic processes P, where a process is intended to characterize the

memory behavior of an algorithm or part of an algorithm. The behavior of the system
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need not be represented exactly by the processes, but any simplifying approximations
are made at the expense of corresponding inaccuracies in the results. Areas of the
virtual address space accessed in a uniform way should be represented with a single
process. Collectively, all of the processes represent the accesses to the entire virtual
address space and hence represent the system’s overall memory behavior.

Collective analysis assumes that the references to memory satisfy the independent
reference assumption [Coffman & Denning 73]. In this model each access is indepen-
dent of all previous accesses; that is, the system is memoryless. Algorithms which
exhibit very regular access patterns such as sequential traversals will not be accurately
modeled in this framework because of the independent reference assumption.

I define the access intensity of a process or set of processes to be the rate of
memory accesses per instruction by the process or set of processes. Let \;; be the
access intensity of process j in cache region :. Let \; be the access intensity of the
set of all processes in cache region ¢. Let A be the access intensity of all the processes
in all the regions. Given the assumption about uniform access, if a cache block b
is in region ¢ and the region contains m cache blocks, then process j accesses block
b with intensity A;;/m. Once the system has been decomposed into processes and
the intensities have been expressed, the calculations to predict cache performance are
fairly simple.

The total access intensity by the system for cache region ¢ is

i =D A
jep

The total access intensity of the system is:

A=Y A= (4.1)

€R 1€ER jEP
In an execution of the system a hit is an access to a block by a process where the
previous access to the block was by the same process. An access is a miss if it is not
a hit. The following theorem is a reformulation of the results of Rao [Rao 78]. This
formulation differs from Rao’s only in that blocks are grouped together into a region
if the accesses are uniformly distributed in the region. This simplifies the analysis

considerably.
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Theorem 1 The expected total hit intensity of the system is

1= 2N (4.2)
1€R T jEP

Proof: Define n to be the expected total hit intensity of the system and 7; to be
the expected hit intensity for region :. The total hit intensity of the system is the
sum of the hit intensities for each region. The hit intensity for a region is the sum
across all processes of the hit intensity of the process in that region.

An access to a block in a direct mapped cache by process j will be a hit if no
other process has accessed the block since the last access by process j. I say that a
cache block is owned by process j at access t if process j performed the last access
before access t on the block.

Consider a block b in a region ¢ containing m blocks. The access intensity of

process j in block b is /:;]

and the total intensity in block B is % Hence on average,

block b is owned by process j AA# of the time. The hit intensity of process j in block
N 2
b is %’%, and the expected hit intensity for the entire region ¢ by process j is A/\lj
1 1
Hence, n; = X Z )\?]- and n = Z X Z )‘?j'
0 v jEer t€ER 7 jEP

Corollary 1 The expected overall miss intensity is A — 7.

Corollary 2 The expected overall hit ratio is {.

4.3 A Simple Example

In order to illustrate the use of collective analysis, I introduce a simple algorithm
which uses two data-structures: one array the size of the cache, and another array
one-third the size of the cache. The algorithm loops forever, and each time through
the loop it reads two values at random from the large array, adds them together and
stores the result in a randomly selected element of the small array.

I begin by decomposing the cache into two regions. Region 0 is two-thirds the
size of the cache and only holds blocks from the large array. Region 1 is one-third
the size of the cache, and holds blocks from both the large and the small array.
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[ divide the system into two processes: process 0 for the reads from the large array
and process 1 for the writes to the small array. First consider the accesses performed
by process 1. Since process 1 never makes accesses outside of the small array, I know
that Ag; is 0. Let u be the loop’s rate of execution. Process 1 accesses the small array
once every time around the loop, so Ay is pg. Since there are twice as many reads
from the big array as writes to the small array, the total access intensity for process
0 is 2u. Since the reads are evenly distributed across the big array, we expect that
two-thirds of the reads go to region 0 and one-third go to region 1, thus Ay is %/L and

A1 18 %/L. The overall hit ratio is easily computed:

Aoo = %,M; Aor =0, A0 = %/'Ly A1 = p

)\OZ%M‘I‘OZ%M

4
A= N=p+op=3p
tER 3 3
1 (30) | 0% (3p)* | p* 33
UZZ_Z)\?: 3 4+ — 43 +i—="pu
ieR)‘ijeP ! %M % g %/L 15

33
Overall cache hit ratio = 2 = 135—: = % =~ 73%

(IS

While this example is simple, the next section shows how collective analysis can

be used to predict the performance of more complex systems.

4.4 Cache-Aligned d-heaps

In this section, I analyze the cache performance of d-heaps in the hold model when sets
of siblings to not cross cache block boundaries. Recall that a d-heap is a generalization
of a binary heap with fanout d rather than two. A d-heap with N elements has depth
[log,((d — 1)N + 1)]. The elements have the following relationships
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Parent(1) = Li_lj

Children(i) = di + 1,di +2,...,di +d

As with binary heaps, d-heaps must satisfy the heap property, which says that for
all elements except the root, Key[Parent(t)] < Key[i]. It follows that the minimum
key in the data structure must be at the root. Let e be the size in bytes of each heap

element.

The hold model repeatedly removes an element from the heap, performs outside
work, and adds the element back to the heap. In the hold model, the cache perfor-
mance of the add operation is easy to predict. Since the heap is always the same size
when the add is performed, it always uses the same chain of elements from leaf to
root. This chain of elements will quickly be brought into the cache and will seldom
be ejected once the heap reaches steady state. Thus, the number of misses incurred
by the add operation is small enough that it can be ignored. The behavior of the
remove-min and the outside work is more complicated, and collective analysis can be

used to understand their performance.

In this analysis, I restrict heap configurations to those in which all of a parent’s
children fit in a single cache block (where de < B). This limits the value of d; for a
typical cache block size of 32 bytes, fanout is limited to 4 for 8 byte heap elements,
and fanout is limited to 8 for 4 byte heap elements. I also restrict the analysis to heap
configurations in which the bottom layer of the heap is completely full (i.e. where
[logy((d = 1)N +1)] = logy((d — 1)N +1)).

In order to predict cache misses for d-heaps in the hold model with the same out-
side work performed in Chapter 3, [ model the work performed between the remove-
min and the add as w random uniformly distributed accesses to an array of size C'.
Leaving w unbound in the analysis allows me to compare the model predictions to
the simulation results from Chapter 3 both with outside work (w = 25) and without
outside work (w = 0).

The first step of the analysis is to divide the cache into regions based on the heap’s
structure. Recall that we have a cache with a size of C' bytes, a cache block size of
B bytes, and a heap with N elements, fanout d, and element size e. Let S = % be

the size of the cache in heap elements.
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Figure 4.1: The division of the cache into regions for the d-heap.

Given the heap’s structure, r = [log,((d — 1)S + 1)| whole levels of the heap will
fit in the cache. That is to say, heap levels 0...r — 1 fit in the cache and heap level
r is the first level to spill over and wrap around in the cache. I divide the cache into
r 4+ 1 regions, where regions 0...r — 1 are the same size as the first r heap levels
and region r takes up the remaining space in the cache. I define S; to be the size of

. . . . . . . , . . . T__
cache region ¢. Region ¢, 0 < i < r, is of size d' and region r is of size S — Cg_—ll.

In
this analysis of d-heaps, the cache regions are all contiguous; Figure 4.1 shows the
division.

The next step is to partition the system into processes which approximate its
memory access behavior. It is at this point that I make three simplifying assumptions
about the behavior of the remove-min operation. I first simplify the percolating down
of the tail element by assuming that all levels of the heap are accessed independently,
once per remove-min on average. | also assume that when a heap level is accessed
by remove-min, all sets of siblings are equally likely to be searched through for the
minimum. While this is clearly not how the remove-min algorithm behaves, the rates

of accesses and overall access distributions should be reasonably accurate.

To further simplify the heap’s behavior, | make a final assumption regarding the
caching of elements. In the event that a set of siblings is brought into the cache on
a miss, other adjacent sets of siblings may be read in at the same time (if de < B).
The result is that a reference to these other sets of siblings may not incur a fault even
though they have never been accessed before. In this analysis, I ignore this effect
and assume that neighboring sets of siblings are never faulted in. The performance
results at the end of this chapter suggest that this assumption has little effect on the

accuracy of the predictions.
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The basic structure of the decomposition is to create one or more processes for
each level in the heap. Given a total of N elements, there are t = log,((d — 1)N + 1)
levels in the heap. Let N; be the size in elements of heap level :. 1 begin by dividing
the t heap levels into two groups. The first group contains the first r levels 0...r —1
of the heap that will fit in the cache without any overlap. The second group contains
the remaining levels of the heap r...t — 1. For 0 < i < ¢, N; = d'.

Lemma 4.1 The size of heap level 1, r < @ < t, is a multiple of S, the size of the

cache in heap elements.

Proof: Since N; = d', it is sufficient to prove that d* mod S = 0 for r < i < t.
Since d, C' and e are positive powers of 2, and ¢ < B < C, both d' and S are also
positive powers of 2. It is sufficient to show that d' > S. Let d = 2% and S = 2V.

= d77d > & = dlesal(@-1)S+1)] > gllosa(F)]

o4 aty=1_ a1

9elloga (220 7Y)] _ 9a[#H=] 5 9a(H=-220) _gv — ¢

For each heap level ¢ in the first group, I create a process 2, giving us processes
0...r — 1. For the second group I create a family of processes for each heap level,
and each family will have one process for each cache-sized piece of the heap level. For
heap level 7, r <1 < t, I create % processes called (z,0)...(z, % —1).

Finally, I create a process to model the w random accesses that occur between
the remove-min and the add. I call this process o.

If remove-min is performed on the heap at an intensity of p the access intensities

are
i if0<j<rand:=y, (4.3)
]“\g,;p ifj:(x,y)andr§x<tand0§y<%, (4.4)
)\ij =
%'w,u if 7 = o, (4.5)
0 otherwise. (4.6)
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In the simplified remove-min operation, heap levels are accessed once per remove-
min on average, and each access to a heap level touches one cache block. An access
by process 7, 0 < j < r, represents an access to heap level j since we know that all
accesses by process j will be in cache region 7, and process 7 makes no accesses outside
of cache region j. Thus, with a remove-min intensity of u, process 7, 0 < 5 < r, will
access region ¢ with an intensity of g if 7 = j and 0 otherwise (Equations 4.3 and 4.6).

Next, consider a process (z,y) where r < & < t. This process represents one of %
cache-sized pieces from heap level z. We expect that one cache block will be accessed

from heap level x per remove-min. The chance that the block accessed belongs to

S
Nz

intensity of the level multiplied by the chance that an access belongs to the process,

the process in question is =—. The total access intensity of the process is the access
or Nirlu. Since the process models accesses to a piece of the heap exactly the size of the
cache, it is easy to calculate the access intensities for each region. Since the accesses
of process (z,y) are uniformly distributed across the cache, the access intensities for
each region will be proportional to its size. Given that the process’s access intensity
is Nizp, the access intensity of process (x,y), where r < & < t in cache region ¢, is
]\%N% = ]‘\gf—ip (Equation 4.4).

Given that the system iterates at a rate of p, the total access intensity of process
o0 1s wp. Since process o accesses an array of size ¢ uniformly, we expect the accesses
to spread over each cache region proportionally to its size. Thus, the access intensity
of process o in cache region ¢ is %wu (Equation 4.5).

The region intensities A; and the overall intensity are summarized below and are

followed by their derivations.
,u—l—%(t—r—{—w),u ifo<i<r,

%(t—r—l—'w)p ife=r.

A= (t+w)pu.

The expected access intensity for cache region ¢, where 0 <17 < r is
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The expected access intensity for cache region r is

Nz

= i S Sy
—Z:: Z:: g ,u—g(t—r—}—w),u
The total access intensity is
r—1
A = Z)\Z:Z(/L—I- (t—r+wp)+—=E—r+w)
1€ER =0 S
1 -1 1 d —1
= g T (s - T )
= (t+uw)

An expression for the hit intensity n can be derived from Equation 4.2. The sum
across regions is broken into 0...r — 1 and r, and the sum across processes is broken

up based on the two groups of heap levels.



49

r—1 1 5'22 dl—t dl—r Sz ) 1 S’E dl—t dl—r S’r 5 )

- (B3 (1 T G )+ (B + o))
§2 Ji-t _ gi-r o2 Ji-t g 2
a5t ) Sty

i=0 l—l—ij(t—r—l—w)

4.5 Unaligned d-heaps

The cache performance of a d-heap in which sets of siblings are not cache block

aligned can be predicted with a simple change to the cache-aligned analysis. In the

cache-aligned analysis, I know that examining a set of siblings will touch one cache

block. In the unaligned case this is not necessarily true. A set of siblings uses de

bytes of memory. On average, the chance that a set of siblings crosses a cache block
de

boundary is %. In the event that the siblings do cross a cache block boundary, a

second block will need to be touched. Thus on average, we expect 1 + 3 de

cache
blocks to be touched when examining a set of siblings. This simple change ylelds the

following new intensities
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(1—|—%)ﬂ if0<j<rand:=y,

Si(l—}—%e)u ifj=($,y)andr§$<tand0§y<%,

Ny
A =
’ Swp if j = o,
0 otherwise.
(1+%)p+%(t—r)(l+%)u+%'wu ifo<i<r,
A =

S—Sr(t—r)(l—}—%)u—i—s—srwp ifi=r.

A=t(1+ G+ wp

An expression for n can be derived by substituting these intensities into Equation

4.2 and reducing.

