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Abstract. With the advent of the Pentium processor parallelization
finally became available to Intel based computer systems. One of the de-
sign principles of the MD4-family of hash functions (MD4, MD5, SHA-1,
RIPEMD-160) is to be fast on the 32-bit Intel processors. This paper
shows that carefully coded implementations of these hash functions are
able to exploit the Pentium’s superscalar architecture to its maximum
effect: the performance with respect to execution on a non-parallel ar-
chitecture increases by about 60%. This is an important result in view of
the recent claims on the limited data bandwidth of these hash functions.
Moreover, it is conjectured that these implementations are very close to
optimal. It will also be shown that the performance penalty incurred by
non-cached data and endianness conversion is limited, and in the order
of 10% of running time.

Key words. Cryptographic hash functions, Parallel implementation,
Software performance, Pentium processor.

1 Introduction

A cryptographic hash function h maps bitstrings of arbitrary finite length into
strings of fixed length. Given h and an input x, computing h(x) must be easy. A
one-way hash function must provide both preimage resistance and second preim-
age resistance, i.e., it must be computationally infeasible to find, respectively,
any input which hashes to any pre-specified output, and any second input which
has the same output as any specified input. For an ideal one-way hash function
with m-bit result, finding a preimage or a second preimage requires about 2m

operations. A collision resistant hash function is a one-way hash function that
provides the additional property of collision resistance, i.e., it must be compu-
tationally infeasible to find two distinct inputs that hash to the same result. For
an ideal collision resistant hash function with m-bit result, no attack finding a
collision requires less work than a birthday or square root attack of about 2m/2

operations [Pre94].
The most popular hash functions, currently used in a wide variety of appli-

cations, are the custom designed iterative hash functions from the MD4-family.
MD4 was introduced in 1990 by R. Rivest [Riv92a]. One of the design principles
was to be fast on 32-bit machines in general, and on the Intel x86 family in
particular. The latter is more or less a must, because of the pervasiveness of the



x86 processor family. Or, as P. Rogaway and D. Coppersmith put it, by doing
well on these ‘difficult-to-optimize-for vehicles’ [RoCo94], one expects to do well
on any modern 32-bit processor.

Since the introduction of MD4, and as a result of developments in crypt-
analysis (see [Rob95] for an overview, and [Dob96a,Dob96b] for the most recent
results) a whole family of MD4-like hash functions has been developed. All these
descendants aim at strengthening their ancestors, taking into account the exist-
ing attacks at the moment of their introduction: MD5 (’91, [Riv92b]), SHA-1
(’94, [FIPS180-1]), RIPEMD (’92, [RIPE95]), RIPEMD-128 and RIPEMD-160
(’96, [DBP96]). Their common MD4-ancestry resulted in still fairly fast imple-
mentations on 32-bit architectures, but their increased complexity nevertheless
degraded their performance.

All these hash functions have been designed with the first generation of 32-
bit Intel processors in mind: the i386, introduced in October 1985, and the i486,
introduced in August 1989. As expected, these hash functions could, without
too much difficulty, be implemented efficiently on these processors. The advent
of the Pentium processor marks the beginning of a new generation of 32-bit Intel
processors. More RISC (Reduced Instruction Set Computer) aspects than ever
before have been incorporated in this from origin CISC (Complex Instruction
Set Computer) processor. From the outside the Pentium might look like a CISC,
inside it is definitely more RISC than CISC. The processor’s crucial architectural
innovation is the ability to issue, under certain conditions, two instructions at
once, thanks to its twin superscalar pipelines. It turns out that, although this
was certainly not one of the design principles, the MD4-family fits the Pentium’s
superscalar architecture very nicely, boosting the performance of these hash
functions to unprecedented levels. It is conjectured that our implementations are
very close to optimal, and that on a Pentium architecture it will be very hard to
improve on the presented performance figures. This is a significant result taking
into account the importance of performant hash functions in many cryptographic
applications, and the fact that some of the MD4-like hash functions will be
around for some years to come.

The next section gives a comparative overview of the MD4-family members
from a performance point of view. Section 3 gives an overview of the Pentium
architecture, and concentrates on its superscalar features. In Section 4 it is shown
how the latter can be used to improve performance of MD4-like hash functions
considerably. The actual performance figures for the 6 hash functions discussed
in this paper are given in Section 5. Section 6 discusses two data related topics:
cacheing and string-integer transformation, and their impact on performance.
Finally, Section 7 formulates the conclusions.

