
@
HEWLETT
PACKARD

High Precision Division and
Square Root

Alan H. Karp

Peter Markstein

HP Labs Report 93-93-42 (R.1)

June 1993

Revised October 1994

Multiprecision oating point, quad preci-
sion, square root, division; Computing Re-
views Categories G.1.0, G.4

We present division and square root al-
gorithms for calculations with more bits
than are handled by the oating point

hardware. These algorithms avoid the
need to multiply two high precision num-
bers, speeding up the last iteration by as
much as a factor of ten. We also show how
to produce the oating point number clos-

est to the exact result with relatively few
additional operations.

cCopyright Hewlett-Packard Company 1994

1 Introduction

Floating point division and square root take considerably longer to compute than addition

and multiplication. The latter two are computed directly while the former are usually com-

puted with an iterative algorithm. The most common approach is to use a division-free

Newton-Raphson iteration to get an approximation to the reciprocal of the denominator

(division) or the reciprocal square root, and then multiply by the numerator (division) or

input argument (square root). Done carefully, this approach can return a oating point

number within 1 or 2 ULPs (Units in the Last Place) of the exact result. With more work,

sometimes a lot more, the error can be reduced to half an ULP or less.

The usual approach works quite well when the results are computed to no more precision
than the hardware addition and multiplication. Typically, division and square root take 10

to 20 machine cycles on a processor that does a multiplication in the same precision in 2 or
3 cycles. The situation is not so good for higher precision results because the cost of the
�nal multiplication is much higher. The key feature of our algorithm is that it avoids this
expensive multiplication.

Section 2 discusses some methods used to do division and square root. Section 3 describes
the oating point arithmetic and the assumptions we are making about the oating point
hardware. Section 4 describes our new algorithms. In Section 5 we present an analysis of
the accuracy of the algorithm. Next, we show how to get the correctly rounded results with

relatively few additional operations, on average, in Section 6. The procedures we use for
testing are described in Section 7. Programs written in the programming language of the
Unix desk top calculator utility bc[4] that implement these algorithms are included in an
appendix.

2 Algorithmic Choices

There are a number of ways to perform division and square root. In this section we will
discuss these methods with emphasis on results that exceed the precision of the oating

point hardware.

One approach is to do school-boy long division, a scheme identical to successive subtraction
for base 2 arithmetic[8]. The procedure is straightforward. To compute B=A, we initialize a

remainder to R = 0. Then, for each bit we do the following steps:

1. Shift R concatenated with B left one bit so that the high order bit of B becomes the

low order bit of R.

2. Subtract A from from R.

3. If the result is negative, set the low order bit of B to zero; otherwise set it to 1.

2

4. If the result of the subtraction is negative, add A to R.

At the end of N steps, the N-bit quotient is in B, and the remainder is in R.

A similar scheme can be used for square root[7]. We start with the input value A and a �rst

guess Y = 0. For each bit we compute the residual, R = A�Y
2. Inspection of R at the k'th

step is used to select a value for the k'th bit of Y . The selection rules give some exibility

in tuning the algorithm.

There are improvements to these approaches. For example, non-restoring division avoids

adding B to R. The SRT algorithm[8] is an optimizaton based on a carry-sum intermediate
representation. Higher radix methods compute several bits per step. Unfortunately, these
improvements can't overcome the drawback that we only get a �xed number of bits per step,

a particularly serious shortcoming for high precision computations.

Polynomial approximations can also be used[7]. Chebyshev polynomials are most often used
because they form an approximation with the smallest maximum error giving a guaranteed

bound on the error. However, each term in the series adds about the same number of bits
to the precision of the result, so this approach is impractical for high precision results.

Another approach is one of the CORDIC methods which were originally derived for trigono-

metric functions but can be applied to square root[7]. These methods treat the input as a
vector in a particular coordinate system. The result is then computed by adding and shifting
some tabulated numbers. However, the tables would have to be inconveniently large for high
precision results.

There are two methods in common use that converge quadratically instead of linearly as
do these other methods, Goldschmidt's method and Newton iteration. Quadratic conver-
gence is particularly important for high precision calculations because the number of steps

is proportional to the logarithm of the number of digits.

Goldschmidt's algorithm[8] is based on a dual iteration. To compute B=A we �rst �nd an

approximation to 1=A = A
0. We then initialize x = BA

0 and y = AA
0. Next, we iterate until

convergence.

1. r = 2� y.

2. y = ry.

3. x = rx.