4.6 Validation

In order to validate these analyses, I compare the collective analysis predictions with
the trace-driven simulation results for heaps running in the hold model from Chap-
ter 3. To match the simulations, I set the cache size equal to 2 megabytes, the cache
block size to 32 bytes and the heap element size to 4 bytes.

The quantity I compare is miss intensity (A — 7). Miss intensity is an interesting
measure, as it predicts how many times an algorithm must service cache misses. |
compare the model’s predictions with the number of misses per iteration observed
by the cache simulator. Figure 4.2 shows this comparison for a traditional heap

and an aligned 2, 4 and 8-heap with w = 0 and a range of N between 1,000 and
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Figure 4.2: Collective analysis vs trace-driven simulation for heaps with no outside

work. Simulated cache size is 2 megabytes, block size is 32 bytes and 4 elements fit

per block.
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Figure 4.3: Collective analysis vs trace-driven simulation for heaps with outside work.

Simulated cache size is 2 megabytes, block size is 32 bytes and 4 elements fit per block.
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8,192.000. Since I do not consider startup costs and since no work is performed
between the remove-min and the add, I do not predict or measure any cache misses
until the size of the heap grows larger than the cache. This graph shows that the miss
intensity predicted by the collective analysis closely matches the results of the cache
simulations. This indicates that while the heap may not be composed of independent
stochastic processes, they can be used to accurately model the heap’s memory system
behavior.

[ next compare the model predictions against simulations for a system in which 25
random accesses are performed each iteration. Figure 4.3 shows the miss intensities
for a traditional heap and an aligned 2, 4 and 8-heap with w = 25 and a range of
N between 1,000 and 8,192,000. Again, we see that the predictions of the collective
analysis closely match the simulation results. It is interesting to see that collective
analysis overpredicts the misses incurred by the binary heaps and underpredicts for
the 8-heap. This is partly due to the assumption that sets of siblings sharing a
cache block are not loaded together. Since 8 heap elements fit in a cache block, this
assumption is always true for the 8-heap and no inaccuracy is introduced in this
case. For the binary heaps, however, collective analysis underestimates the number
of heap elements brought into the cache, and this causes a slight overprediction of

cache misses.

4.7 Hot Structure

A common problem is that a particular application will perform well 90% of the time
but will occasionally perform poorly. These occasional slowdowns are often due to
variations in the relative placement of dynamically allocated blocks of memory. A bad
allocation may result in two heavily accessed blocks of memory conflicting in the cache
resulting in a large number of cache misses. In this section, I use collective analysis
to investigate the impact that the relative position of memory blocks has on cache
performance. I extend the cache-aligned analysis to include a small hot structure to
which a large number of accesses are made. This hot structure is intended to model a
small heavily accessed memory object such as a square root lookup table. By varying
the placement of this hot structure relative to the other memory blocks, I model both
the best and worst case cache performance of the system.

In the cache-aligned analysis, outside work consists of w random accesses to a
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cache sized array. I also augment this outside work to include wj; random accesses to
a second array of size S,. I now perform two collective analyses, one in which this
second array is positioned to minimize cache misses, and a second in which the array

is positioned to maximize cache misses.

4.7.1 Best Case

The area of the cache least accessed is cache region r which represents the cache
blocks that remain after all of the heap-level sized regions have been allocated (see
Figure 4.1). For simplicity, I assume that the hot structure fits in region r, that is
Sp < 5,. To accommodate the hot structure, I divide region r into two regions, r
and r 4+ 1. The new region r is the old region r with the hot structure taken out,
and has size S — ddr_—_ll — Sh. Region r 4+ 1 holds the hot structure and is of size Sj.
To model the accesses to the hot structure, I add a new process called o;,. Only one
change needs to be made to the access intensities from Section 4.4 to model the best
case cache performance with the hot structure; a new expression needs to be added

to indicate that process o, accesses region r + 1 with intensity wpp. The resulting

access intensities are:

7 it0<jy<rand:=y,
S! . . Nj:
~p ifj=(r,y)andr <z <tand 0 <y < 5g,

Aij = %'w,u if j = o,
wpp it jg=o,andt=1r+1,

0 otherwise.

Values for A and 5 can be derived by plugging these intensities into equations 4.1

and 4.2 and reducing.

4.7.2  Worst Case

The most heavily accessed cache blocks are those that hold the first few levels of the

heap. The block in cache region 0 is accessed the most often, the blocks in region
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1 the second most often, and so on. For the worst case cache performance, the hot
structure is placed in the cache so that it conflicts with the top levels of the heap. I
assume that the hot structure starts at the beginning of region 0, and for simplicity
I assume that it ends at the end of region r,. That is, I assume that S, = > /2, S;.
I again add a new process o, to model the w;, accesses made to the hot structure
every iteration. The only change that needs to be made to the access intensities
from Section 4.4 is to add an expression indicating that regions 0...r, are accessed

uniformly by process oy, for a total intensity of wju. The new access intensities are:

@ it0<j<rande=y,
]‘\g,;u ifj:(x,y)andr§x<tand0§y<%,
)\ij: %w,u iijO,

g_;l’whlu' ifj:ohandﬂfifrha

0 otherwise.

Values for A and 5 can be derived by plugging the intensities into 4.1 and 4.2 and

reducing.

4.7.3  Comparison

[ now compare the predictions of the best and worst case analysis of the hot structure
and the original analysis with no hot structure. For the comparison, I use an 8-heap
with 4 byte heap elements and a total of 25 outside accesses per iteration. For the
scenario with no hot structure, I use the analysis from Section 4.4 and set w = 25 to
indicate that all of the outside work takes place in the cache sized array. For both of
the scenarios with a hot structure, I set the size of the hot structure to 73 (S, = 73,
r, = 2). I divide the 25 accesses so that 15 are made to the cache sized array and 10
to the hot structure (w = 15 and w;, = 10).

To validate the analyses, the predictions for all three scenarios are compared
with trace driven simulation results. For the best and worst case scenarios, the

implementation being simulated was configured to explicitly place the hot structure
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Figure 4.4: The effects of relative block placement on cache performance. Simulated

cache size is 2 megabytes, block size is 32 bytes and 8 elements fit per block.

so that it conflicted either with region r or with regions 0. .. r; as the analysis assumes.
Figure 4.4 shows the cache misses per iteration for both predictions and simulations
varying heap size from 1,000 to 8,192,000.

The predictions and simulations in this graph largely agree. The best case hot
structure and no hot structure scenarios are predicted very accurately. The predic-
tions for the worst case hot structure vary from the simulation results by a constant
fraction of a cache miss throughout the range of heap sizes. Despite the differences,
both the predictions and simulations indicate that the placement of the hot structure
has a large impact on cache performance. With a 1,000 element heap, both the best
case scenario and the no hot structure scenarios incur almost no cache misses. In
contrast, the worst case scenario incurs more than three misses per iteration due to
the interaction between the hot structure and the heap. This is a large difference con-
sidering that only ten memory references are made to the hot structure per iteration.

As the heap grows larger, the cache misses per iteration grow for all three scenarios,
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but the worst case scenario remains more than three misses higher than the others

due to the interference from the hot structure.

As I have shown, the relative placement of memory blocks can have a significant
impact on the cache performance of algorithms, and collective analysis is one of
the first analytical tools that can be used to study this effect. This example shows
how easily collective analyses can be incrementally extended. Both the best and
worst case analyses required very simple changes to the base analysis. This makes
collective analysis good for answering “what if?” questions about algorithm structure

and optimizations.

4.8 Applicability

While the predictions for the d-heap are accurate, collective analysis is limited as
a general tool for predicting cache performance. The largest drawback of collective
analysis is the assumption that memory accesses are uniformly distributed within
cache regions. While this assumption accurately models the memory behavior of
heaps, it does not apply to the vast majority of algorithms. Collective analysis would

have to be extended to model other reference patterns for it to be generally applicable.

Another drawback of collective analysis is that it assumes that the relative location
of a memory object in the virtual address space is known at analysis time. If an
algorithm dynamically allocates memory, the new object’s location relative to other

objects will not be known, limiting the applicability of this technique.

The real strength of collective analysis is the intuition it provides, and the process
of performing the analysis is just as valuable as the predictions it makes. As evidence
of this, I cite the two heap optimizations presented in Chapter 3. I first used collective
analysis to investigate the impact of larger fanouts. After performing the analysis,
the predictions did not match the cache simulation results. Investigation revealed
that the collective analysis made the assumption that sets of siblings were cache
aligned, and an examination of the heap implementation revealed that they were not.
Padding the heap array in the implementation made the simulation results agree with
the analysis predictions. Performing the collective analysis revealed an inefficiency

that I had not previously considered.
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4.9 Summary

This chapter introduces collective analysis, a purely analytical technique that can be
used to examine the cache performance of algorithms without implementations and
without address traces. Collective analysis provides a framework within which the
memory behavior of an algorithm is approximated, and this approximation is used to
predict cache performance for direct mapped caches. The main drawback of collective
analysis is that it makes assumptions regarding the distribution of memory accesses
that are not true for most algorithms. Collective analysis has the advantages that
the model is easy to understand, the analyses are easy to incrementally extend and
it allows fast predictions to be made for varying cache and algorithm configurations.

In the chapter, collective analysis is performed on both cache-aligned and un-
aligned d-heaps and the accuracy of the analysis is verified by comparing the pre-
dictions with trace-drive cache simulation results. Collective analysis is also used to
explore the impact that the placement of dynamically allocated memory blocks can

have on cache performance.



Chapter 5

A Comparison of Priority Queues

While two algorithms may solve the same problem, their instruction mixes and
memory access patterns may vary widely. The increase in cache miss penalties can
change the relative cost of instructions, which in turn has the potential to change the
relative performance of algorithms. For this reason, it is important to periodically
reexamine the performance of different algorithms for common tasks. The danger of
not periodically investigating the impact that shifts in technology have on relative
performance is that the results of outdated studies may be applied to architectures

for which they are not relevant.

Such is the case with Jones’s 1986 study of the performance of priority queues
[Jones 86]. The study was thorough, comparing many different algorithms and data
distributions, and is commonly cited as evidence that one priority queue algorithm
outperforms another. In this chapter, [ investigate how increases in cache miss penal-
ties have affected the relative performance of priority queues by reproducing a subset
of Jones’s experiments. | examine the performance of implicit heaps, skew heaps
and splay trees in the hold model as Jones did in his study. The results of Jones’s
experiments indicate that for the architectures of that generation, pointer-based self-
balancing priority queues such as splay trees and skew heaps perform better than the
simple implicit heaps. In my experiments, however, the pointer-based queues perform
poorly due to poor memory system behavior. The pointers used to represent the
queue’s structure drastically increase the queue element size causing fewer elements
to fit in the cache. The result is that as queue size is increased, cache misses occur
sooner and the cache miss curve climbs more steeply than the curves for non-pointer

based queues. In contrast to Jones’s results, the heaps from Chapter 3 outperform
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the pointer-based queues by up to a factor of four in my experiments. Their implicit
structure results in a compact representation with low memory overhead and this far
outweighs any instruction cost benefits that self-balancing techniques afford the other

queues.

5.1 The Experiment

I examine the performance of five priority queue implementations operating in the
hold model. In my experiments [ compare a traditional heap, a cache-aligned 4-heap,
a top-down skew heap and both a top-down and a bottom-up splay tree. The imple-
mentations of the traditional heap and the aligned 4-heap are described in Chapter 3.
The implementations of the skew heap and the bottom-up splay tree are taken from
an archive of the code used in Jones’s study. The top-down splay tree implementation
is an adaption of Sleator and Tarjan’s code [Sleator & Tarjan 85]. As Jones did in his
study, the queues are run in the hold model, and no work is performed between the
remove-min and the add each iteration. In my experiments, a queue element consists
of an 8 byte key and no data. This varies slightly from Jones’s experiments where he
used 4 byte keys. A larger key value was chosen to allow extended runs without the
keys overflowing.

The priority queues are initially seeded with exponentially distributed keys, and
the priority queues are run in the hold model for 3,000,000 iterations to allow the
queue to reach steady state. The performance of the queue is then measured for
200,000 iterations. Executions are run on a DEC Alphastation 250. Cache simulations
are configured for a 2 megabyte direct-mapped cache and a 32 byte block size.

In my experiments, the queue size is varied from 1,000 to 1,024,000 elements,
although the bottom-up splay tree is only run up to a size of 512,000 elements due to
physical memory pressure. This differs from Jones’s study where he used considerably

smaller queues ranging from size 1 to 11,000.

5.2 Results

Figure 5.1 shows a graph of the dynamic instruction count of the five priority queues.
As we expect, the number of instructions executed per iteration grows with the loga-

rithm of the number of elements for all five of the priority queues. The 4-heap executes
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fewer instructions than the traditional heap as predicted by the analysis in Chapter 3.
The bottom-up splay tree executes almost exactly the same number of instructions as
the traditional heap. For comparison Figure 5.2 shows a graph of the execution times
observed by Jones on a Vax 11/780 in his original study for a traditional heap, a top-
down skew heap and a bottom-up splay tree. This graph suggests that on a Vax the
splay-trees execute fewer instructions than the traditional heap, while my executions
indicate that on today’s machines they do not. This difference can be attributed to
the fact that Jones’s experiments were run on CISC machines with memory-memory
instructions while mine were run on a load-store RISC machine. Splay trees are mem-
ory intensive, executing almost three times as many loads and stores as the heap. The
pointer manipulations performed by the self-balancing queues are fairly inexpensive
on the architectures that Jones used. On load-store RISC machines, however, these
pointer manipulations translate into multiple instructions, increasing the instruction
cost of the pointer-based queues relative to the implicit heaps.