2 Comparative description of the MD4-family

The six members of the MD4-family are iterative hash functions operating on
32-bit words. For a full description of these hash functions we refer to the ref-
erences given in the introduction. This section will only describe them as far as
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performance is concerned. The different compression functions take as input a
4 or 5-word chaining variable and a 64-byte message block, and map this to a
new chaining variable. All operations are defined on 32-bit words. First, the 64-
byte message block is converted to a block of 16 words using one of two possible
string-integer conversions. Next and depending on the algorithm, 3 to 5, possi-
bly parallel, rounds are applied. Each of these rounds consists of 16 individual
steps, except for SHA-1, where rounds of 20 steps are used. Finally, the previous
value of the chaining variable is added to the newly obtained value by means
of a feedforward. Every round uses a particular non-linear function, and every
step modifies one word of the chaining variable and possibly rotates another.
Table 1 summarizes the definitions of a step function for the 6 hash functions
considered.

Algorithm Step function

MD4 A := (A + f(B, C, D) + Xi + K)<<<s

MD5 A := B + (A + f(B, C, D) + Xi + K)<<<s

SHA-1 from step 17 onwards: Xi := (Xi ⊕Xi+2 ⊕Xi+8 ⊕Xi+13)
<<<1

A := A + B<<<5 + f(C, D, E) + Xi + K
C := C<<<30

RIPEMD A := (A + f(B, C, D) + Xi + K)<<<s

RIPEMD-128 A := (A + f(B, C, D) + Xi + K)<<<s

RIPEMD-160 A := E + (A + f(B, C, D) + Xi + K)<<<s

C := C<<<10

Table 1. Definition of a step for the MD4-family of hash functions. All additions are
modulo 232, and <<< s indicates a rotation over s bits to the left. A, B, C, D, E are
chaining variable words, K and s are constants, and f() is a non-linear function of
three variables. Xi is a message word or, in case of SHA-1 and from step 17 onwards,
an exor combination of message words.

Each step in a round uses a different message word Xi, and in each round
the order in which they are used is different. SHA-1 differs in this respect from
the other hash functions in that starting from step 17 (i.e., once every message
word has been used once) a linear recursion is applied to the array of 16 message
words: every element of the array is computed as the exor of four other elements.
Any message bit is now input to at least 28 and at most 36 steps [Pre93]. The
additive constants K are different per round, except for MD5, where each step
has a different K. The rotation constants s are different per round and per
chaining variable for MD4 and MD5, are fixed for SHA-1, and are different per
round and per message word for the RIPEMD-sisters. The Boolean functions f()
are different for each round, but are chosen from a limited set of four, summarized
in Table 2.

These descriptions lead to a number of important observations from an im-
plementation point of view.
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Multiplexer (x ∧ y) ∨ (x ∧ z) all
Majority (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) MD4, RIPEMD, SHA-1
Exor x⊕ y ⊕ z all
Or-Exor (x ∨ z)⊕ y MD5, RIPEMD-128, RIPEMD-160

Table 2. Boolean functions of the MD4-family. The last column indicates where they
are used.

Simple instructions The compression function can be implemented with a
limited number of simple instructions on 32-bit words: assignment of one
word to another (mov), addition modulo 232 of two words (add, lea), unary
or binary logical operations (not, and, or, xor), and rotation of a word over
a number of bits to the left (rol).

Small buffer size The chaining variable consists of 4 or 5 words only. There-
fore, it can constantly be kept in registers during an iteration of the com-
pression function. Performance benefits in a significant way from being able
to keep intensively used words in registers all the time.

Few memory references The algorithms use no tables, and memory refer-
ences are limited to message word access. In the assumption that a message
block of 16 words cannot be kept in registers, less than 15% of all instruc-
tions are referring to memory for all compression functions except SHA-1.
For SHA-1 this figure rises to 33%, due to the linear recursion on the array of
message words. These figures do not take into account the possible additional
memory references needed in case an explicit coding of the string-integer
conversion is required, the impact of which will be discussed in Section 6.