If AA0 is su�ciently close to 1, the iteration converges quadratically. A similar algorithm can

be derived for square root. Round-o� errors will not be damped out because Goldschmidt's
algorithm is not self-correcting. In order to get accurate results, we will have to carry extra

3

digits through the calculation. While carrying an extra word of precision is not a problem

in a multiprecision calculation, the extra digits required will slow down a calculation that

could have been done with quad precision hardware.

Newton's method for computing B=A is to approximate 1=A, apply several iterations of the

Newton-Raphson method, and multiply the result by B. The iteration for the reciprocal of

A is

xn+1 = xn + xn(1�Axn): (1)

Newton's method for computing
p
A is to approximate 1=

p
A, apply several iterations of

the Newton-Raphson method, and multiply the result by A. The iteration for the reciprocal
square root of A is

xn+1 = xn +
xn

2
(1�Ax

2
n): (2)

Newton's method is quadratically convergent and self-correcting. Thus, round-o� errors

made in early iterations damp out. In particular, if we know that the �rst guess is accurate
to N bits, the result of iteration k will accurate to almost 2kN bits.

3 Floating Point Arithmetic

Our modi�cations to the standard Newton method for division and square root makes some

assumptions about the oating point arithmetic. In this section we introduce some termi-
nology, describe the hardware requirements to implement our algorithm, and show how to
use software to overcome any de�ciencies.

We assume that we have a oating point arithmetic that allows us to write any representable
number

x = �
e

NX
k=0

�
�k
fk; (3)

where � is the number base, the integer e is the exponent, and the integers fk are in the

interval [0; �).

As will be seen in Section 4, we compute a 2N -bit approximation to our function from an

N -bit approximation. We will refer to these as full precision and half precision numbers,

respectively. In the special case where the operations on half precision numbers are done in
hardware, we will refer to 2N-bit numbers as quad precision and N-bit numbers as hardware

precision. The term high precision will be used to denote both quad and multiprecision

operations.

There are several ways to implement oating point arithmetic. We can round the result of
every operation to the oating point number nearest the exact result. We can truncate the

result by throwing away any digits beyond the number of digits in the input format. When

4

void prod(a,b,c) /* All digits of c = a*b */

double a, b, c[]

f
long double t;

t = (long double) a * (long double) b;

c[0] = t;

c[1] = t - c[0];

g

Figure 1: One way to get all the digits of the product of two double precision numbers on a machine

that supports quad precision variables. The result is returned as two double precision numbers.

we truncate, we can use a guard digit to improve the average accuracy. It is possible to do
a multiply-add as a multiplication followed by an addition, which has two roundings, or as
a fused operation with only one rounding. The fused multiply-add operation can be done

with full precision or with only some of the digits in the intermediate result. Our algorithms
are insensitive to what choices are made. Surprisingly enough, we are able to get accurate
results even if we truncate all intermediate operations.

Our algorithms assume that we can get all the digits in the product of two hardware pre-
cision numbers as well as the leading quad precision part of the sum. Some machines have
hardware instructions that return the quad precision result of multiplying two double pre-
cision numbers[3], but many do not. Figure 1 shows one way to compute the result on a
machine that supports quad precision variables. This approach is ine�cient since it typically

takes 4 to 10 times longer to multiply two quad numbers than two doubles. A hardware
operation that returns all the bits of a double times double to quad takes no more time than

a hardware multiplication.

If the system doesn't support quad precision, we must use a single-single representation as

our hardware format. In this format our numbers are stored in two single precision numbers.
Figure 2 shows one way to multiply two single-single precision numbers and return both

the high and low order parts of the product. We have assumed that the double precision
format holds at least two digits more than in the product of two single precision numbers, a

condition met by IEEE oating point[1].

Addition is di�erent. The sum of two oating point numbers can have a very large number

of digits in the result if the exponents di�er by a lot. Figure 3 shows one way to add two

numbers in the single-single format and return the leading quad precision part of the result
in four single precision numbers. Each such addition takes 12 oating point operations.

There are signi�cant di�erences in the implementations of multiprecision and quad precision

5

void prod(a,b,c) /* All digits of c = a*b */

float a[], b[], c[]

f
double t, u, v, w, x, y;

u = (double) a[0]*(double) b[0];

v = (double) a[0]*(double) b[1];

w = (double) a[1]*(double) b[0];

x = (double) a[1]*(double) b[1];

y = v + w + (float) x;

t = u + y;

c[0] = t;

t -= c[0];

c[1] = t;

t = t - c[1] + x - (float) x;

c[2] = t;

c[3] = t - c[2];

g

Figure 2: One way to get all the digits of the product of two double precision numbers stored in

single-single format. The result is returned as four single precision numbers.

addition and multiplication. Full precision multiplication takes up to 4 times longer than
half precision multiplication; quad precision multiplication takes more than 10 times longer
than hardware precision multiplication with hardware support and some 100 times longer
without. On the other hand, carry propagation is much simpler in quad precision since we

are dealing with only two numbers.