The top-down splay tree performed the most instructions by a wide margin. To
be fair, I must say that while the top-down splay trees were coded for efficiency, they
did not receive the heavy optimization that Jones gave his codes or that I gave the
heaps.

The cache performance of the priority queues is compared in Figure 5.3. As the
experiments were run in the hold model with no work between iterations, cache misses
do not occur after warmup unless the queue is larger than the cache. It is at this
point that an important difference in the priority queues is revealed. Depending on
their algorithms for adding and removing elements, the queues have different sized
elements and this has a huge impact on cache performance. Adding pointers to a
queue element increases its size reducing the number of elements that fit in the cache
which in turn reduces locality.

The implicit heap elements require no pointers and the elements only contain the
keys. The top-down skew heap and top-down splay tree, on the other hand, both
require a left and right pointer per element, adding 16 bytes of overhead to each queue
element. In addition, queue elements for the pointer-based queues are allocated from
the system memory pool, and 8 bytes of overhead are incurred each time an element is

allocated!. The pointer overhead combined with the overhead of the system memory

I There are memory pool implementations that do not incur per-allocation overhead for small
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Figure 5.1: Instruction counts for five priority queues in the hold model.
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Figure 5.2: Execution time for three priority queues on a VAX 11/780 operating
in the hold model. These graphs show the priority-queue performance that Jones

observed in his original study.
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Figure 5.3: Cache performance of five priority queues in the hold model. Simulated

cache size is 2 megabytes, block size is 32 bytes and 4 elements fit per block.
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Figure 5.4: Execution time for five priority queues in the hold model. Executions on
a DEC Alphastation 250 with 4 elements per block.
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pool results in an element size of 8 (key) + 8 (left) + 8 (right) + 8 (memory pool)
= 32 bytes, four times larger than a heap element. As a result, the top-down skew
heaps and top-down splay trees start incurring cache misses at one-quarter the queue
size of the heaps. The queue requiring the most overhead is the bottom-up splay tree
with three pointers per element (left, right and parent). The result is that the splay
tree has the largest footprint in memory and is the first to incur cache misses as the
queue size is increased.

The execution times for the five queues executing on an Alphastation 250 are
shown in Figure 5.4. Due to their low instruction cost and small cache miss count,
the aligned 4-heap performs best, with the traditional heap finishing second. This
varies from Jones’s findings in which the implicit heaps finished worse than splay
trees and skew heaps. The two splay tree implementations have similar execution
times in my experiments, with the higher instruction count for the top-down splay
tree offsetting the higher cache miss count for the bottom-up splay tree. Despite the
locality benefits splay trees afford, their large footprint in memory causes them to

perform poorly in my study.

5.3 Impressions

These experiments illustrate the importance of a design that is conscious of memory
overhead and the effects of caching, and strongly suggest that future designs will
need to pay close attention to memory performance if good overall performance is to
be achieved. The goal of this chapter is not to convince the reader that heaps are
the best priority queue. There are obvious optimizations that could be applied to
the splay trees and skew heaps which would reduce their cache misses and improve
their performance. One good starting point would be to allocate queue nodes in large
bundles to minimize the overhead incurred in the system memory pool. By allocating
elements 1000 at a time, overhead could be reduced from 8 bytes per queue element
to 8 bytes per 1000 queue elements.

An additional optimization would be to store queue nodes in an array and rep-
resent references to the left and right elements as offsets in the array rather than

using 64 bit pointers. If the queue size was limited to 232, the 8 byte pointers could

objects [Grunwald et al. 93]. In OSF/1, however, the default malloc incurs an 8 byte overhead

per allocation.
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be replaced with 4 byte integers instead. These two optimizations alone would re-
duce the total overhead for the top-down skew heap to 4 (left) + 4 (right) = 8 bytes
rather than 8 (left) + 8 (right) + 8 (memory pool) = 24 bytes. These simple changes
would have a significant impact on the performance of all of the pointer-based priority
queues used in this study. It is unlikely, however, that the splay trees or skew heaps
could be made to perform as well as the implicit heaps for the applications I looked
at, since the heaps have such low instruction counts and have no memory overhead

due to their implicit structure.

5.4 Summary

This chapter revisits Jones’s study of the performance of priority queues. Implicit
heaps, skew heaps and splay trees are run in the hold model and their relative per-
formance is compared with the results from Jones’s study. Jones’s results indicated
that the pointer-based self-balancing queues such as splay trees outperformed the
simpler queues. My results, however, show that the high memory overhead of the
pointer-based self-balancing queues results in poor memory behavior which in turn
translates in bad overall performance on today’s machines. As well as demonstrating
the benefits of cache conscious design, this chapter shows the importance of periodi-
cally examining the impact that shifts in technology have on the relative performance

of common algorithms.



Chapter 6

Sorting Efficiently in the Cache

One of the most common tasks computers perform is sorting a set of unordered
keys. Sorting is a fundamental task and hundreds of sorting algorithms have been de-
veloped. This chapter explores the potential performance gains that cache-conscious
design offers in the context of three popular comparison-based sorting algorithms:

heapsort [Williams 64], mergesort [Holberton 52]* and quicksort [Hoare 62].

For each of these three sorting algorithms, I choose an implementation variant
with potential for good overall performance and then heavily optimize this variant
using traditional techniques. Using each optimized algorithm as a base, [ then develop
and apply memory optimizations in order to improve cache performance and overall
performance. Trace-driven simulations and actual executions are used to measure
the impact the memory optimizations have on performance. For all three sorting
algorithms, cache misses were significantly reduced: up to 57% for heapsort, 90% for
mergesort and 40% for quicksort. These reductions in cache misses translate into
speedups of 82% for heapsort, 75% for mergesort and 4% for quicksort. I discuss the
optimization and performance of heapsort, mergesort and quicksort in Sections 6.1,
6.2 and 6.3 respectively, and I considered the performance of the three collectively in

Section 6.4.

! This reference discusses the first computer implementations of mergesort. Mergesort was first

implemented in card sorting machines in the 1930s [Knuth 73].
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6.1 Heapsort

I first analyze the heapsort algorithm and examine how cache-conscious design im-
proves performance. The heapsort algorithm first builds a heap containing all of the
keys and then removes them all from the heap in sorted order [Williams 64]. With
n keys, building the heap takes O(nlogn) steps, and removing them in sorted order
takes O(nlogn) steps. In 1965 Floyd proposed an improved technique for building a
heap with better average case performance and a worst case of O(n) steps [Floyd 64].
The standard algorithms for adding and removing elements from a heap as well as

Floyd’s method for building a heap are discussed in Chapter 3.

6.1.1 Base Algorithm

Before applying any memory optimizations, I develop an otherwise well optimized
version of the algorithm. As a base heapsort algorithm, I follow the recommendations
of algorithm textbooks and use a binary heap constructed using Floyd’s method. This
algorithm spends the majority of its time percolating elements down the heap. An
inefficiency in this process is that a parent may have either zero, one or two children.
This requires that two checks be made per heap level: one to see if an element has any
children, and another to see if it has only one child. This can be reduced to one check if
parents are guaranteed to have either zero or two children. This can be guaranteed by
ensuring that a maximal key is always placed after the last heap element in the array.
In this way, parents with only one child will appear to have two, a normal child and
a maximal child that will never be chosen as the minimum. The effect of this change
is that an extra compare may be performed at the bottom layer of the heap, but all
other layers need only perform one check to see if they have children. This is the only
non-memory optimization applied to the base heapsort. The literature contains a
number of optimizations that reduce the number of comparisons performed for both
adds and removes [De Graffe & Kosters 92, Carlsson 91, Gonnet & Munro 86], but
in practice these do not improve performance and I do not include them in the base

heapsort.
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6.1.2 Memory Optimizations

To this base algorithm, I now apply memory optimizations in order to further improve
performance. Simulations from Chapter 3 show that William’s simple algorithm for
building a heap incurs fewer cache misses than Floyd’s method. Chapter 3 also
develops two optimizations for reducing the number of cache misses incurred by the
remove-min operation. I use all of these optimizations to construct a memory-tuned
heapsort. The memory-tuned heapsort makes use of the architectural constants to
choose a heap fanout such that a set of siblings fills a cache block. The algorithm
dynamically chooses between the Repeated-Adds method and Floyd’s method for
building a heap. If the heap is larger than the cache and Repeated-Adds can offer a
reduction in cache misses, it is chosen over Floyd’s method. The root of the heap is
then aligned so that sets of siblings do not cross cache block boundaries, the heap is
built with the chosen method, and keys are removed from the heap using the memory

optimized Remove-Min until the sorted set is complete.

6.1.3 Performance

I now compare the performance of the base heapsort and the memory-tuned heapsort.
The performance of each algorithm is measured by sorting sets of 64 bit uniformly
distributed integers. Figure 6.1 shows a graph of the dynamic instruction count of the
two heapsort algorithms varying the set size from 1,000 to 4,096,000 keys. With 64
bit keys, 4 heap elements fit per cache block and the memory tuned heapsort chooses
a 4-heap. As a result, the memory-tuned heapsort executes fewer instructions than
the base heapsort. Figure 6.2 shows the number of cache misses incurred per key for
a simulated 2 megabyte cache with a 32 byte block size. For sets which do not fit in
the cache, the minimum 64 bits / 32 bytes = 0.25 compulsory misses are incurred per
key for both algorithms. For sets larger than the cache, the memory-tuned heapsort
incurs fewer than half of the misses of the base heapsort.

Up to this point, all of the cache simulations have been run with two megabyte
caches, the same size as the second level cache of the DEC Alphastation 250. 1 have
focused on second level cache performance because second level caches have high miss
penalties and significantly affect overall performance. While first level miss penalties
are small, on the order of five cycles, they also have the potential to impact overall

performance. Figure 6.3 shows the number of cache misses per key for the heapsort
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algorithms with a 16 kilobyte direct-mapped cache with a 32 byte block size, the same
as the first level cache of the DEC Alphastation 250. In this graph, both algorithms
incur non-compulsory misses far earlier due to the smaller cache size. Since the
optimizations of the remove-min operation take into account only the cache’s block
size, improvements in memory performance are not dependent on cache capacity. As
a result, the memory-tuned heapsort incurs fewer than half the misses of the base
heapsort, similar to the simulation results for the second level cache.

Finally, Figure 6.4 shows the execution time for the two heapsort algorithms on a
DEC Alphastation 250. The memory-tuned heapsort initially outperforms the base
heapsort due to lower instruction cost, and as the set size is increased the gap widens
due to differences in first level cache misses. When the set size reaches the size of the
second level cache (262,144 keys), the curves steepen sharply due to the high cost of
second level cache misses. For 4,096,000 keys, the memory-tuned heapsort sorts 81%
faster than the base heapsort.

6.2 Mergesort

[ now perform a similar analysis and optimization of mergesort. Two sorted lists
can be merged into a single sorted list by traversing the two lists at the same time in
sorted order, repeatedly adding the smaller key to the single sorted list. By treating a
set of unordered keys as a set of sorted lists of length one, the keys can be repeatedly
merged together until a single sorted set of keys remains. Algorithms which sort in
this manner are known as mergesort algorithms, and there are both recursive and
iterative variants [Holberton 52, Knuth 73]. Recursive mergesort is a classic divide-
and-conquer algorithm which recursively sorts the left and right half of the set and
then merges the sorted halves together. Iterative mergesort uses the same merging
process but merges the lists in a different order. It first walks through the set of keys
merging the sorted lists of length one into sorted lists of length two. Then it merges
the lists of length two into lists of length four. Successive passes through the set of
keys create longer and longer sorted lists until there is one sorted list holding all of
the keys.

For a base algorithm, I chose an iterative mergesort since it is as easy to implement
as recursive mergesort and has a lower instruction cost. Iterative mergesort was also

chosen because it is very amenable to traditional optimization techniques, allowing me
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Figure 6.5: The layout of pairs of lists in the base mergesort.

to create a mergesort that performs extremely well according to traditional metrics.

6.2.1 Base Algorithm

The iterative mergesort described by Knuth is chosen as the base algorithm [Knuth 73,
Algorithm N, Pg. 162]. This base mergesort operates on an array of keys and uses an
auxiliary array to store partially merged lists. While there are algorithms for merging
two sorted lists in place in linear time [Huang & Langston 88], these algorithms are
extremely complex and perform poorly in practice. The first iteration in Knuth’s
mergesort walks through the source array, writing merged lists of length two into the
auxiliary array. The lists in the auxiliary array are then merged into lists of length
four and are written back into the source array. By keeping track of which array
is the source and which is the destination, the lists can be merged back and forth
between arrays without copying. A check is performed at the end, and if the sorted
set finished up in the auxiliary array it is copied back into the source array.

An inefficiency of Knuth’s array-based mergesort is the need to check a number of
end conditions during each merge step. At the start of a merge, the algorithm knows
the number of keys in each of the two sorted lists and therefore the number of keys
in the final list. The algorithm does not know, however, how fast each list will be
consumed and which list will be exhausted first. In an extreme case, all of the keys in
one list will be consumed before any keys are consumed from the other list. For this
reason, individual merge steps must check to see if there are keys remaining in each
of the lists. Since these checks reside in the innermost loop of the algorithm, they
represent an important inefficiency. Sedgewick shows that by reversing the order of
the second list and merging from the outside to the middle, two lists can be merged
without checking to see if lists have been exhausted (see Figure 6.5). When one of

the two lists is fully consumed, its list index will be incremented off the end of the
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list and will point at the largest key in the other list. Since this key is larger than
each of the other keys in the remaining list, it serves as a sentinel and will not be
chosen until the final merge step. This optimization requires changing the merge
algorithm so that it can create both forward and reverse sorted lists. An iteration
now merges pairs of lists and alternately creates forward and reverse sorted lists. This
optimization complicates the algorithm but provides a big reduction in instruction
cost as it eliminates instructions from the innermost loop.