Fairly compact code The code of all compression functions is fairly compact
(see e.g., Table 5), and will never be larger than 8K. This means that it can
be kept in the on-chip cache of most processors, leading to faster execution
of the code from the second iteration onwards.

Endianness Before it can be processed the message block is converted from a
64-byte string to a 16-word block. However, two conventions are in use for
this string-integer conversion: the byte with the lowest address in memory is
either the first word’s least significant byte (little-endian conversion) or its
most significant byte (big-endian conversion). Loading data from memory
into a register the processor uses one of these conversions, and the other
has to be coded explicitly, causing a performance degradation. SHA-1 uses
big-endian conversion, all other hash functions use little-endian conversion.

3 Pentium architecture overview

The Pentium processor is a member of the Intel x86 processor family offering
several architectural improvements over its predecessors, and, at the same time,
remaining fully compatible with them: code written for the i386/i486 processors
will without any problem run on the Pentium, and, due to the new architectural
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features, faster than one would expect from the ratio of their clock frequencies.
However, for maximum performance, the i386/i486 code will have to be rewrit-
ten, and in order to do so, a thorough knowledge of the Pentium’s architecture
and its new features is indispensable.

The Intel x86 processor family belongs to the CISC community of proces-
sors, known for their large instruction set, consisting of more than 300 machine
instructions, their complex addressing schemes, and the micro-encoding of the
processor instructions. The latter refers to the fact that a single processor instruc-
tion is encoded as a sequence of more elementary instructions to the instruction
and execution unit in the processor. The reduction of the extensive and com-
plex instruction set to fewer and more efficient instructions, with the ability to
execute most of the instructions in one clock cycle, resulted in the RISC architec-
ture. Other features of RISC processors are: a large number of hardware storage
registers, instruction pipelining, and, more recently, a superscalar architecture,
allowing parallel execution of more than one instruction in separate pipelines.

The Pentium is a typical CISC processor in that it inherited the large instruc-
tion set and the small register set of its predecessors. In this context it suffices to
know that the Pentium has 7 general-purpose registers eax, ebx, ecx, edx, esi,
edi, ebp, each 32 bits wide. But it also shares a number of characteristics with
modern RISC designs, such as a pipelined approach to instruction execution,
and a superscalar architecture. New Pentium features of interest to us are:

– a superscalar dual-integer execution unit;
– a split cache: two 8-Kbyte on-chip caches for data and code;
– an advanced branch prediction mechanism;
– a 64-bit external data bus interface; and
– an integrated performance-monitoring module.

Of these, the first two are the main tools for improving the performance of the
hash functions in the MD4-family, and will be treated in more detail below.
The third feature won’t influence performance by much in our case, as our code
contains only one branch (i.e., looping over 64-byte message blocks). It will
nevertheless ensure that, except for the first and last iteration, the branch will
be correctly predicted, and will execute in (at most) a single clock cycle. The
fourth item will only concern us as far as it allows for faster cache line fills of the
Pentium’s two internal caches. The last, largely undocumented feature [Mat94]
will allow us to monitor the extent of our improvements.

The Pentium processor allows to execute two instructions in parallel through
two five-stage pipelines, called the U pipe and the V pipe. The processor always
issues the first instruction of the pair to the U pipe. The second instruction of
the pair is issued to the V pipe only if the instruction satisfies a number of con-
straints, called the pairing rules. An important feature of the Pentium is that
this instruction pairing is carried out automatically and independently. Neither
software control instructions nor specific dual instructions are required in order
to use the superscalar architecture. Instruction pairing and parallel execution is
completely transparent to the programmer. However, it is obvious that the se-
quence of the instructions plays a significant part in improving the performance.
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Slight changes in the code sequence, e.g., to avoid dependency between consec-
utive instructions, can produce substantial improvements in performance. That
is where the pairing rules come into play, an understanding of which is crucial
for optimization purposes.

Pairing Rules

Rule 1 Both instructions in the pair must be simple. Simple instructions are
entirely hardwired, and therefore require no microcode support. In this way,
they can normally execute in a single clock cycle. These instructions include
register-to-register and immediate-to-register ALU operations (any arith-
metic or logical instruction, such as add, and, or, xor, rol); movs, inc, dec,
push, pop, lea, and nop. The near conditional and unconditional branches
jcc, jmp, and call can only be paired if they occur as the second instruc-
tion in a pair. In addition, all the ALU memory-to-register and register-to-
memory instructions are considered simple, even though they require re-
spectively two and three clock cycles. From the shift and rotate family only
a shift/rotate by 1 position and a shift by an immediate value are pairable,
and even then only as the first instruction in a pair.