Our algorithms use many of the combinations of precisions shown in Table 1. In this table,

the subscript indicates the number of digits in the result, d denoting the hardware precision.

We can compute Vd in hardware. U2d is available in hardware on some systems. If it is not, we
will have to use software. The cost estimates are for double precision operations that return
quad results done in hardware (Qh), these operations done in software (Qs), multiprecision

numbers of up to a few hundred digits (C since we use the conventional approach), and

multiprecision numbers of more than a few hundred digits (F since we use an FFT method).

Henceforth we will assume that our hardware returns all the bits we need. If it doesn't, we
will have to implement functions such as the ones shown for all unsupported operations.

6

void sum(a,b,c) /* Leading 2N digits of c = a+b */

float a[], b[], c[]

f
double cl, ch, max, min, t;

max = (fabs(a[0])>fabs(b[0])?a[0]:b[0]);

min = (fabs(a[0])<=fabs(b[0])?a[0]:b[0]);

ch = a[0] + b[0];

t = min - (ch - max);

cl = a[1] + b[1] + t;

t = ch + cl;

cl = cl - (t - ch);

c[0] = t;

c[1] = t - c[0];

c[2] = cl;

c[3] = cl - c[2];

g

Figure 3: One way to get the leading 2N digits of the sum of two numbers stored in the single-single

format. We store the high and low order parts of the inputs in separate single precision words, add

the high and low order parts, and propagate any carries from the low order part to the high order

part of the result. The result is returned as 4 single precision numbers.

3.1 Quad

Quad precision is the number format with approximately twice as many digits as the largest
format handled in hardware. Some systems have a true quad precision data type; others use
a double-double representation. Some do quad arithmetic in hardware; others use software.

In almost all cases, quad operations are built up out of operations on hardware precision

numbers stored in registers.

We store our quad precision number in two doubles, the double-double representation. Our

numbers will be written as A = Ah + �Al where � is the precision of our memory format
numbers, � = 2�53 for IEEE double precision. Sample code for the various multiplications
we will need are shown in Appendix A. Note that none of the algorithms need all the digits
of a full times full, although they could be coded this way.

We do need two additional computations, namelyWd = C �AB and X2d = C �AB, where
Wd is less than 2 ULPs of Ch and Xd is less than 2 ULPs of C. We exploit the special

structure of the result by proceeding from high order terms to low order terms, something

we can not do without this condition. Our implementation shown in Figure 11 makes use

7

Table 1: Di�erent multiplications. Entries are listed in order of decreasing cost. A and B are full

precision numbers of 2N digits while a and b are half precision numbers of N digits. The subscript

kd denotes a number consisting of k half precision words.

Relative Cost
Input Input Output Operation Qh Qs C F

Full Full All bits P4d = A �B 11 132 8 4

Full Full Full R2d = A �B 8 84 4 4
Full Half All bits Q3d = A � b 7 96 3 2

Full Half Full S2d = A � b 4 48 2 2

Full Half Half Td = A � b 3 36 2 1
Half Half Full U2d = a � b 1 12 2 1
Half Half Half Vd = a � b 1 1 1 1

of the fact that there is a lot of cancellation of terms. For example, g[8] can have at most
two nonzero digits.

3.2 Multiprecision

Our discussion is based on the public domain package mpfun[2]. A multiprecision number is
stored in a single precision oating point array. The �rst word is an integer valued oating
point number whose absolute value represents the number of words in the mantissa; the sign
of this word is the sign of the multiprecision number. The next word contains an integer

valued oating point number representing the exponent of the number base, �. In contrast
to the notation of Equation 3, the decimal point follows the �rst mantissa word, not the �rst
digit.

Multiplication is based on the fact that virtually every oating point system in existence will

return all the digits of the product of two single precision numbers. Converting this double

precision result into two single precision numbers gets us ready for the next operation. A
similar trick can be used for addition; all intermediate sums are computed in double precision
and carries are propagated to single precision numbers.

Since we are interested in the e�ciency of our algorithms, we must consider the cost of the
basic operations. Adding two 2N -bit numbers takes about four times as long as adding two

N -bit numbers. The procedure is straightforward. First, align the numbers by scaling one

of them until their exponents are the same. Next, add corresponding elements. Finally, we
propagate the carries. The value returned is the leading 2N bits of the result.