A common optimization of many sorting algorithms is to fully sort small subsets
of keys with a simple n? sorting algorithm. When the set size is small, simple sorting
algorithms such as insertion sort can sort faster than nlogn sorts due to smaller
constants. Sedgewick recommends this for quicksort [Sedgewick 78], and I adapt the
idea to mergesort. I make an initial pass through the source array creating sorted
lists of length four with an efficient inline sort and then use mergesort to complete
the sorting.

The final non-memory optimization I apply to mergesort is to unroll the innermost
loop eight times [Lowney et al. 93]. Unrolling the loop has two benefits: it allows the
loop bounds check to be amortized over eight merge steps rather than one, as well as
creating a much larger block of code which allows the compiler’s instruction scheduler
to make better scheduling decisions. My base mergesort algorithm incorporates all
of these optimizations and has very low instruction cost, executing fewer than half as

many instructions as the base heapsort.

6.2.2 Memory Optimizations

Despite my efforts to produce an excellent base algorithm, an examination of the base
mergesort’s memory performance reveals several other optimization opportunities.
The first issue to consider is the placement of the auxiliary array relative to the source
array. In Chapter 4, we saw that relative block placement can have a significant
impact on cache performance. Since mergesort is not an in-place algorithm and
requires additional space equal to the size of the set of keys, the largest sized set
we can sort within the cache is CacheSize/2. Half of the cache will hold the source
array, and the other half will hold the auxiliary array. In order to avoid conflicts in the
cache, these two arrays should be positioned so that they start CacheSize/2 apart

in the cache. In all of the mergesort implementations, including the base mergesort,
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the auxiliary array is positioned in memory so that the first key in the auxiliary array
maps to a cache location CacheSize/2 away from the first key of the source array.
This guarantees that any contiguous piece of the source array of size CacheSize/2 or

smaller will not conflict with its counterpart in the auxiliary array.

The memory behavior of the iterative mergesort is far simpler to understand than
the memory behavior of heapsort. Each pass sequentially walks through areas of
the source array while sequentially writing into the destination array. This reference
pattern results in good spatial locality. Blocks from the source array that are brought
into the cache are sequentially traversed and all of the keys in the block are used.
Similarly, the sequential writes to the destination array use all of the keys in a cache

block and exhibit good spatial locality.

Unfortunately, the base mergesort algorithm has the potential for terrible tem-
poral locality. Mergesort uses each data item only once per pass, and if a pass is
large enough to wrap around in the cache, keys will be ejected before they are used
again. If the set of keys is of size CacheSize/2 or smaller, the entire sort can be
performed in the cache and only compulsory misses will be incurred. When the set
size is larger than C'acheSize/2, however, temporal reuse drops off sharply and when
the set size is larger than the cache, no temporal reuse occurs at all. This inefficiency
can be reduced by making passes small enough that temporal reuse can occur. This
can be achieved by first breaking the set into subsets of size CacheSize/2 and fully
sorting these subsets. Afterwards, these subsets can be formed into a single sorted
set using standard merge passes. The initial sets of passes to create sorted lists of
size CacheSize /2 will incur only one miss per block for both the source and auxiliary
arrays. This locality improving optimization is called tiling and can be applied to
simple loops by compilers [Wolfe 89]. Tiling the base mergesort drastically reduces
the misses it incurs, and the added loop overhead increases instruction cost very little.

I call the tiled version of the base mergesort tiled mergesort.

The tiled mergesort goes through two phases. The first phase fully sorts the half-
cache sized pieces, and the second phase merges these pieces into a single set. The
first phase has good cache behavior, but the second phase still suffers from the same
problem as the base mergesort. Each pass through the source array in the second
phase needs to fault in all of the blocks, and no reuse is achieved across passes if the

set size is larger than the cache. To fix this inefficiency in the second phase, I replace
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the [log,n/(CacheSize/2)] merge passes with a single pass that merges all of the
pieces together at once. Multi-way merging is commonly used for external sorting,
and Knuth devotes a section of his book to techniques for multimerging [Knuth 73,
Sec. 5.4.1]. Since passes in the second phase exhibit no temporal reuse, it makes

sense from a cache perspective to minimize the number of passes.

A k-way merge takes as input k sorted lists, and produces a single sorted list
while reading through each of the k lists only once. A merge step in the multimerge
examines the heads of the k lists to find the minimum key and and moves it to the
output list. The multimerge repeatedly executes this merge step until all of the k lists
are empty. If k is small, a linear search through the heads of the k lists can be used to
find the minimum key. As k grows large, this is inefficient, and a common technique
is to use a priority queue to hold the heads of the lists. When using a priority queue,
a merge step in the multimerge removes the minimum key from the queue, and adds
it to the output list. It then removes the head from list that the minimum key came
from and adds it to the priority queue. Multimerge using a priority queue has the
potential for good cache performance. Each key in the source and destination array
will be accessed only once, and since the priority queue is small, it will not incur
many cache misses. Unfortunately, if implemented as just described, multimerge can
suffer from thrashing, a problem that occurs when two cache blocks that map to the
same location are alternately accessed again and again. Recall that our subsets to be
multimerged are each of size CacheSize/2, and therefore the heads of these subsets
map to locations C'acheSize/2 apart in the cache. The result is that the heads of the
odd subsets all map to the same cache block, as do all the heads of the even subsets.
Consider the behavior of the first cache block of the first sorted subset. The block will
be faulted in to read its first key and will be ejected when the first key of the third
subset was added to the queue. The block will then to be faulted in again to read its
second key and will be ejected again if any of the other odd subsets need their second
keys. Since the multimerge does not consume the subsets at exactly the same rate,
the indices into the subsets will likely disperse in the cache, and the thrashing will
subside. In its initial stages, however, this type of multimerge will have extremely
poor cache performance. This problem can be fixed by adding an entire cache block’s
worth of keys to the queue at a time rather than just one. This introduces redundant

computation, as the priority queue will have to re-sort the block’s worth of keys, but
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it eliminates the thrashing. The first block of the first subset will still be ejected by
the first block of the third subset, but this is not important since all of its keys will

be in the priority queue already, and it will not be needed again.

For a priority queue, my multimerge uses a 4-heap. My multimerge initially adds
one block’s worth of keys from each subset to the heap. The last key from each
cache block is tagged with a special flag when it is added to the heap indicating
that another block’s worth of keys should be read from its subset. The multimerge
repeatedly removes the minimum from the heap and places it in the destination array.
If the removed heap element is tagged indicating that it is the last key from a block,
another block’s worth of keys is read from the subset that that element came from
and is added to the heap. The multimerge does this repeatedly until the fully sorted

set is complete.

I call the mergesort with a tiled first phase and a multimerge second phase multi-
mergesort. This algorithm has two disadvantages when compared to the tiled merge-
sort. The first disadvantage is that it is no longer stable? since the keys are added to
a heap and heaps are not stable. The second disadvantage is that it will have a higher
instruction cost than the tiled mergesort, since it has been shown that sorting with
a heap is less efficient from an instruction cost perspective than merging [Knuth 73].
This is compounded by the redundant computation that the multimerge introduces

by adding blocks of keys to the heap that are already sorted.

The disadvantages of multi-mergesort, however, are offset by excellent cache be-
havior. The auxiliary heap will remain small and should only occasionally be ejected
from the cache by sweeps through the source and auxiliary array. In the first phase,
each cache block in both the source array and the auxiliary array will be faulted in
once. Similarly in the second phase, each block in both the source array and auxiliary
array will be faulted once, totaling only four cache misses per block’s worth of keys.
Thus on average 4(KeySize/BlockSize) cache misses should be incurred per key.
For a 32 byte block size and 64 bit keys, this averages out to one cache miss per key.

2 A sorting algorithm is stable if it preserves the relative order of keys with the same value

[Knuth 73].
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Figure 6.6: Instruction counts for mergesort.

6.2.3 Performance

As with heapsort, the performance of mergesort is measured by sorting sets of uni-
formly distributed 64 bit integers. Figure 6.6 shows a graph of the dynamic instruc-
tion count of the base mergesort, the tiled mergesort and the multi-mergesort. As
expected, the base mergesort and the tiled mergesort execute almost the same num-
ber of instructions. The wobble in the instruction count curves in this graph is due
to the final copy that may need to take place depending on whether the final merge
wrote into the source array or the auxiliary array. When the set size is smaller than
the cache, the multi-mergesort behaves exactly like the tiled mergesort. Beyond that
size, the multimerge is performed and this graph shows the increase it causes in the
instruction count. For 4,096,000 keys, the multimerge executes 70% more instructions

than the other mergesorts.

Figure 6.7 shows the cache misses per key for the three mergesort algorithms for a

2 megabyte cache with a 32 byte block size. The most striking feature of this graph is
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the sudden leap in cache misses incurred by the base mergesort. The sharp increase
in cache misses is due to the total elimination of temporal reuse that occurs when the
source array and auxiliary array grow larger than the cache. Beyond that size, the
misses per key increase with the log of the set size due to the need for more passes
through the array. This graph shows the large impact that tiling the base mergesort
has on cache misses. For 4,096,000 keys, the tiled mergesort incurs 66% fewer cache
misses that the base mergesort. Once the large jump occurs in the miss curve for the
base mergesort, the misses for these two algorithms increase at the same rate since
they are using the same algorithm for the second phase. The wobble in these curves
is again due to the possible need to copy the temporary array back into the source
array at the end of the sort. The multi-mergesort is a clear success from a cache
miss perspective, incurring no more than 1.002 cache misses per key, very close to
our optimistic prediction of 1.

Figure 6.8 shows the execution time in cycles per key for the mergesorts on a DEC
Alphastation 250. Up to the size of the second level cache, all of these algorithms
perform the same. Beyond that size, the base mergesort performs the worst due to
the large number of cache misses it incurs. The tiled mergesort executes up to 55%
faster than the base mergesort, showing the significant impact the cache misses in
the first phase have on execution time. When the multi-way merge is first performed,
the multi-mergesort performs worse than the tiled mergesort due to the increase in
instruction count. Due to lower cache misses, however, the multi-mergesort scales

better and outperforms the tiled mergesort for the largest set sizes.

6.3 Quicksort

Quicksort is an in-place divide-and-conquer sorting algorithm considered by most to
be the fastest comparison-based sorting algorithm when the set of keys fit in memory
[Hoare 62]. In quicksort, a key from the set is chosen as the pivot, and all other keys
in the set are compared to this pivot. A set of keys is partitioned around the pivot by
dividing the set into those keys less than the pivot and those greater than the pivot.
This is usually accomplished by walking through an array of keys from the outside
in, swapping keys on the left that are greater than the pivot with keys on the right
that are less than the pivot. At the end of the pass, the set of keys will be partitioned

around the pivot and the pivot is guaranteed to be in its final position. The quicksort
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algorithm then recurses on the region to the left of the pivot and the region to the
right. The simple recursive quicksort can be expressed in less than twenty lines of

code. I now examine explore efficient implementations of quicksort.

6.3.1 Base Algorithm

An excellent study of fast implementations of quicksort was conducted by Sedgewick,
and I use the optimized quicksort he develops as my base algorithm [Sedgewick 78].
I now briefly describe the three main optimizations that are applied to the simple
recursive quicksort to convert it to the implementation recommended by Sedgewick.

Sedgewick advocates using an iterative quicksort rather a recursive one due to the
expense of performing procedure calls. By adding an auxiliary stack to keep track
of the algorithm’s state, the recursion can be turned into a loop which pushes and
pops descriptions of the work to be performed. This conversion from a recursive to
an iterative algorithm does not change the order in which the keys are accessed.

Sedgewick’s second suggestion is that the pivot be chosen as the median of three
random keys. This is a common optimization of quicksort and was first suggested by
Singleton [Singleton 69]. The quality of a partition pass depends on how evenly sized
the resulting subsets are. A bad choice of pivot can result in partitioning the set so
that 99% of the keys are in one subset and only 1% are in the other. The closer the
pivot is to the median of the list, the more balanced the two subproblems will be and
the faster the algorithm will sort. Rather than pick a key as the pivot at random,
Sedgewick’s implementation selects the median of the first, middle and last keys in
the set as the pivot. The effect that this optimization has on the expected instruction
cost of quicksort has been well studied [Sedgewick 77].

Sedgewick’s final optimization is to sort small subsets using insertion sort rather
than quicksort, as we already did with mergesort. To minimize instruction costs,
Sedgewick advocates not sorting any of the small subsets until the end. In his op-
timized quicksort, a subset to be sorted is ignored if its size is less than a threshold
value. At the end of the quicksort, a sentinel is placed at the end of the array,
and an insertion sort pass is made through the entire set to sort the small subsets.
The sentinel allows a bounds check to be eliminated in the insertion sort resulting
in an efficient algorithm for sorting the small subsets. This bounds check could not

have been eliminated had the small subsets been sorted individually when they were
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popped off the work stack.