Rule 2 There must be no data dependencies between the two instructions. A
destination of the U pipe instruction cannot be used as a source or destina-
tion of the V pipe instruction.

Rule 3 Neither instruction in a pair may contain both a displacement and an
immediate value.

Rule 4 Instructions with prefixes can only occur in the U pipe.

These pairing rules are summarized in Algorithm 1. For a detailed explanation
of these pairing rules we refer to [Int93a].

The last rule is important for our purposes as it implies that 32-bit instruc-
tions can only be paired in native protected mode. In real, virtual 8086, and
80286-compatible mode the default size of operands and addresses is 16-bit,
while in native protected mode the default is 32-bit. A prefix is used to change
the default value, i.e., to execute a 16-bit instruction in native protected mode,
or a 32-bit instruction in real, virtual 8086, or 80286-compatible mode. This
is important, as under DOS or Windows still many (most?) applications run
in 16-bit mode, and hence pairing of 32-bit instructions is not possible. More-
over, each prefix incurs a penalty of an additional clock cycle. The MD4-like
hash functions consist nearly exclusively of 32-bit operations, nearly all of which
can be implemented by means of 32-bit instructions executing in a single clock
cycle. Running such an implementation in 16-bit mode will result in serious per-
formance degradation: pairing is impossible, and nearly every instruction takes
twice as long due to the additional prefix cycle. A 32-bit implementation of e.g.,
SHA-1 runs three times slower in real mode than in native protected mode. A
16-bit implementation probably won’t do much better due to the increase of
instructions to more than twice the amount of a 32-bit implementation.

The meaning of the instructions mentioned in Rule 1 is straightforward, ex-
cept perhaps for lea, which performs memory addressing calculations and has
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if ( (I1 = simple)

and (I1 6= jump)

and (I1 63 displacement-immediate)

and (I2 = simple)

and (I2 6= shift/rotate)

and (I2 63 displacement-immediate)

and (I2 63 prefix)

and (destination of I1 6= source of I2)

and (destination of I1 6= destination of I2)

) then {
issue I1 to U pipe

issue I2 to V pipe

} else

issue I1 to U pipe

Algorithm 1.. Pentium’s algorithm to determine whether the consecutive instructions
I1 and I2 can be paired.

the interesting feature that it can be used as a super-add instruction (see e.g.,
[Abr94]). The intended use of lea is to calculate the offset of a particular mem-
ory location by adding a base address, an index value, and a fixed displacement
and storing the result in a specified register. Base address, index, and result can
be any general-purpose 32-bit register, and the displacement can be any 32-bit
constant. This means that lea can be used to add any two general-purpose reg-
isters and any constant and store the result in any register, all in one instruction
taking, in principle, no more time than adding just 2 of them by means of add.
However, there is one important difference with add: the two general-purpose
registers to be added by means of lea must have received their value at least
one cycle in advance of the lea instruction. This is a consequence of the fact
that the value of a register needed in memory addressing calculations has to be
set far enough ahead for the Pentium to perform the addressing calculations be-
fore the instruction needs the address. Otherwise a so-called address generation
interlock (AGI) is generated causing the pipeline to stall until the value becomes
available and the addressing calculations have been performed.

Another source of pipeline stalls are references to (slow) memory. Their im-
pact on performance can be reduced by the use of cache memory. The Pentium
has split instruction and data caches (a Harvard architecture), in contrast to
the i486, that had a unified cache for both code and data (a Princeton archi-
tecture). This eliminates interference between data and instruction references,
and allows for simultaneous data and instruction fetches. Each is an 8-Kbyte,
so-called two-way set-associative cache with 32-byte lines. In such a cache data
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is moved to and from cache in units of 32 bytes (a line), lines are grouped in sets
of 2 lines each (two-way), and a block of data can be placed in either of the 2
lines within a set (set-associative). The advantage of a two-way set-associative
cache over a direct-mapped cache of the same size (in which data can be placed
in one location only) is that it decreases the miss rate by a factor of 2, and
therefore increases system performance. Cache lines are filled or written back
in burst mode, a special bus mode in which a complete 32-byte cache line is
transferred in 4 bus cycles (1 for each 64-bit quad word, benefiting from the
Pentium’s 64-bit external data bus).