Multiplication is more complicated. The time to compute the product of an N -digit number
and an M -digit number scales as NM if we use the direct method. Methods based on fast

Fourier transforms (FFT) for the product of two N -digit numbers take a time proportional

8

to NlogNloglogN [2]. Of course, the coe�cient of these scalings are much larger for multi-

plication than for addition. Hence, algorithms that avoid multiplying full precision numbers

together will run faster than those that need such products.

4 New Algorithms

We have seen how complicated high precision arithmetic can be. It is clear that our algorithm

should avoid such operations whenever possible. The algorithms presented in this Section

perform high precision division and square root with no multiplications of numbers of the

precision of the result.

First look at the standard Newton method for divison and square root shown in Equations 1

and 2. If we are doing a high precision calculation, we can implement these iterations
without doing any operations on two numbers in the longest precision. First of all, in the
early iterations, when the approximation is less accurate than the base number format, we
use hardware addition and multiplication. At each iteration beyond this accuracy, we double
the number of digits carried to match the accuracy of the approximation.[2]

The last iteration needs some care to avoid multiplying two long precision numbers. Look
at the square root. First we compute u = Axn as a full times a half, then v = uxn the
same way. Since xn is a very good approximation to

p
A, 1� v will have at most 1 more bit

than xn. Hence, we can compute xn(1 � v) as a half times a half. We don't even need to
compute more than half the digits in the product since this quantity is a small correction to
the current estimate. Hence, both the last multiplication and the last addition can be done
in half precision.

The problem comes in computing the desired result from the last iteration. For division,

we must multiply the full xn+1 times the full B; for square root, we multiply by the full
A. These operations are expensive, anywhere from 2 to 100 times the time of half precision
operations.

There is a simple way to avoid these long multiplications; do them before the last iteration
rather than after. Now the last iteration for division becomes

yn+1 = yn + xn(B �Ayn); (4)

where yn = Bxn, while for square root,

yn+1 = yn +
xn

2
(A� y

2
n): (5)

with yn = Axn.

The key to this approach is that, in both cases, these are the Newton iterations for the �nal
result, quotient and square root, respectively. Hence, yn+1 is the desired approximate result

9

accurate to nearly the number of digits in a full precision number. Since the Newton iteration

is self-correcting, we don't even need an accurate value for yn. In our implementations we

compute yn as the half precision result of multiplying two half precision numbers.

There is a subtle point in the way the terms have been collected in the �nal iterations.

In both cases, we have brought the multiplicand inside the parentheses. In this way, we

compute the residual based on yn, the number we are correcting. If we had made the other

choice, we would be correcting yn with a residual computed from xn. This choice would have

forced us to compute yn as the product of a full and a half precision number in order to get

the right answer.

We can now see the savings. For square root, we compute y2n as the full precision product
of two half precision numbers. After subtracting the result from A, we are left with at most
one bit more than a half precision number so we can use a half times half to half precision

result when we multiply by xn. We do a little bit more work for division. Here we must
multiply the full precision number A times the half yn, but the rest of the operations are the
same as for square root.

The savings are summarized in Table 2, much of which was supplied by David Bailey. We
look at division and square root for three precisions { quad (Q), up to a few hundred digits (C
since we use the conventional multiplication algorithm), and more than a few hundred digits
(F since we use FFT-based multiplication). Times if hardware returns the quad result of the
product or sum of two doubles are in the Qh column; times without hardware assist are in the

Qs column. In each column, the unit used is the time to compute the half precision product
of two half precision numbers. For quad precision, the unit is the hardware multiplication
time. Hardware precision addition is assumed to take as long as hardware multiplication,
and the time to do addition is ignored for multiple precision calculations. Upper case letters
denote full precision numbers; lower case, half precision numbers. If assignment is made to a

half precision number, we need calculate only the leading digits of the result. We only count
the operations in the last iteration because that is the only place we modify the standard

algorithm.

5 Analysis

Several of our results depend on properties of quotients, square roots, and Newton Raphson

approximation methods. In this section we will sketch proofs of these properties.

Theorem 1 In k-digit oating point arithmetic, using a prime radix, a quotient cannot be

exact in k + 1 digits in which the low order result digit is signi�cant.

Proof 1 Suppose that the quotient c = a=b is exactly c = p
e
Pk

i=0 cip
�i. If b = p

f
Pk�1

i=0 bip
�i,

it must be the case that

10

Table 2: Comparison of cost of new versus standard algorithms for three di�erent precisions.