6.3.2 Memory Optimizations

In practice, quicksort generally exhibits excellent cache performance. Since the algo-
rithm makes sequential passes through the source array, all keys in a block are always
used and spatial locality is excellent. Quicksort’s divide-and-conquer structure also
gives it excellent temporal locality. If a subset to be sorted is small enough to fit in
the cache, quicksort will incur at most one cache miss per block before the subset
is fully sorted. Despite this, an examination of the memory behavior of the base
quicksort reveals two ways in which its cache performance can be improved.

The first memory optimization is to remove Sedgewick’s elegant insertion sort at
the end and instead sort each small subset when it is first encountered. While saving
them all until the end makes sense from an instruction cost perspective, it is exactly
the wrong thing to do from a cache performance perspective. When quicksort pops
a small subset to sort off of its work stack, it is highly likely that all of the keys
in this subset will be in the cache since they were just partitioned. Sorting small
subsets with an unoptimized insertion sort at the time that they are popped off of
the work stack will avoid any cache misses. In the base quicksort on the other hand,
the insertion sort pass at the end needs to load every key into the cache. If the set
size is larger than the cache, this will incur a substantial number of cache misses. |
call the base quicksort with this optimization applied the memory-tuned quicksort.

The second memory optimization is to have quicksort perform a multi-way par-
tition similar to the multi-way merge used in multi-mergesort. Although quicksort
incurs only one cache miss per block when the set is cache-sized or smaller, larger
sets incur a substantial number of misses. The initial passes made by quicksort suffer
from the same problem as the second phase of the tiled mergesort algorithm. To
fix this inefficiency, a single multipartition pass is used to divide the full set into a
number of subsets which are likely to be cache sized or smaller.

Multipartitioning is used in parallel sorting algorithms to divide a set into subsets
for the multiple processors [Blelloch et al. 91, Hui & Sevcik 94]. The performance of
these parallel sorts depends on the work being balanced evenly between processors,
and there are complex pivot selection algorithms to divide up the keys as evenly as

possible. T use a simpler approach and choose the number of pivots so that the number
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Figure 6.9: The chance that a partitioned subset is greater than the cache.

of subsets larger than cache is small on average. I partition the set into k subsets
where k is chosen so that the average subset size is C'acheSize/3, and analysis shows
that the chance that a given subset is larger than the cache is less than 5%. Feller
shows that if y partitions are placed randomly in a range of length 1, the chance of
a resulting subrange being of size x or greater is exactly (1 — z)¥ [Feller 71, Vol. 2,
Pg. 22]. Let N be the total number of keys and C be the cache size in keys. To
divide the set so that the average subset is of size (C'/3, it needs to be partitioned
into 3N/C pieces, requiring (3N/C) — 1 pivots. Feller’s equation indicates that after
the multipartition, the chance that a subset is larger than C is (1 — C/N)EN/O)-1,
Figure 6.9 shows this expression for €' = 262,144 while N is varied from 256,000
to 4,096,000. This graph shows that with this simple heuristic, the chance that a
resulting subset is larger than the cache is small. In the limit as N grows large, the

percentage of subsets that are larger than the cache is ¢, less than 5%.

The multipartition requires a number of auxiliary data structures. Unlike a bi-
nary partition, a k-way partition cannot easily be performed in place, and instead,
a temporary list is allocated for each of the & subsets. A difficulty is that the size

of the resulting subsets is not known ahead of time. In a pathological case, one list
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may contain all but & — 1 of the keys. To alleviate this problem, the temporary lists
are implemented as linked lists of blocks of keys. The lists start with a single block
of keys, and new blocks are allocated and linked together as needed. The number
of keys per block was varied between 100 and 5,000 and had very little impact on
performance. In addition to these auxiliary lists, an array of size £ — 1 is needed to

store the pivots.

The multipartition quicksort executed the following algorithm. It first chooses
k — 1 pivots, sorts them, and stores them in the pivot array. Each key in the source
array is then moved to the temporary list holding the appropriate subset, and the
subset to which a key belongs is determined by binary searching through the pivot
array. After partitioning the entire source array it copies the keys from each of
the temporary lists back into the source array and sorts each subset using the base
quicksort. Since we expect the subsets to fit in the cache, it makes more sense to
sort them with the base quicksort than with the memory-tuned quicksort, due to its

lower instruction cost.

In practice, the memory-tuned quicksort does not incur a significant number of
cache misses until the set size is more than twice the size of the cache. For this reason,
the multipartition quicksort only performs the multipartition if the set is more than
twice the size of the cache. I refer to the quicksort algorithm with the multipartition

as multi-quicksort.

As with our multi-mergesort, multi-quicksort is less efficient from an instruction
cost perspective than the base quicksort. Also like the multi-mergesort, we expect
multi-quicksort to exhibit good cache behavior. Each block of keys will be faulted
into the cache once when read from the source array and once when placed onto a
temporary list. After the multipartition is finished, the keys will again be faulted
when read from the temporary lists and again when writing back into the source
array. If all of the k subsets are cache-sized or less, cache misses will not occur during
the sorting of the subsets. This yields an optimistic total of four misses per source
block, the same as the multi-mergesort. In practice, some of the subsets will be larger
than the size of the cache, but since this is uncommon it should not significantly affect

the number of misses per key.
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Figure 6.10: Instruction counts for quicksort.

6.3.3 Performance

Figure 6.10 shows the number of instructions executed per key for each of the three
quicksort algorithms sorting 64 bit uniformly distributed integers. The base quick-
sort executes the fewest instructions with the memory-tuned quicksort executing a
constant number of additional instructions per key. This difference is due to the ineffi-
ciency of sorting the small subsets individually rather than at the end as suggested by
Sedgewick. When the set size is greater than twice the cache size, the multi-quicksort
performs the multipartition, and this graph shows that the multi-quicksort executes

up to 20% more instructions than the memory-tuned quicksort.

Figure 6.11 shows the cache performance of the three quicksort algorithms. This
graph shows that all of the quicksort algorithms incur very few cache misses. The base
quicksort incurs fewer than two misses per key for 4,096,000 keys, lower than all of the
other algorithms up to this point with the exception of the multi-mergesort. Memory-

tuned quicksort eliminates a constant 0.25 misses per key for large set sizes by sorting
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Figure 6.12: Execution time for quicksort on a DEC Alphastation 250.
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small subsets early. This graph also shows that the multi-way partition produces a flat
cache miss curve much the same as the curve for the multi-mergesort. The maximum
number of misses incurred per key for the multi-quicksort is 1.07, validating the
conjecture that it is uncommon for the multipartition to produce subsets larger than
the size of the cache.

Figure 6.12 shows the execution times of the three quicksort algorithms. All three
of these algorithms perform similarly on the DEC Alphastation 250. This graph
shows that sorting small subsets early is a benefit, and the reduction in cache misses
outweighs the increase in instruction cost. The multipartition initially hurts the
performance of the multi-quicksort due to the increase in instruction cost, but the
low number of cache misses makes it more competitive as the set size is increased.
4,096,000 keys was chosen as the maximum set size due to the physical memory limits
on the machine I used. This graph suggests that if more memory were available and
larger sets were sorted, the multi-quicksort would outperform both the base quicksort

and the memory-tuned quicksort.

6.4 Comparison

To compare the performance of the eight sorting algorithms from this chapter, the
performance graphs for the heapsorts, mergesorts and quicksorts are combined to-
gether. The combined graphs for instruction count, cache misses and cycles executed
per key are shown in Figures 6.13-6.15.

The instruction count graph shows that the heapsorts execute the most instruc-
tions, while the mergesorts execute the least. It might be surprising that the merge-
sorts execute fewer instructions than the quicksorts. Sedgewick’s analysis supports
this result, indicating that quicksort’s inner loop executes roughly the same num-
ber of instructions as the optimized mergesort’s and is executed 38% more often
[Sedgewick 88]. Mergesort also has a very regular structure with no data-dependent
control flow which makes it more amenable to traditional optimization that quicksort.
In the mergesorts, sorted lists of size four were initially created with a very efficient
inline sort. This was not possible with quicksort, as the small subsets varied in size,
and a non-inline sort was needed. The inner loop of mergesort was also very amenable
to unrolling, which eliminates the majority of the loop overhead. Since the number

of swaps performed by quicksort each partition pass is not known ahead of time, the
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loop overhead of the partition pass can not easily be amortized using loop unrolling.

The cache miss graph shows that the memory optimizations significantly reduce
the cache misses incurred for large data sets. For 4,096,000 keys, cache misses are
reduced by up to 57% for heapsort, 90% for mergesort and 40% for quicksort. This
graph also shows the difference between the in-place and non-in-place sorting algo-
rithms. The in-place algorithms incur only 0.25 compulsory misses per key and do
not start incurring non-compulsory cache misses until the set size is greater than
the cache size (n > 262,144). The non-in-place sorts, on the other hand, incur 0.5
compulsory misses per key since they require an auxiliary array the same size as the
source array. This also causes them to start incurring non-compulsory misses when
the set size is greater than half the cache size (n > 131,072). It is interesting to
see that neither of the two algorithms with the best cache performance sort in-place.
Both the multi-mergesort and the multi-quicksort use auxiliary structures at least
as large as the source array. My belief at the beginning of this study was that an
in-place algorithm would have the best cache performance. This study shows that
although these two algorithms use twice as much memory as the in-place algorithms,

they use the cache more efficiently and as a result incur fewer cache misses.

The graph of execution time shows that all of the base algorithms are outper-
formed by memory-tuned algorithms for large set sizes. The 4-heap sorts up to 82%
faster than the base heapsort, the multi-mergesort sorts up to 75% faster than the
base mergesort and the memory-tuned quicksort sorts up to 4% faster than the base
quicksort. While implicit heaps may be an excellent priority queue, this graph shows
that they cannot compete with the other algorithms for sorting. The 4-heap has a
lower instruction count and better spatial locality than the traditional heap, but it
still executes more instructions and has worse temporal locality than the memory-
tuned mergesorts and quicksorts. The two memory tuned mergesorts and all three of
the quicksorts perform well, and their execution time curves are tightly grouped on
this graph. If stable sorting is not important, the base quicksort and the memory-
tuned quicksort are the best choices since they are in-place and can sort larger sets of
keys without the danger of paging. The tiled mergesort is only 10% slower than the
base quicksort, making it a good choice if a stable sorting algorithm is needed. Nei-
ther the multi-mergesort or the multi-quicksort are in-place or stable. Nevertheless,

these two algorithms offer something that none of the others do. They both incur
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very few cache misses which renders their overall performance far less sensitive to
cache miss penalties than the others. As a result, these algorithms can be expected

to outperform the others as relative cache miss penalties continue to increase.

6.5 Summary

This chapter presents a study of the cache performance of heapsort, mergesort and
quicksort. For all three of these, a base algorithm is tuned using traditional optimiza-
tion techniques. These base algorithms are then examined for inefficiencies in their
memory behavior and appropriate memory optimizations are applied.

The performance of the algorithms presented in this chapter argues strongly for
both design and analysis techniques that take caching into account. For heapsort,
mergesort and quicksort, the execution time of the base algorithm was improved by
applying simple memory optimizations. Of the eight sorting algorithms presented,
the two slowest for 4,096,000 keys were base variants while five of the six fastest were
memory-tuned variants. This shows that the optimization of both instruction cost and
memory behavior offers better overall performance than optimizing instruction cost
alone. It is important to recognize that these gains would not have been predicted by
unit cost analyses. The multi-mergesort, for instance, executes 70% more instructions
that the base mergesort, clearly inferior from a unit-cost perspective, yet sorts up to
75% faster on an Alphastation 250. Only by utilizing analysis techniques that account
for the effects of caching can the performance of these algorithms be fully understood

and the best possible performance be realized.



Chapter 7

Lock-Free Synchronization

Throughout this thesis, I have examined the interaction between caches and al-
gorithms. Up to this point, I have only examined this interaction in the context of
sequential algorithms. I now investigate whether the same analysis and optimiza-
tion techniques can be applied to a class of parallel algorithms for shared-memory

multiprocessors.

Like sequential machines, shared-memory multiprocessors have fast local caches,
and missing in these caches results in long delays as the data is read over the inter-
connection network. Despite this, most analyses of parallel algorithms are performed
in models in which all memory accesses have unit cost. There are number of parallel
machine models that differentiate local memory references from remote references
[Snyder 86, Culler et al. 93]. Unfortunately, the majority of analyses of parallel al-
gorithms are performed in the unit-cost PRAM model [Fortune & Wyllie 78].

There are important differences between parallel and sequential machines that
need to be accounted for if memory system performance is to be understood. On
parallel machines, multiple processors can access the interconnection network at the
same time, creating contention on the network. The time to service a cache miss on
a parallel machine is partially dependent on this contention. Unlike sequential ma-
chines in which cache miss penalties are approximately constant, miss penalties on
parallel machines depend on the behavior of the other processors. Another important
difference is that parallel machines offer synchronization instructions that are used
to coordinate the sharing of data between processors. These synchronization instruc-
tions often invoke data coherency mechanisms which make use of the interconnection

network, further impacting the memory system performance of the other processors
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in the system.

To investigate how the techniques from the previous chapters can be applied to
parallel algorithms, I examine the memory system performance of lock-free synchro-
nization protocols. These are an important and relatively new class of concurrent
objects that allow parallel algorithms to synchronize without the use of locks. Un-
fortunately, existing lock-free synchronization protocols are slower than locks in the
common case, and this has prevented their adoption in practice.