4 Pairing in MD4-like hash functions

The pairing rules that concern us most are rules 1 and 2. Rule 1 tells us which
instructions can be paired, while rule 2 states under which conditions this can
happen. A comparison of the simple instructions of rule 1 with the simple
instructions used in the MD4-family of hash functions and listed in Section 2
learns us that both sets of ‘simple’ instructions overlap nearly completely, but
for two exceptions: one’s complement and rotation over more than 1 bit position.

The former exception is not such a problem. The not instruction only appears
in the boolean functions (x∧y)∨ (x∧z) and (x∨z)⊕y. An implementation will
substitute the first expression by the equivalent, but more efficient expression
((y⊕z)∧x)⊕z [NMVR95, Appendix 3]. The second expression is already optimal
from a performance point of view, and here z can be substituted by the pairable
expression z ⊕ FFFFFFFFx. However, the fact that a rotation over more than
1 bit position cannot be paired with another instruction is very unfortunate.
Table 1 indicates that the step function of each MD4-family member contains
at least one such rotation, SHA-1 and RIPEMD-160 contain even two of them.
Of course, a rotation over n bit positions could be replaced by n rotations over
1 bit. However, both instructions last 1 cycle, so that it only pays off for n = 2,
and even then only if they can be paired with other instructions: a rotation over
1 bit can only be the first instruction of a pair. This strategy is only applicable
in case of the SHA-1 instruction C<<<30, that could be replaced by two rotations
over 1 bit position in the opposite direction.

Except for these rotations all instructions of the MD4-like compression func-
tions can in principle be paired. However, rule 2 tells us that for it to be possible
in practice there should be no data dependencies between two consecutive in-
structions. A straightforward implementation of a step will result in practically
no pairing due to data dependency between each instruction and the next, as
illustrated in Table 3. Here a step of MD5’s first round is implemented in three
ways: straightforward, optimized for maximal pairing, and optimized using lea
as super-add. The problem with the first approach is that for 7 out of the 9 pos-
sible pairs the destination of both instructions in the pair is the same, for 1 pair
the destination of the first instruction is the source of the second, and only the
last instruction of a step can be paired with the first instruction of the next step.
Or, without recoding, only 1 out of 9 instructions is executed in the V pipe. And
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this example is by no means specially selected, but it is the illustration of the
typical situation for all straightforward implemented step expressions. By rear-
ranging the instructions it turns out that all simple instructions can be paired,
resulting in a gain of 50% (from 9 cycles for the straightforward implementa-
tion to 6 cycles for the optimized case). The V pipe use increased to 4 out of
9 instructions, or 44%. Once again, these figures are typical for every round of
each MD4-family member: all their simple instructions can be paired, except for
those rounds that use the multiplexer (x∧ z)∨ (y ∧ z). The latter is the case for
the second round of MD5, and the fourth left line round of RIPEMD-128 and
RIPEMD-160, as well as in the corresponding right line rounds of the latter two
hash functions.

A := B + (A + ((B ∧ C) ∨ (B ∧D)) + Xi + K)<<<s

Instructions Cycles

...
add ebx,ecx 1

mov edi,ecx paired
xor edi,edx 1
and edi,ebx 1
xor edi,edx 1
add eax,edi 1
add eax,X[esi] 2
add eax,K 1
rol eax,s 1
add eax,ebx 1

mov edi,ebx paired
...

Cycles per instr. 1.00
V pipe use 11%
Paired simple instr. 25%

Instructions Cycles

...
add ebx,ecx 1

xor edi,edx paired
add eax,X[esi] 2
and edi,ebx paired
add eax,K 1
xor edi,edx paired
add eax,edi 1
mov edi,ebx paired
rol eax,s 1
add eax,ebx 1

xor edi,ecx paired
...

Cycles per instr. 0.67
V pipe use 44%
Paired simple instr. 100%

Instructions Cycles

...
add ebx,ecx 1

xor edi,edx paired
add eax,X[esi] 2
and edi,ebx paired
xor edi,edx 1
lea eax,

[eax+edi+K] 1+agi
mov edi,ebx paired
rol eax,s 1
add eax,ebx 1

xor edi,ecx paired
...