Division B=A

Standard Approach New Approach
Xn+1 = xn + xn(1 �Axn) yn = Bxn

B=A � BXn+1 Yn+1 = yn + xn(B �Ayn)

Operation Qh Qs C F Operation Qh Qs C F
T = Axn 4 48 2 2 yn = Bxn 1 1 1 1

t = 1 � T 1 2 0 0 T = Ayn 4 48 2 2

t = xnt 1 1 1 1 t = B � T 1 2 0 0
Xn+1 = xn + t 1 3 0 0 t = xnt 1 1 1 1

T = BXn+1 8 96 4 2 Yn+1 = yn + t 1 3 0 0
Total 15 150 7 5 Total 8 55 4 4

Square root
p
A

Standard Approach New Approach
Xn+1 = xn +

xn
2
(1 �Ax

2
n) yn = Axnp

A � AXn+1 Yn+1 = yn +
xn
2
(A� y

2
n)

Operation Qh Qs C F Operation Qh Qs C F

T = x
2
n - 12 - 1 yn = Axn 1 1 1 1

T = AT - 96 - 2 T = y
2
n 1 12 2 1

T = Axn 4 - 2 - t = A� T 1 2 0 0
T = Txn 4 - 2 - t = xnt=2 2 2 2 2

t = 1 � T 1 2 0 0 Yn+1 = yn + t 1 3 0 0
t = xnt=2 2 2 2 2
Xn+1 = xn + t 1 3 0 0
T = AXn+1 8 96 4 2

Total 20 211 10 7 Total 6 20 5 4

a = b� c

= p
e+f Pk

i=0 cip
�i
Pk�1

i=0 bip
�i

= p
e+f (c0b0 + � � �+ ckbjp

�(k+j));

where j is the lowest order non-zero digit in b. Since ck and bj are both non-zero, ckbj is

not divisible by the radix, so that this quantity requires at least k + j + 1 digits. But a was

representable as a k-digit number. �

The same line of reasoning shows that a square root cannot be representable as a (k+1)-digit
result. (Exercise for the reader: Why does this proof fail for non-prime radices? It does not

hold for hex oating point arithmetic, for example).

11

Theorem 2 To round a quotient correctly to k bits, the quotient must be computed correctly

to at least 2k + 1 bits.

Proof 2 A proof of this proposition has been published previously[5]. With certain precau-

tions, 2k bits su�ce[6]. �

For binary radix, the following empirical evidence suggests this proposition. Consider the

quotient 1=(2k � 1). The closest binary fraction to the result, up to 2k bits, is 1 + 2�k (a

k + 1 bit number). To get the correctly rounded result (either 1, or 1 + 2�k+1), we must
know whether 1 + 2�k is an overestimate or an underestimate, a task which takes almost as
much computation as to establish the quotient to 2k + 1 bits. Only when the quotient is
computed to 2k+1 bits (or more), is it clear that the closest binary fraction to the quotient

is 1 + 2�k + 2�2k (up to 3k bits), which clearly should be rounded to 1 + 2�k+1.

Theorem 3 To round a square root correctly to k bits, the square root must be computed

correctly to at least 2k + 3 bits.

Proof 3 As before, with certain precautions, 2k bits su�ce[6]. �

Again, empirical evidence suggested this proposition. Consider the square root of 1 � 2�k.
The closest binary fraction to the result, using k + 1 to 2k + 2 bits, is 1 � 2�k�1. Just

as in the case of division, the decision whether to round up or down depends on whether
this approximation is an overestimate or an underestimate, which requires almost as much
computation as to establish the quotient to 2k + 3 bits. Computing further shows that

the best approximation is 1 � 2�k�1 � 2�2k�3 (up to 3k + 4 bits), so that the best k-bit
approximation is 1 � 2�k .

Theorems 2 and 3 imply that the trick of looking at a few extra bits in the result to decide

on the rounding direction[8] will only work most of the time, not all of the time as we would
like.

Theorem 4 Equation 5 always underestimates a square root.