In this chapter, I present a model for investigating the memory system perfor-
mance of lock-free synchronization protocols. This performance model reflects three
important architectural characteristics: first, that cache misses which must access
remote memory are more expensive than cache hits, second, that synchronization in-
structions can be even more expensive than cache misses, and third, that optimistic
synchronization policies result in unsuccessful thread updates which consume com-
munication bandwidth and slow the progress of the other threads. To validate the
importance of these characteristics, the model’s predictions are compared with the
results of parallel machine simulations. The predictions of relative performance are
fairly accurate, suggesting that these characteristics are an important factor in the
overall performance of lock-free synchronization protocols.

The analysis in this chapter indicates that no existing protocol provides insensitiv-
ity to common delays while still offering performance equivalent to locks. Accordingly,
I introduce a protocol based on a combination of existing lock-free techniques that

provides low latency and insensitivity to preemption delays.

7.1 Background

Threads running on shared-memory multiprocessors coordinate with each other via
shared data structures called concurrent objects. In order to prevent the corruption
of these concurrent objects, threads need a mechanism for synchronizing their access
to them. Typically, this synchronization is provided with locks protecting critical sec-
tions, ensuring that at most one thread can access an object at a time. Concurrent
threads are difficult to reason about, and critical sections greatly simplify the building
of a correct shared object. While much work has been done to improve the perfor-
mance of locks [Anderson 90, Graunke & Thakkar 90, Mellor-Crummey & Scott 91],

critical sections are not ideally suited for asynchronous systems. The delay or failure
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of threads holding locks can severely degrade performance and cause problems such
as convoying, in which parallelism is not exploited as threads move together from
lock to lock, priority inversion, in which a high priority thread cannot make progress
because it needs a lock being held by a low priority thread that has been preempted,
and deadlock, which occurs when all active threads in the system are waiting on locks
[Zahorjan et al. 88]. In the extreme case, the delay of a single thread holding a single
lock can prevent all other threads from making progress. Sources of these delays in-

clude cache misses, remote memory accesses, page faults and scheduling preemptions.

Recently, researchers have proposed concurrent objects that synchronize without
the use of locks. As these objects are built without locks, they are free from the
aforementioned problems. In addition, lock-free objects can offer progress guaran-
tees. A lock-free object is non-blocking if it guarantees that some thread completes
an operation in a finite number of steps [Herlihy 90]. A lock-free object is wait-free
if it guarantees that each thread completes an operation in a finite number of steps
[Herlihy 90]. Intuitively, the non-blocking property says that adversarial scheduling
cannot prevent all of the threads from making progress. The wait-free property is
stronger and says that starvation of any thread is not possible regardless of the po-
tential interleavings of operations. Johnson has modeled the performance advantages
that lock-free synchronization offers over traditional locking when different types of

delays occur [Johnson 95].

There has been a considerable amount of research supporting the practical use
of lock-free synchronization. Herlihy and Moss have proposed architectural changes
that enable efficient lock-free computing [Herlihy & Moss 93]. Bershad has described
a technique that uses operating system support to simulate important synchroniza-
tion instructions when they are unavailable in the architecture [Bershad 93]. Nu-
merous lock-free implementations of specific data-structures have been proposed in-
cluding Wing and Gong’s object library [Wing & Gong 90], Massalin’s lock free ob-
jects [Massalin & Pu 89], Valois’s linked structures [Valois 95], and Anderson and
Woll’s union-find object [Anderson & Woll 91]. In addition, a number of software
protocols have been developed that generate lock-free concurrent objects given a
traditional sequential implementation of the object. Herlihy’s small object proto-
col and wait-free protocol [Herlihy 91], Anderson and Moir’s large object protocol
[Anderson & Moir 95], Alemany and Felten’s protocols [Alemany & Felten 92|, and



94

Barnes’s caching method [Barnes 93] fall in this category. Since these protocols build
concurrent objects with no knowledge of the object’s semantics, I call them black-box
synchronization protocols. These black-box protocols are of practical interest since
they can be applied to any sequential object and could be automatically applied
by a compiler. Unfortunately, these protocols do not perform as well as traditional
lock-based synchronization in practice. This chapter examines the performance char-

acteristics of these black-box synchronization protocols.

7.2 Performance Issues

A common criticism of lock-free synchronization techniques is that while they offer
real-time and fault-tolerant benefits over locks, these benefits are not realized when
there are no thread delays and that in actual use, they perform poorly. In general,
lock-free protocols have higher latency and generate more memory contention than
locks. In this section, I describe three important architectural characteristics that

affect the performance of lock-free synchronization protocols.

1. Cache misses, which must access remote memory, are more expensive than

cache hits

With few exceptions, modern parallel machines have fast local caches, and ac-
cessing these caches is one to two orders of magnitude faster than accessing main
memory. In addition, depending on the coherency protocol, cache hits do not put
a load on the communication medium used to support shared memory, unlike cache
misses. Given that caching can have such a large impact on performance, we would
not expect a PRAM-style analysis in which all memory accesses have unit cost to
accurately predict performance.

The idea of treating remote and local references differently is not a new one.
Many models, including Snyder’s CTA and the LogP model include this distinction
[Snyder 86, Culler et al. 93]. The notion of reducing the number of non-local memory
references during synchronization has also been previously investigated. Anderson
and Mellor-Crummey and Scott consider local versus remote accesses when explaining
the contention caused by Test-and- Testé9Set locks and in the design of their queue-
based spin locks [Anderson 90, Mellor-Crummey & Scott 91].
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2. Synchronization instructions are even more expensive that cache misses

Lock-free synchronization protocols make use of synchronization instructions such
as Test&Set, Compare&Swap and the combination of Load Linked and Store Condi-
tional. On current machines these synchronization instruction incur a cycle cost
much higher than that of a normal memory reference. For example, on an Alpha
3000/400 with a 130 MHz Alpha 21064 CPU [Dig 92], | observed a cost of 140 cycles
for the pair of Load Linked and Store Conditional instructions, 3.5 times more expen-
sive than a normal uncached read. This property is not exclusive to this particular
architecture, and synchronization instructions for many modern processors incur sim-
ilar costs [Bershad 93, Bershad et al. 92]. 1 do not distinguish synchronization from
non-synchronization instructions because of an inherent difference in complexity, but
rather because of the implementation differences that occur in practice.

This distinction is also important when the necessary synchronization instruc-
tions are unavailable on an architecture and must be simulated by the operating
system [Bershad 93]. In these situations, the code executed to simulate the desired
instruction can take much longer than a single memory operation and needs to be
taken into account. Lastly, distinguishing synchronization instructions from non-
synchronization instructions is important on distributed shared memory systems such
as Munin [Carter et al. 91] or Midway [Bershad et al. 93] or shared memory multi-
processors such as Dash [Lenoski et al. 92] that support a consistency model looser
than sequential consistency. In these systems, synchronization instructions invoke
the coherency mechanism which in turn results in costly communication.

Again, I find that analyzing synchronization algorithms in a PRAM-style model

that assigns all instructions unit cost can introduce unnecessary inaccuracy.

3. Optimustic synchronization policies result in unsuccessful thread updates that
consume communication bandwidth and slow the progress of the other threads

in the system

In order to be non-blocking, a number of the lock-free protocols behave optimisti-
cally. That is, all threads proceed as if they will succeed. Once threads realize that
their update has failed, either they begin another attempt or they cooperate in order
to help the successful thread [Barnes 93, Herlihy 91]. This optimistic policy results in

the waste of machine resources when there is contention for a shared object. Processor
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cycles are wasted that could possibly be used by another thread. More importantly,
communication bandwidth is wasted which in turn slows down the cache misses of
the successful thread. As more unsuccessful threads contend for the communication
bandwidth, the progress of the system as a whole can be crippled. This is what
Alemany and Felten refer to as “useless parallelism” [Alemany & Felten 92]. Herlihy
attempts to alleviate this problem by using exponential backoff to reduce the number
of unsuccessful updates [Herlihy 90].

The performance degradation caused by an optimistic policy is important and
should be quantified in a good performance model.

[ now develop a simple analytical model for predicting black-box protocol perfor-
mance that takes these characteristics into account. Comparing the predictions of
this model with simulated execution results allows me to validate the model which in

turn validates the importance of these characteristics.

7.3 Performance Model

I now present a simple performance model that reflects the cache miss costs, synchro-
nization costs and wasted work costs discussed in the previous section. It is intended
that this model be simple enough to evaluate algorithms quickly, yet still provide
good insight into practical performance. This model can be used to explain the
performance of existing protocols, determine how changes in architecture will affect

protocol performance, and serve as a guide for designers of new lock-free protocol.

7.3.1 Model Variables

My performance model measures the amount of work done by a particular protocol
in order to complete a single update to a shared object. The model assumes that the
data caches start out cold and that all instruction fetches hit in the cache. I divide
instructions into three categories. The first category contains local instructions such
as adds, compares and memory accesses that hit in the cache. The second group
contains memory accesses that miss in the cache and must access remote memory.
The third group contains synchronization instructions such as Compareé/Swap and

Store Conditional.

In the model, local instructions have cost 0 in order both to keep the model simple
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and to reflect their low cost. Instructions in the second group are given a normalized
cost of 1. Lastly, in order to reflect their higher cost, synchronization instructions are
given cost C.

In the model, N denotes the number of threads in the system. S represents the
size of the sequential object’s state in cache blocks. W denotes the number of cache
blocks that are written in the course of an operation. R denotes the number of cache
blocks that are read that are not also written. Reads and writes are differentiated in
this model because some back-box protocols perform more work on writes than on
reads. Since I only consider non-overlapping reads and writes, R + W is less than

or equal to S and could be significantly smaller. Enqueuing to a 100 word stack, for
instance, might have S =13, R=1and W = 2.

7.3.2 Workloads

I consider the performance of protocols in the presence of three different adversaries,
each of which reflects a different workload. The first case to consider is when there
is no contention and a single thread applies an operation to the concurrent object.
Torrellas et al. found that on a 4 CPU multiprocessor running System V., threads
accessing the six most frequently accessed operating system data structures found
them unlocked from 85 to 99 percent of the time [Torrellas et al. 92]. While this says
nothing about user code or large multiprocessors, it does suggest that well written
systems are designed to minimize the contention on shared objects. In order to
measure the latency of a protocol in this case, I introduce a weak adversary called best
that allows a single thread to execute its operation to completion without blocking.

While we do not expect high contention to be the common case, it is still important
to know how a protocol’s performance degrades when an object is accesses by multiple
threads concurrently. In order to model high contention, I include a bad scenario
in which all N threads try to apply an operation concurrently and the adversarial
scheduler can arbitrarily interleave their instructions.

A number of lock-free protocols rely on the operating system to execute code on
a thread’s behalf when it blocks, either on 1/O or due to a scheduler preemption. For
these protocols, there is an important distinction between the scheduler blocking a
thread and the scheduler simply not allowing a thread to run. In order to measure the

effect that an extremely powerful adversary can have on these protocols, I also include
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Table 7.1: Total amount of work done to complete a single operation.

Method Best Case Bad Case Worst Case
Spin-lock R+WH+CH+1 R+ W+ N(C+1) 00
Herlihy’s small object S+C+3 N(S+C+3) N(S+C+3)
Herlihy’s wait-free S+2N+C+3 N(S+2N+C+3) | N(S+2N+C+3)
Alemany and Felten’s S+3C+4 NC+1)4+ S N(S+2C+3)+
solo protocol +2C +3 M%l(C +1)
A and F'ssolow/ log | R+2W+4+C+1 R+2W + N(C+1) 00
Barnes’s Caching R(4C + 3)+ N(R(4C + 3)+ N(R(4C + 3)+
Method W(C +4)—C—1 | W(6C +4)—C —1) | W(6C +4) - C — 1)
Solo-cooperative ‘ R+W+C+1 ‘ R+W 4+ N(CH+1) ‘ 00 ‘

a worst scenario, in which all N threads are active and the adversarial scheduler can
arbitrarily interleave their instructions and cause them to block. Once a thread is

blocked, the worst case adversary has no obligation to wake the thread up.

7.4 Applying the Performance Model

[ now evaluate seven synchronization protocols in the model: five existing lock-free
protocols, a new lock-free protocol of my own design, and for comparison a spin-
lock. The existing-lock free protocol I evaluate are Herlihy’s small object protocol
and wait-free protocol, Alemany and Felten’s solo protocol and solo protocol with
logging, and Barnes’s caching method. A summary of the evaluation of the protocols

in the model is shown in Table 7.1.

7.4.1 Spin-lock

Spin-locks can be used to implement critical sections, a straightforward way to syn-
chronize accesses to concurrent objects. To update an object using a spin-lock, a
thread first reads the lock’s value to see it is free. If it is not free, the thread spins
on the lock value, repeatedly reading it until it is free. Once the thread notices that

the lock is free, it attempts to acquire the lock using a synchronization instruction



99

such as Compare&Swap. If the CompareésSwap succeeds, the thread owns the lock
and can apply its operation to the object and release the lock. If the CompareéSwap
fails, the thread returns to spinning on the lock.

In the best case scenario, the single thread reads the lock value at cost 1 and
acquires the lock at cost . The thread applies its operation at cost R + W, and
since the lock value is cached, no cost in incurred by the thread to release the lock.
This yields a total cost of R+ W + C + 1 for the best case. In the bad case, the
scheduler can cause the lock to be a point of contention, and it can force all N of the
threads to read the lock value (cost N) and attempt to acquire the lock (cost NC'). It
then allows the successful thread to apply its operation to the object and release the
lock (cost R+ W), for a total bad case cost of R+ W 4+ N(C 4 1). In the worst case
scenario the scheduler can prevent the spin-lock from ever completing an operation.
To achieve this, the worst case scheduler simply needs to allow a thread to acquire
the lock and then block the thread. If the scheduler never wakes this thread up,
no other threads can make progress, and the protocol is deadlocked. While this can
easily be caused by an adversarial scheduler, it can also happen in a multiprocessor

due to process or processor failure.