Cycles per instr. 0.88
V pipe use 38%
Paired simple instr. 86%

Table 3. Implementation of a round 1 step of MD5 on a Pentium processor. The
chaining variable A, B, C, D is stored in registers eax through edx. The optimized
expression ((C ⊕D) ∧ B) ⊕D for the multiplexer is used. The left column shows the
straightforward implementation. In the middle column the instructions are rearranged
in such a way that all pairable instructions are paired. The right column illustrates the
use of the super-add instruction lea. Memory read access is limited to 2 cycles if the
data resides in the on-chip cache.

The lea instruction can, with reference to Table 1, be used to add the con-
stant K and two out of A, f(), and Xi (and in the case of SHA-1 also B<<<5).
The case A + f() + K is illustrated in the right column of Table 3. The fact
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that lea eax,[eax+edi+K] replaces add eax,K and add eax,edi means that
the resulting code is potentially faster, provided both AGIs and data dependen-
cies can be avoided. In order to avoid an AGI both A and f() have to be ready
1 cycle in advance of lea. This 1-cycle gap (or 2 paired instructions) can only
be filled with instructions of the next step, as instructions of the current step
involve as a destination either the register for A or for f(). But bringing instruc-
tions forwards from the next step introduces data dependencies in that step.
Therefore, in general the use of lea does not result in faster code, in case of the
example even in slower one (7 cycles compared to 6 cycles using adds). There is,
however, one exception: SHA-1. The rotations in SHA-1 are, in contrast to the
other hash functions, confined to individual chaining variables (B<<<5, C<<<30).
This allows for greater flexibility in moving instructions between steps, so that
both AGIs and data dependencies can be avoided.

This discussion of the pairing rules allows us to formulate a number of general
guidelines that help us pairing as many instructions in a step as possible:

1. Sometimes it pays off to substitute non-pairable instructions by 1 or more
simple instructions with the same effect. Examples are one’s complement
and rotation over more than 1 bit position.

2. It might be necessary to move instructions from one step to the previous or
next one. An example is the mov edi,ebx instruction in Table 3, which is
the first instruction of the next step, and has been moved forwards by two
instructions for pairing purposes. In this respect it is important to mention
that Pentium instructions can never be executed out of order, and therefore
it is up to the programmer to properly change the order of execution by
rearranging the instructions.

3. Pairing of two instructions where the source of the first instruction is the
destination of the second instruction, is no problem. An example is the pair
add eax,edi and mov edi,ebx of Table 3, that is executed in a single clock
cycle.

4. Sometimes it is useful to use two different auxiliary registers in two consecu-
tive steps. This creates more data-independent instructions, and by moving
them from one step to another, more room for pairing simple instructions.
Of course, the fact that the Pentium has only 7 general purpose registers,
up to 5 of which are used for storing the chaining variable, restricts the
options available to us to a bare minimum. Putting some register contents
temporarily on stack sometimes pays off.

5. Pairing a 1-cycle instruction with a 2 or 3-cycle instruction saves only 1 out
of 3 or 4 cycles. However, most of the time it is the only possibility. Only
the feedforward of the chaining variable offers us the opportunity to pair
2 or 3-cycle instructions with each other. But even here the gain is only
partial: pairing two simple 3-cycle instructions (so-called read-modify-write
instructions) results in a 2-cycle penalty, since the write accesses of both
instructions must be completed one after the other (the read-modify part is
executed in parallel).

6. The use of lea as a super-add instruction only pays off if AGIs and/or
additional data dependencies can be avoided.
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5 Performance figures

The entire MD4-family has been implemented on the Pentium in Assembly ac-
cording to the guidelines of the previous section. Analysis of the code, as well as
the use of the built-in monitoring capabilities of the Pentium resulted in the fig-
ures of Tables 4 and 5. These figures refer to performance of the hash function’s
basic building block: the compression function. The figures for hashing a message
of any length can be easily derived from these figures by taking into account the
additional iteration due to the padding block. All cycle and speed related data
are in the assumption that both code and data reside in the Pentium’s on-chip
caches. For the code and local data this is true after the first iteration. In the
next section we will argue that also for the message block being hashed this is
a realistic assumption in many applications. Moreover, the overhead for reading
from secondary cache or main memory is relatively small, and does not depend
on the number of memory references, but on the message block size (determining
the number of data cache line fills; 2 for all hash functions concerned) and on
the time between the first two references to data located in the same cache line
(different for each hash function). Of course, it is also assumed that the data is
aligned on a 4-byte boundary. Every misaligned access in the data cache costs
an extra 3 cycles.