Proof 4 The conventional Newton Raphson square root formula, Equation 2, always over-

estimates the correct result. However, in Equation 5, we do not divide the residual by y, but

multiply by x, the previous reciprocal square root from which y was computed as Ax. Suppose

1�Ax
2 = e. Then Ax

2 = 1 � e, and

x

p
A � 1� e

2
; e� 1:

12

If y = Ax, an application of Equation 5 gives

y
0 = y + x

2
(A� y

2)

= Ax+ x

2
(A�A

2
x
2)

= Ax+ Ax

2
(1 �Ax

2)

= Ax(1 + e

2
)

=
p
A(x

p
A)(1 + e

2
)

�
p
A(1� e

2
)(1 + e

2
)

=
p
A(1� e2

4
): �

In Section 3, we claim that using truncating arithmetic also will produce acceptable results.
For square root, if the reciprocal square root is known to n bits, using n bit arithmetic,
how much error can be introduced in the application of Equation 5 if truncated arithmetic
is used? First, the computation of y = Axn would also be good to n bits of accuracy

before truncation. After truncation, an error as great as one unit in the last place may be
introduced, so that only n� 1 bits of precision remain.

In the absence of additional rounding or truncation errors, we would expect that Equation 5
yields 2n � 2 bit accuracy. We assume that y2n is calculated exactly, so that 2n � 2 bits
of the product are trustworthy. As few as n � 1 bits will cancel in the subtraction (in the
di�cult rounding cases, this is usually the case). Thus, the subtraction yields an n + 1 bit

di�erence, which will be truncated to n bits. Since only n � 1 bits of the di�erence was

trustworthy, after truncation, only n � 2 bits are accurate. The product of this di�erence
by the reciprocal approximation can introduce another bit of error due to truncation. Thus,

Equation 5 is expected to yield an approximation good to 2n� 3 bits.

6 Rounding

We have shown how to get the quotient and square root accurate to a few Units in the Last
Place (ULPs). This accuracy usually su�ces for isolated evaluations, but there are times

when more accuracy is needed. For example, if the result is not correct to half an ULP

or less, the computed value for the function may not satisfy such algebraic properties as
monotonicity. In addition, if the result returned is not the oating point number closest to

the exact result, future implementations may not return the same value causing confusion

among users.

13

The need to maintain monotonicity and the identical results for di�erent implementations is

important for both quad and high precision arithmetic. In the latter case, simply asking the

user to use one more word precision than the application needs is not a major inconvenience.

However, if the user takes all the words in the multiprecision result and doesn't round to

the needed number of bits, the desired arithmetic properties may be lost. In addition, in

the worst case, the rounding can't be done correctly unless twice as many bits as needed are

known. In the case of quad precision we have no choice; we can't return more digits than

the user asks for so we must do the rounding ourselves.

Quad precision rounding depends on how numbers are stored in registers. Most machines

have registers with the same number of digits as the storage format of the numbers; others,
such as the Intel x87 oating point co-processors, implement the IEEE standard[1] recom-
mended extended format which keeps extra bits for numbers in the registers. We will consider
both these implementations. First, we look at getting the correct value on a machine that
keeps more digits in the registers than in the memory format. We will also show how to get

the correct result on a machine that keeps no additional digits in the register.

For concreteness, we will look at the problem of computing the quad precision quotient and
square root. For simplicity, we ignore error conditions and operations on the characteristics

of the oating point numbers since these are the same for both the usual algorithm and ours.
We will also assume that the machine has an instruction that returns the quad precision
result of arithmetic operations on two double precision numbers. If we do not have this
capability, we will have to build up the algorithm using the double precision product of two
single precision numbers as shown in Figures 2 and 3.

As shown in Section 5, our algorithm produces a 2N -digit mantissa with all but the last
few digits correct. We also showed that there are some numbers we can't round correctly

without computing at least 4N + 3 digits of the result. The implementations are di�erent if

our registers are wider than our words in memory or not so we describe them separately.

6.1 Long Registers

Here we will show how to compute the oating point number closest to the exact square root

or quotient when the output from our �nal iteration has more bits than we need return to

the user. In a multiprecision calculation we can always carry an additional word of precision
but return a result with the same number of digits as the input parameters. For quad results
we assume we are running on a machine that does base 2 arithmetic and keeps more bits in

the registers than in memory. More speci�cally, we assume that a double precision number

has 53 mantissa bits in memory and 64 in the registers. Our input is assumed to have 113

mantissa bits. Our goal is to return the correctly rounded 113-bit result.

As shown in Section 5 our algorithm produces a mantissa with at least 125 correct bits. We
also showed that there are square roots that we can't round correctly unless we know the

14

result to at least 229 bits. Rather than do an additional, expensive iteration, we use the

fact that we have underestimated the correct result. Hence, we know the correctly rounded

value is the 128-bit number we have computed truncated to 113 bits or that 113-bit number

plus one ULP.