7.4.2 Herlihy’s Small Object Protocol

Herlihy’s small object protocol is the earliest block-box technique for synchronizing
accesses to concurrent objects without the use of locks [Herlihy 90, Herlihy 91]. In
the small object protocol, all references to the concurrent object are made through
a single shared pointer that points to the object’s state. Updates are not directly
applied to this version of the object. Instead, the object is copied, the operation is
applied to this copy, and if no other threads have changed the shared pointer since
the copy was taken, the shared pointer is changed to point at this modified copy. In
the event that the pointer has changed since the copy was performed, the update is
considered to be a failure, a new copy is made, and the process is attempted again.
Although individual threads may never make progress due to repeated failures, the
system as a whole is guaranteed to make progress since a failed update is always
caused by another thread’s successtul update.

The small object protocol can be implemented with any universal synchronization

primitive, and I consider an implementation using the combination of load-linked and
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store-conditional as recommended by Herlihy. To update the shared object, threads
load-linked the shared pointer and make a local copy of the object’s state. A parity
word at the beginning and end of the local copy need to be checked to validate the
copy. The thread then applies its operation to the local copy of the object. Finally,
the thread attempts to install the local copy with a store-conditional to the shared
pointer. If the store-conditional tails, the thread begins again otherwise it returns
having successfully updated the shared object. In the best case scenario, the load-
linked" incurs cost 1, the copy incurs cost S, the validate incurs cost 2, and the
store-conditional incurs cost C, for a total cost of S 4+ C' 4 3. In both the bad and
worst case, the scheduler can force all N threads to load-linked the pointer, copy
and validate the object, apply their operation and attempt the store-conditional for

a total cost of N(S + C + 3) per successful operation.

7.4.3 Herlihy’s Wait-Free Protocol

Herlihy’s wait-free protocol offers a stronger progress guarantee than the small object
protocol by incorporating a technique called operation combining. Operation com-
bining allows the operations of multiple threads to be completed in a single update
of a shared object. By adding operation combining to the small object protocol, a
thread’s operation may complete even though the thread never successfully updated
the object itself. Adding operation combining to the small object protocol requires
two auxiliary structures: an announcement table and a result table, each of which
have one entry per thread. In the wait-free protocol, a thread first writes its intended
operation in the announcement table and then makes a local copy of the object’s
state and the result table. The thread then applies to its local copy of the object its
own operation as well as all of the other operations listed in the announcement table.
The results of these operations are stored in its local copy of the result table. After
applying the operations, the thread attempts to install its local copy of the object
and the result table using a store-conditional. If the update fails, the thread checks
in the shared result table to see if another thread performed its operation already.
If not, the thread loops back and tries the protocol again. Herlihy proves that a
thread’s operation is guaranteed to complete within two iterations of the protocol

[Herlihy 91]. In my model, the wait free protocol incurs the same cost as the small

1T treat load-linked as a normal memory operation in the calculations.
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object protocol, with the addition of 2N work due to the cost of copying of the result

table and scanning of the announcement table.

7.4.4 Alemany and Felten’s Solo Protocol

Both of Herlihy’s protocols suffer from the problem that the repeated copying of the
object performed by the unsuccessful threads slows down the progress of the successful
thread. Alemany and Felten refer to this as useless parallelism, and they propose a
way to reduce it using support from the operating system [Alemany & Felten 92]. To
reduce useless parallelism, they develop a protocol that explicitly limits the number
of concurrent threads to a small number K. When K = 1, they call this their solo
protocol.

In the solo protocol, a shared counter is used to indicate the number of threads
that are allowed to concurrently attempt an update to the object, and this counter
is initially set to one. If a thread wants to update the shared object, it spins on the
counter until its value is greater than zero. It then attempts to atomically decre-
ment the counter’s value if it is still greater than zero, and if it succeeds it applies
Herlihy’s small object protocol and atomically increments the counter. This protocol
reduces useless parallelism in high contention cases since the majority of threads spin
in the cache on the counter value rather than repeatedly copying the object over the
interconnection network. In order to provide tolerance to delays, the operating sys-
tem increments the counter when a thread blocks while updating the shared object,
allowing another thread to attempt an update.

In the best case scenario, a thread incurs cost C' + 1 to check and decrement the
counter, cost S 4+ C' + 3 to apply the small object protocol, and cost C' to increment
the counter, for a total cost of S+ 3C + 4. In the bad case scenario, the adversary
can cause the counter to be a point of contention, forcing all N threads to read the
counter and attempt to decrement it at cost N(C +1). Adding this to the cost of the
small object protocol and an increment yields a total cost of N(C'+ 1)+ S +2C +3
for the bad base adversary. In the worst case scenario, the scheduler has the power
to block threads, and this can be used to create even more work. In the worst
case, the adversary schedules the update in the same way as the bad case with the
exception that the thread that acquires the counter is blocked before it updates the

pointer to the shared object. The operating system increments the counter and the
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adversary lets another thread attempt its update, again maximizing work and again
blocking the thread before it completes its update. This continues until all of the
threads have been blocked in an update, at which time the adversary unblocks them

all and lets them all attempt to install their version of the object. This creates work

f\;oi(C—l—l)—l—S—l—ZC—l—?):N(S—I—ZC—I—3)—|—W(C—I—1) in the worst case.

7.4.5 Alemany and Felten’s Solo Protocol with Logging

An additional inefficiency of Herlihy’s small object protocol is that it copies the entire
state of the object even if the update only changes a small percentage of the object’s
state. Since only one thread updates the shared object at a time in the solo protocol,
it is safe to directly update the shared version of the object provided that there is a
mechanism to back out a partial update if a threads blocks during its operation. In
the solo protocol with logging, threads do not copy the object and instead update
the shared version and log their changes. In the event that a thread blocks during
an update, this log is used by the operating system to roll the shared object back
to its original state, and the thread is required to begin its operation again when it
unblocks. The solo protocol with logging incurs the same work in our model for the
best and bad case as a spin-lock with the exception that writes to the object incur
an extra cost of 1 per write in order to log the original value of the changed word of

state.

While immune to deadlock, Alemany and Felten’s solo protocol with logging can
be made to livelock by the worst case adversary. In the solo protocol with logging,
when a thread blocks, its partial operation is first undone by the operating system
using the log, the thread is then removed from the critical section and another thread
is allowed to begin its operation. By repeatedly allowing threads to make progress
and then blocking them before completion the scheduler can cause the protocol to
process indefinitely without completing an operation. Thus, while retaining many
of the benefits of the lock-free protocols, Alemany and Felten’s solo protocol with
logging is neither wait-free nor non-blocking. This livelock behavior is not exclusive
to an adversarial scheduler. If a thread’s operation is too long to execute in a single
scheduling quantum, the thread will always block in the operation, and this will cause

livelock.
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7.4.6 Barnes’s Caching Method

The final existing lock-free protocol I evaluate is Barnes’s caching method [Barnes 93].
Of all of the black-box protocols, only Barnes’s caching method produces implemen-
tations that allow threads to make progress in parallel. Barnes’s protocol is extremely
complicated and I do not attempt to fully explain it here. Instead, I give a high-level
description of how it works and the cost it incurs in my model.

In Barnes protocol, threads first load the necessary data and perform their opera-
tions on the local cached copy at cost (R+ W). In order to cooperate safely, Barnes’s
protocol effectively creates a program that the threads interpret together. The pro-
gram is first installed at a cost of C'. The program is then interpreted at a cost of
(4C + 2) per operation read and (6C' + 3) per operation write. An optimization can
be made for the first read or write resulting in a reduction of (2C 4 1). This totals
R(4C +3)+ W(6C +4) — C — 1. In the worst and bad scenarios, all N threads can
be made to perform all R(4C + 3) + W(6C +4) — C — 1 work.

7.4.7 The solo-cooperative protocol

Choosing among the existing synchronization protocols involves a tradeoff be-
tween theoretical progress guarantees and practical performance. At one extreme,
Herlihy’s wait-free protocol offers the strongest progress guarantees and incurs sub-
stantial overhead in doing so. Herlihy’s small object protocol gives up the wait-free
property for the non-blocking property and a decrease in latency. Similarly, Barnes’s
caching method gives up the wait-free property in exchange for non-blocking and
parallelism which could possibly improve performance. Alemany and Felten’s solo
protocol performs better under contention but is not robust to processor failure.
Their solo protocol with logging offers even lower latency but gives up non-blocking
and is simply tolerant of common thread delays. Lastly, there are finely tuned locks
that offer good performance but no tolerance of delays.

No protocol exists that offers the same performance as locks and tolerance to
some delays. Because most existing protocols have evolved from the more theoretical
protocols, it is not surprising to find that such a protocol does not exist. [ now describe
a protocol that offers good performance in practice and is insensitive to preemption
delays. In order to achieve this, I combine the idea of Barnes-style thread cooperation

with the single active thread used in Alemany and Felten’s solo protocol.
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Concurrent_Apply(op_name, op_args) {
repeat {
repeat {
old_op_ptr := op_ptr,
huntil (old_op_ptr <> 0);
tuntil (CompareéSwap(op_ptr, old_op_ptr, 0) = Success);

if (old_op_ptr <> 1) {
Complete_Partial_Operation(old_op_ptr);

}

ret_val := Sequential_Apply(op_name, op_args);
op_ptr := 1;

return(ret_val);

Figure 7.1: Pseudocode for main body of the solo-cooperative protocol.

The main problem with thread cooperation is that large overhead is introduced
when protecting the threads from each other. By having only one thread active at a
time, however, cooperation can be achieved with no overhead in the common case of
an operation that does not block. In the solo-cooperative protocol, a single thread at
a time is allowed to update the shared object, similar to locking. This single thread
updates the object without making a copy and without logging the changes being
made. In order to provide insensitivity to delays, I include a mechanism that allows
waiting threads to help finish the work of a blocked thread. If a thread blocks during
an operation, its state is stored in the object, and its ownership of the object is
released. A new thread can then use the stored state to finish the partially completed
operation and begin to apply its own changes. Anderson uses a technique similar

to this in the protection of his user-level scheduler in his scheduler activations work

[Anderson et al. 92].

Like Alemany and Felten’s protocols, I rely on support from the operating system
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to execute code on behalf of a thread when it blocks and unblocks. Support of this
kind is offered by extensible systems such as Spin [Bershad et al. 94a] and by kernel

mechanisms like scheduler activations [Anderson et al. 92].

Pseudocode for the body of the protocol appears in Figure 7.1. In the solo-
cooperative protocol, the object is protected by a variable called op_ptr which is
functionally similar to a lock. If op_ptr is 0, the object is “locked”; if op_ptr is 1
the object is free; and for all other values, the object is free, but there is a partially
finished operation to be finished, and op_ptr points its description. To update the
shared object, a thread first reads op_ptr and Compareé/Swaps 0 for a non-zero value,
guaranteeing exclusive access. If the thread sees that the old value of op_ptris 1, the
thread applies its operation, sets op_ptr back to 1 and returns. If the old value of
op_ptris not 1, the thread completes the partially finished operation and subsequently

applies its own operation.

When a thread blocks during an operation, the system bundles up the operation’s
state (stored in the thread’s stack and registers) and stores a pointer to this in op_ptr.
This has the effect of releasing op_ptr, thus making additional updates to the shared
object possible even though the executing thread has blocked.

When a thread that blocked during an operation is unblocking, it checks to see if
its operation has already been completed by another thread. If the waking thread’s
operation has not been completed, it will re-acquire op_ptr and will finish its opera-
tion. If the waking thread’s operation has been completed, it will read the operation’s

result from its control structure and will continue execution after the operation.

In the case that a new thread acquires op_ptr and finds a partially complete
operation, it cooperates by loading the blocked thread’s registers and continues the
execution of the partial operation. On completion of the blocked thread’s operation,
the cooperating thread writes the operation’s result in the blocked thread’s control

structure and returns to apply its own operation.

This solo-cooperative protocol has the problem that if a thread blocks on 1/0,
such as a page fault, all of the threads in the system that attempt to cooperate will
also block on this fault. While this may seem like a major flaw, it may have little
impact in practice. In general I expect contention for an object to be low and that
there will be no waiting threads. In the case that there are waiting threads, there

is a good chance that the waiting threads will also need data that is on the faulting
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page. While it is possible that additional progress could be made which would go
unexploited by this protocol, I expect that this would not happen sufficiently often
to be a problem.

In the best and bad case scenarios, the solo-cooperative protocol executes the same
number of non-local memory accesses and synchronization instructions as the spin-
lock. The worst case adversary can cause the solo-cooperative protocol to livelock,
similar to the solo protocol with logging. Thus this protocol is also neither wait-free
nor non-blocking. Recall that in the protocol, the state of a blocked thread’s partially
completed operation is stored under op_ptr. Upon encountering a partially complete
operation, a thread will try to load the state of this operation and finish it. To force
livelock, the scheduler first allows a thread to partially complete an operation and
then forces it to block. The scheduler can then repeatedly allow a new thread to
begin loading the state of the partially completed operation, and then block it before
it makes any progress on the operation, thus causing livelock. This behavior seems
limited, however, to the strongest adversary and there is no reason to expect this to

occur in practice.

7.5 Evaluation

From Table 7.1, we see that Herlihy’s protocols and Alemany and Felten’s solo pro-
tocol incur overhead S due to their need to copy the entire object. The overhead
renders these protocols impractical for objects with a large amount of state, such as
a thread stack. However, for objects with a small amount of state, such as a shared
counter, these protocols should be competitive in practice.