The implementations pair nearly all available simple instructions, except
for a few instructions in the already mentioned multiplexer (x ∧ z) ∨ (y ∧ z) of
MD5, RIPEMD-128, and RIPEMD-160. This results in a high percentage usage
of the V pipe. In case of SHA-1 the higher percentage of pairable instructions
in the linear recursion is compensated for by the lower percentage in the rest
of the code: 2 non-pairable rotates per step, compared to 1 rotate for all other
hash functions except RIPEMD-160. In addition to a higher percentage of non-
pairable rotates, RIPEMD-160 suffers from the above mentioned multiplexer.
An important criterion for judging the quality and speed of an implementation
is the number of cycles per instruction (CPI), i.e., the number of cycles it takes,
on average, for an instruction to execute. The minimal CPI is 1 for a non-paired
instruction and 0.5 for a paired one. For all hash functions the average CPI is
about 0.70. Without dual-integer execution this would be about 1.13, or a gain
of a factor 1.6. The reason that a dual-pipeline superscalar architecture does not
result in a speed-up of a factor 2 is twofold: not all instructions can be executed in
parallel (e.g., rotates), and some 1-cycle instructions are paired with 2 or 3-cycle
instructions. To gauge the impact of the latter on the overall performance, we
calculated the theoretical minimum CPI for our code of each hash function, i.e.,
the CPI in case each pairable instructions of our implementation was paired, and
all 2 and 3-cycle instructions were paired with each other. This is no minimum
in absolute sense, but only with respect to our code (another implementation
could have a lower minimum). It turns out that the actual CPIs of Table 4
are within 90% of this theoretical minimum for all hash functions concerned.
This figure also relates to the number of memory references, as it are precisely
those references that take 2 or 3 cycles (in our case mostly 2). SHA-1’s linear
recursion is in this respect both a curse and a blessing: it involves mainly memory
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references, but they can be paired with each other. That is why SHA-1, despite
its 36% of instructions that refer to memory, can keep up with the rest.

Algorithm MD4 MD5 SHA-1 Rmd Rmd-128 Rmd-160

Instructions 397 573 1247 795 985 1566
% V pipe use 43.32 41.19 42.82 43.65 41.73 37.55
% Paired simple instr. 98.57 92.73 99.72 99.57 95.92 94.38
% Memory ref.’s 14.61 12.91 35.85 14.72 15.13 11.88
Cycles 275 403 943 556 718 1153
Cycles per instr. 0.69 0.70 0.76 0.70 0.73 0.74
Speed-up factor 1.63 1.59 1.64 1.62 1.57 1.51

Table 4. Performance figures on a Pentium for our implementation of the compression
function of the 6 members of the MD4 hash function family. Both code and data are
assumed to reside in the on-chip caches. All figures are independent of the processor’s
clock speed. The speed-up factor is with respect to a (hypothetical) execution of the
same code on a non-parallel architecture under otherwise unchanged conditions.

The bandwidth figures of Table 5, obtained from actual timings, correspond
exactly with the cycle figures of Table 4, if one allows for a few cycles overhead.
A portable C implementation is, on average, twice as slow. The first iteration of
a compression function takes longer because of code and data cache fills, and has
been excluded from the timings. Compared to the MD5 figures in [Tou95], our
C version is 28% faster, and our Assembly implementation is faster by almost a
factor 2.5.