One way to �nd out which is correct is to compute the residual with the computed value

yn+1 and with yn+1 +�113, where �113 is one ULP of a 113-bit number. The smaller residual

belongs to the correct result. This approach is expensive, both because we must compute

two residuals and because each residual needs the product of two quad precision numbers.

Tuckerman rounding[6] avoids this problem. We need only compute the residual for yn+1 +
�113=2. If the sign is positive, the larger number is the desired result; if negative, we want
the smaller. As shown in Section 5 the value can not be exactly zero for a machine with a
prime number base so we don't have to worry about breaking ties.

The full Tuckerman test for precisions with more digits than the hardware can handle is
expensive. For example, for square root, even if we make the simpli�cation that

(yn+1 + �113=2)
2 � yn+1(yn+1 + �113); (6)

we must compute a lot of terms. These operations are almost exactly what we must do
�rst to do another iteration, but we need only look at the sign of the result. Finishing the

iteration would require a half precision multiplication and an addition.

Computing the residual is expensive, but if we have extra bits in the registers, we can avoid

the doing the test most of the time. We know that the �rst 125 bits of our result are correct
and that we have underestimated the correct answer. Hence, if bit 114, the rounding bit, is
a 1, we know we must round up. If the rounding bit is a 0 and any of the bits 115 through

125 is a zero, we know that we should return the smaller value. Only if bit 114 is a 0 and
bits 115 through 125 are all ones do we need further computation. In other words, there is
exactly one pattern of 12 bits that we can't round properly. If the trailing bits are random,

we need do extra work for only 1 in 2,048 numbers.

Even in the rare cases where we can't decide which way to round from the 128-bit result, we

can often avoid doing the full Tuckerman test. Any time the intermediate result becomes

negative or zero we can stop because we know we should return the smaller value, a case
which occurs half the time for random bit patterns. We can also stop if the intermediate

result is positive and larger in magnitude than a bound on the magnitude of the remaining
terms which are all negative.

There are two convenient places to check { after accumulating all terms larger than �
2, and

again after computing all terms larger than �
3. (Here � = 2�64, the precision of numbers

in the registers. If we are using normalized, IEEE oating point, double precision numbers

which have an implicit leading 1, mantissas lie in the interval [1; 2). This means that the
coe�cient of �2 and �

3 are less than 10. (See Figure 11.) Therefore, we can stop after

15

computing the �rst set of terms unless the residual is positive and less than 10� or after the

second set unless the residual is positive and less than 10�2.

For randomly distributed residuals we need the test only one time out of 2,048 inputs. We

can stop after 9 operations, 3 of them multiplications, all but once in 16,384 times. The

next test will determine the rounding in all but one case in 264 trials. Hence, the average

performance for correctly rounded results is almost exactly the same as that for results

accurate to one ULP, although in the worst case we must do a large number of additional

operations.

The situation is even better for multiprecision calculations. First of all, there are only 4 half
precision multiplications in the test; all the rest of the operations are additions. Secondly,
it is a simple matter to do all the intermediate calculations with a single extra word. In this
case, the only bad situation is when the lowest order word of the result, when normalized to

be an extension of the next higher order word, has a leading zero followed by all ones. Since
this situation arises only once in 264 evaluations for random trailing bits, we almost never
need the Tuckerman test. When we do need the test, the early tests catch an even larger
percentage of the cases than for quad precision. However, there is no escaping the fact that
there are some input values that require us to compute the full Tuckerman test to decide

which way to round.

As originally formulated, Tuckerman rounding can be used only for square root, not division.
That formulation uses the approximation in Equation 6. We have no such identity for

division, but we do have extra bits in our registers so our test is to check the sign of B �
A(yn+1 + �113=2). This version is what appears in Section B.

6.2 Short Registers

We can also compute the oating point number closest to the exact result on a machine that
does not keep extra bits in the registers. In this case we will assume that our quad precision

numbers are stored as two double precision numbers each having 53 mantissa bits in both

memory and the registers. Our input is 106 bits long, and we wish to compute the correctly

rounded 106-bit result.

We know from Section 5 that the algorithm described in Section 4 has produced a result

with at least 102 correct bits. We would have to do two more iterations to get the correct

result, a very expensive proposition, but we can't apply standard Tuckerman rounding since
there may be four bits in error. Fortunately, we can apply Tuckerman rounding six times at

di�erent bit positions at a modest average number of operations.