In Table 7.1, we also see that Barnes’ caching method relies heavily on synchro-
nization instructions. Barnes claims that although a large amount of overhead is
incurred per operation instruction, critical sections are designed to be short and sim-
ple. This technique could conceivably perform better than a copying protocol if the
objects were large and the operations consisted of only a few instructions.

In the high-contention bad case, we see that large amounts of memory contention
can be generated by Barnes’s and Herlihy’s protocols. In order to make these protocols
viable in the presence of a large number of active threads, they need a concurrency
restriction mechanism like exponential backoff. In the scenarios in which threads

do not block, we see that Alemany and Felten’s solo protocol, the solo-cooperative
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protocol and the spin-lock provide the combination of low latency and low contention.
Interestingly, these are the same three protocols that are neither non-blocking nor

wait-free, and all three can be kept from making progress by the worst case adversary.

7.6 Validation

The goal of this performance model is to make the evaluation of protocol perfor-
mance easy and fairly accurate. In order to investigate its accuracy, I now compare
the predictions of the bad case scenario with results produced by a parallel machine
simulator for Herlihy’s small object protocol and wait-free protocol, Alemany and Fel-
ten’s solo protocol and solo protocol with logging, the solo-cooperative protocol, and
for reference a test-and-Compareé/Swap spin-lock. Although queue-based spin locks
have some performance advantages over spin-locks, I chose a test-and-CompareéSwap
spin-lock because of its simplicity and low latency. I did not simulate Barnes’s caching
protocol due to its implementation complexity. In order to obtain information about
execution performance, I ran the protocols in Proteus, a parallel machine simulator
developed at MIT [Brewer et al. 92]. Proteus is an execution driven simulator that
takes as input augmented C programs and outputs execution times from a simulated
parallel run of the program.

For the simulations, Proteus was configured to model a bus-based multiproces-
sor running the Goodman cache-coherency protocol [Goodman 83]. In the Proteus
simulator, cache misses were 6 times as expensive as local cached instructions in the
absence of contention, and synchronization instructions were 12 times as expensive
(C' = 2). During the simulations, each thread ran on its own processor, and thread
delays did not occur. Thus the special-case code for the protocols using operating sys-
tem support was never executed. The simulations consisted of a number of threads,
varying from 1 to 20, alternately updating a shared object and performing 200 in-
structions worth of local work. I simulated the protocols using both a shared counter
and a circular queue as the shared object.

In the simulations, I did not include exponential backoff for any of the protocols.
Exponential backoff reduces resource contention by reducing concurrency, but does
not change the relationship between concurrency and contention in a given proto-
col. Given that I am focusing on the interaction between concurrency and resource

contention, there was no additional insight to be gained by including exponential
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backoff.

7.6.1 Converting Work to Time

Recall that the bad scenario predicts the maximum amount of work that the adversary
can arrange to take place for a single update, while the parallel machine simulations
output execution times. In order to compare the model predictions to the simulation
results, the work measure from the model needs to be converted to a time measure.

Let the amount of work predicted by the bad case adversary for a particular
protocol in Table 7.1 be W(N). Let L represent the time it takes a thread to perform
the 200 instructions of local work. Since we are considering a bus based machine and
since we only count operations that require the bus in our model, I assume that all of
the synchronization protocol work is forced to serialize. 1 also assume that the local
work does not need the bus and can be executed in parallel with other work. Given
that I have allowed the bad case adversary to schedule threads to maximize work, I
also allow the adversary to interleave local work with shared object updates in order
to maximize time as well.

Herlihy’s wait-free protocol is different that the others in that the cooperation
provided by operation combining allows the operations of multiple threads to complete
with a single update to the shared object. For now, consider the other protocols that
do not exhibit this behavior. To maximize time, the adversarial scheduler allows one
thread’s update to occur at a time cost of W(N). Before this thread can start its local
work, it allows another thread to update the object, and so on. Once all N threads
have updated the object, the adversary lets all N threads perform their local work in
parallel. In this way, the adversary can force N updates to take time NW(N) + L.
This results in a predicted time cost of W(N) + % per operation for Herlihy’s small
object protocol, Alemany and Felten’s protocols, the solo-cooperative protocol, and
the test-and-CompareéSwap spin-lock.

Herlihy’s wait-free protocol uses operation combining which allows the operations
of multiple threads to complete with a single update. I make the assumption that
since the adversary is forcing the maximum amount of work to occur, the maximum
benefits of operation combining are realized, and N operations complete in a single
update. Thus for Herlihy’s wait-free protocol, the scheduler arranges for N operations
to take time W(N) and then schedules the local work at a cost of L. This yields an
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W(N)
N

time predictions with simulation results to investigate the accuracy of the performance

average time cost per operation of + % In the next section I compare these

model.

7.6.2 Shared Counter

In the first set of simulations, threads alternately update a shared counter and per-
form local work until a total of 4096 updates have been done. Figure 7.2 shows the
number of simulated cycles per update, varying the number of threads from 1 to 20.
The graph shows that initially, as the parallelism in the system is exploited, additional
processors improve performance. As the number of processors further increases, how-
ever, performance degrades as memory contention increases due to synchronization
overhead. The small object protocol suffers large update times due to the contention
caused by the constant copying. The solo protocol performs significantly better than
the small object protocol, demonstrating the effectiveness of its concurrency limiting
mechanism. The solo-cooperative protocol and the spin lock perform almost exactly
the same in this simulated execution. This graph also clearly shows the amortizing
effect that operation combining has on Herlihy’s wait-free protocol. While the wait-
free protocol is much slower initially, the cooperating has a beneficial effect when

contention is high.

For the shared counter, the model variables are S = 1, R = 0, W = 1. The
200 instructions of local work have a time cost of L = 200/6 = 33.3. A graph of
the predicted time per operation from the model is given in Figure 7.3. This graph
correctly predicts the high memory contention generated by the small object protocol.
It predicts reduced contention for the solo protocol and still less contention for the
solo protocol with logging. It also correctly predicts the similar performance of the
solo-cooperative protocol and the spin lock. The curve for Herlihy’s wait-free protocol

is similar in shape to the simulations, although the crossovers occur in different places.

These two graphs are surprisingly similar considering the basis of our model. The
simulation is modeling a real machine which should behave in a stochastic manner.
Our model is predicting worst case behavior for a powerful adversary. The fact that
these two graphs are comparable indicates that a consistent percentage of the worst

case contention actually occurs in practice.
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7.6.3  Circular Queue

In the second set of simulations, threads alternately enqueue and dequeue elements
from a 64 entry circular queue and then perform local work. As before, the threads
perform a total of 4096 updates per run, and the number of threads is varied from
1 to 20. Figure 7.4 shows the results for the simulations. This graph shows that
both of Herlihy’s protocols and the solo protocol incur significantly more overhead
than the others. This overhead is due to the larger object size and shows why these
protocols are only practically viable for small concurrent objects. The three non-
copying protocols perform similarly, with the logging overhead of the solo protocol
with logging separating it slightly from the solo-cooperative protocol and the spin
lock.

The circular queue has model variables S = 9 and R = 1, W = 3 for enqueue
and R = 2, W = 2 for dequeue. Since roughly the same number of enqueues and
dequeues occur, I model the structure as having S = 9, R = 1.5 and W = 2.5.
Local work was again set to L = 33.3. Figure 7.5 shows the results predicted by my
model. The model predictions are relatively accurate for the non-copying protocols.
The model correctly predicts the high contention for the small object protocol. For
the solo protocol, however, the model underestimates the amount of contention that
occurred in the simulation. The model also predicts that the wait-free protocol would
outperform the copying protocols at high contention, which it did not. This is likely
due to our optimistic assumption that N operations complete per update.

Despite these shortcomings, these graphs suggest that the model captures the
important performance characteristics of lock-free synchronization protocols. The
model is simple to apply and should serve as a useful tool for those designing and

analyzing lock-free synchronization algorithms.

7.7 Summary

This chapter investigates the performance of lock-free synchronization protocols. A
simple performance model is developed which is based solely on the cost of cache
misses and synchronization instructions. In order to show the impact that these
costs have on overall performance, the predictions of the model are compared with

the results of parallel machine simulations. Despite the simplicity of the model,
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it does a fair job of predicting the relative performance of the protocols. One of
the goals of this thesis is to show the importance of memory systems performance in
algorithm design. Previous chapters have demonstrated the large impact that memory
system performance has on the overall performance of sequential algorithms. The
comparisons in this chapter show that in parallel environments as well, good overall
performance cannot be achieved without good cache performance.

The analyses of the existing protocols in the model indicate that none of them
offers insensitivity to delays as well as the same performance as locks in the common
case. Accordingly, this chapter also presents a new lock-free synchronization protocol
based on the combination of two existing protocols. The new protocol offers the same

good performance as locks yet offers insensitivity to thread preemption delays.



Chapter 8

Conclusions

This thesis investigates the design and analysis of algorithms in the presence of
caching. Since the introduction of caches, miss penalties have been steadily increasing
relative to cycle times and have grown to the point where good performance cannot be
achieved without good cache performance. As a result, a number of areas including
compilers, runtime systems and operating systems account for the effects that caches
have on overall performance. Unfortunately, the algorithm design community has
largely ignored caches and their impact on performance.

The reluctance of this community to incorporate caching into their models is
understandable. Caches have traditionally been transparent to the programmer, con-
sidered by most to be a hidden mechanism that speeds up memory accesses. The
cache constants such as capacity and miss penalty are seldom exported to the pro-
grammer, discouraging optimizations which require this information. Caches also
complicate traditional unit-cost performance models. When caching is taken into
account, memory accesses no longer have unit-cost but instead incur a cost depen-
dent on the pattern of previous references. Despite these complications, cache miss
penalties have grown to the point that algorithm designers can no longer ignore the
interaction between caches and algorithms.

To show the necessity of this paradigm shift, a large part of this thesis is devoted
to demonstrating the potential performance gains of cache-conscious design. Efficient
implementations of classic searching and sorting algorithms are examined for ineffi-
ciencies in their memory behavior, and simple memory optimizations are applied to
them. The performance results demonstrate that these memory optimizations signif-

icantly reduce cache misses and improve overall performance. Reductions in cache
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misses range from 40% to 90%, and although these reductions come with an increase
in instruction count, they translate into execution time speedups of up to a factor
of two. These results show that algorithm performance indeed obeys Amdahl’s law.
As cache miss penalties continue to increase, algorithms spend a larger and larger
percentage of their time servicing cache misses. As a result, the potential impact
of memory optimizations is growing larger relative to the impact of reductions in
instruction count. In addition to sequential algorithms, this result also holds for
parallel algorithms, despite differences in the memory systems of sequential and par-
allel machines. To demonstrate that the design principles that apply to sequential
algorithms also apply to parallel algorithms, this thesis presents a performance eval-
uation of lock-free synchronization protocols. The study shows that like sequential
algorithms, the overall performance of parallel algorithms is significantly affected by
their cache performance.

In this thesis, a number of memory optimizations are applied to algorithms in
order to improve their overall performance. What follows is a summary of the design

principles developed in this work:

e Improving cache performance even at the cost of an increased instruction count

can improve overall performance.

e Knowing and using architectural constants such as cache size and block size can
improve an algorithm’s memory system performance beyond that of a generic

algorithm.

e Developing a more compact representation of a structure reduces its footprint

in memory which can significantly improve cache performance.

e Reducing conflict misses improves the cache performance of the algorithm being

optimized as well as the other algorithms with which it interacts.

e Spatial locality can be improved by adjusting an algorithm’s structure to fully

utilize cache blocks.

e Temporal locality can be improved by padding and adjusting data layout so

that structures are aligned within cache blocks.
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e Capacity misses can be reduced by processing large data sets in cache-sized

pieces.
e Conflict misses can be reduced by processing data in cache-block-sized pieces.

Since the need for cache-conscious algorithm design is new, it is not surprising
that there is a lack of analytical tools to help algorithm designers understand the
memory behavior of algorithms. This thesis investigates techniques for analyzing the
cache performance of algorithms. To explore the feasibility of a purely analytical
technique, this thesis introduces collective analysis, a framework within which cache
performance can be predicted as a function of both cache and algorithm configuration.
Collective analysis uses a fairly simplistic model which assumes that algorithms can
be accurately modeled with independent memoryless processes. This assumption re-
duces its general appeal as few algorithms fit this model well. Nevertheless, collective
analysis is performed on implicit heaps with excellent results. The intuition provided
by the analysis led to an important optimization and the performance predictions are
surprisingly accurate considering the simplicity of the analysis. These results sug-
gest that a more general model would be a useful tool for understanding the cache
performance of algorithms. To make collective analysis more generally applicable,
processes need to be extended to model more realistic memory reference patterns
such as sequential traversals and bursty groups of references. This would complicate
the calculation of the expected hit intensity of a process within a region. The analysis
would have to accurately predict the interactions between an arbitrary number of pro-
cesses exhibiting any of the modeled reference patterns, but the resulting framework
would be applicable to a much larger class of algorithms.

The general lesson that can be learned from this thesis is that while computers
generally follow the basic von Neumann model on which unit-cost models are based,
there are implementation artifacts that significantly impact performance. Caches are
one such artifact. This thesis has demonstrated the importance of caching in both
algorithm design and analysis. The generalization of this is that these implementation
artifacts need to be accounted for in analysis techniques if performance is to be well

understood and in design techniques if the best possible performance is to be achieved.
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