Algorithm Size Speed (Mbit/s) Factor
(bytes) Portable C x86 Assembly Assembly-C

MD4 1092 81.5 166.8 2.04
MD5 1611 59.7 113.7 1.90
SHA-1 5157 21.2 48.7 2.30
RIPEMD 2122 44.0 82.7 1.88
RIPEMD-128 2716 35.6 64.0 1.80
RIPEMD-160 4280 19.3 39.9 2.07

Table 5. Code size and hashing speeds of the different compression functions on a 90
MHz Pentium both for our Assembly implementations and a corresponding portable
C implementation (Watcom C 10.0). The code size only refers to the Assembly imple-
mentations. Again both code and data are assumed to reside in the on-chip caches. The
figures are independent of the buffer size as long as it, together with the local data, fits
in the 8-Kbyte on-chip cache.
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6 Effects of data cacheing and representation

The data to be hashed will in many applications reside in the on-chip cache. An
example is file hashing, where multiples of the block size are read in a buffer,
and hashed buffer by buffer. If the buffer size is smaller than the on-chip cache
(8 Kbyte in our case), the reading from disk will already put the data in cache.
Another example is when a piece of data is subjected to more operations than
just hashing, such as compression or encryption. Only one of these operations
will have to bear the overhead of reading the data from main memory.

But even if the data is read from the much larger (e.g., 256 Kbyte) secondary
cache or from main memory, the overhead is limited, due to the architecture of
the on-chip (L1) cache (see Section 3). Data is read into the L1 cache 32 bytes
at a time, so that a memory reference to a message word causes 7 other message
words to be read as well. This is a perfect example of the spatial locality principle:
chances are high that in the near future a word will be accessed close to the one
just accessed. Hence, only two 32-byte cache line fills are needed to read a 64-
byte message block into the on-chip cache. One such read causes the pipeline to
stall for 7 cycles if read from secondary (L2) cache, and 20 cycles if read from
main memory. A second reference to data residing in the same cache line will
not result in additional delays, provided the entire cache line has been filled at
the moment of the second reference (program execution and cache line filling are
partially running in parallel). Unfortunately, this is not the case for our code,
but one can make sure that the first two references are as far apart as possible.
The resulting additional delays are for all implementations on average 5 cycles
for an L2 access, and 10 cycles for an access to main memory. For SHA-1 these
figures are slightly higher due to the explicit big-endian conversion, in which
memory references are closely packed together: 8 cycles (L2) and 15 cycles (main
memory), respectively. The cycle figures related to cacheing effects apply strictly
speaking only to the particular configuration used for these measurements (90
MHz Pentium), and might be different for configurations using a Pentium with
a different clock speed or different types of L2 and main memory. In particular
it is expected that for faster Pentiums the access times to memory will increase,
as it is a well known fact that memory performance has a hard time keeping up
with that of processors.

A final issue is the conversion from little-endian to big-endian representation.
This conversion can be efficiently implemented using the bswap instruction. This
instruction is listed to take 1 cycle [Int93b], but always has the 0Fx-prefix. Each
prefix requires 1 additional cycle, so that bswap takes in effect always 2 cycles
[Gul95]. Using bswap the penalty incurred by endianness conversion is limited
to 48 cycles, including data copying. On a Pentium only SHA-1 is affected by
this conversion, but Table 6 lists the effect on all hash functions. The figure
of 11% for MD5 should be compared to the 33% figure reported in [Tou95].
Cacheing effects hardly influence the time spent on endianness conversion: the
local data buffer storing the converted data will, after the first iteration, reside
in the on-chip cache, and the extra time needed for reading from secondary
cache or main memory will be almost the same, whether an explicit conversion
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is required or not. Only the location of these time consuming memory references
in the code will be different: during round 1 of the compression function in case
no conversion is required, and during the conversion itself otherwise. However,
as such the extra reading time is no part of the conversion.

Algorithm MD4 MD5 SHA-1 Rmd Rmd-128 Rmd-160

Data from L2 cache 8.7 5.5 3.3 4.3 3.7 2.1
Data from main memory 21.8 14.4 7.5 10.8 8.7 5.3

Endianness conversion 14.9 10.6 5.1 7.9 6.3 4.0

Table 6. Percentage of performance degradation when data is read from secondary
cache or from main memory, as well as the percentage of time spent on (hypothetical)
endianness conversion. Only SHA-1 actually executes the latter.

7 Conclusion

Efficient and optimal implementations of all MD4-like hash functions on a Pen-
tium processor have been presented. The increase in performance with respect
to an equally fast non-parallel architecture is in the order of 60%. It has also
been shown that the impact on performance from processing non-cached data
as well as from endianness conversion is relatively small. In addition, a num-
ber of implementation guidelines have been derived, that are also applicable to
implementations of other cryptographic primitives.
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