The procedure is simple. We take the output of the Newton iteration and set the low order 4

bits to zero. Since we have an underestimate of the correct result, we know that the correctly

rounded 102-bit result is either the number we have or that number plus �102, the ULP of

16

a 102-bit number. If the Tuckerman test tells us to use the larger number, we know that

bit 103 must be a one so we add �103 to set this bit. We now have an underestimate of the

correct result but with 103 correct bits. Now we repeat at the 103'rd, 104'th, and 105'th

bits. One more application of the test at the 106'th bit does the trick, but now we add �106

if the test indicates that our result is too small.

We need to be careful at the start. Say that the correctly rounded result ends in the

hexadecimal string 8000001. If we make a 2 ULP underestimate, our working value would

be 7FFFFFF. If we use the procedure just described, we would return 8000000. Although we

have made only a 2 ULP error, the last correct bit is 28 positions from the end. We account

for this situation by testing our initial estimate, 7FFFFF0 in our example, plus hexadecimal
10. If the Tuckerman test indicates that we have an underestimate, we continue with the
larger value, e.g., 8000000. Otherwise, we continue with the smaller, e.g., 7FFFFF0.

Notice that we are repeating a lot of the calculations in the subsequent Tuckerman tests.
The formulation of the test in Figure 11 was chosen to minimize the number of operations
that must be repeated between applications. Only terms that depend on �k, the point at
which the test is being applied, must be recomputed. Hence, in the best case where the �rst
test succeeds, the �rst application takes 9 operations, and each additional takes 1 more for

a total of 14 operations. In the worst case, we need 36 operations for the �rst test and 8 for
each remaining test, a total of 76 operations. In the most common case, the second test is
de�nitive so we need 18 operations for the �rst application and 5 for each additional one for
a total of 43. Fortunately, none of the repeated operations is a multiplication.

The alternative to get the error down to a half ULP or less is to do 2 more Newton iterations
since we need compute 215 bits to get a 106 bit result. Since we only have 102 bits correct, the
�rst extra iteration only gives us 204-bit accuracy. Repeated application of the Tuckerman
test is clearly faster.

Division is a bit trickier. If we had extra bits in the register, we could form yn+1 + �106=2.
We don't, so we compute the residual from B �Ayn+1�A�106=2. Since yn+1 is a very good

approximation to B=A, the �rst two terms will nearly cancel leaving a positive value since we

have underestimated the exact quotient. We have no problem computing A�106=2, barring
underow, since the result is just a rescaling of A.

6.3 Other Roundings

All the discussion has assumed we want to return the oating point result closest to the
exact answer, round-to-nearest. The IEEE oating point standard[1] includes three other

rounding modes. We can also return the result in any of these modes as well.

If we have extra bits in the registers, we handle the di�erent roundings in the following way.

� Round to zero: Return the output from the Newton iteration.

17

� Round to positive in�nity: If the result is positive, add one ULP to the output from the

Newton iteration. If the result is negative, return the output of the Newton iteration.

� Round to negative in�nity: If the result is negative, subtract one ULP from the output

of the Newton iteration. If the result is positive, return the output of the Newton

iteration.

If we don't have extra bits in the registers, the following method returns values with these

other roundings. Our computed result is the value obtained after the �rst 5 Tuckerman

roundings.

� Round to zero: Return the computed value.

� Round to negative in�nity: If the result is positive, add one ULP to the computed

result. If the result is negative, return the computed value.

� Round to positive in�nity: If the result is negative, subtract one ULP from the com-

puted result. If the result is positive, return the computed value.

These procedures don't handle exact results correctly since they assume we have an under-
estimate. Simply subtracting one ULP (�128 or �106 for the long and short register cases,
respectively) from the magnitude of the result before doing the above roundings guarantees
an underestimate.

7 Test Procedures

To test our algorithms, we generated division and square root problems which presented
di�cult rounding problems. For division an algorithm is known for generating divisors and
dividends so that the correct quotient is almost exactly 1/2 ulp more than a representable

oating point number[5]. This is accomplished by solving the diophantine equation

2k�jA = BQ+ r mod 2k (7)

for a given odd divisor B, where r is chosen to be an integer near B=2, and where k is the

precision of the oating point arithmetic. B is chosen to satisfy

2k�1 � B < 2k;

and solutions of Equation 7 are sought for A and Q satisfying the same inequality (with
j = 0 or 1).

Some di�cult square root problems are given by numbers of the form

1 + 2�k+1(2j + 1) and 1� 2�k(2j + 1)

18

whose square roots are slightly less than

1 + 2�k+1(j + 1=2) and 1� 2�k(j + 1=2);

respectively. These almost-exact square roots require k+1 bits, making the rounding decision

di�cult (in all cases the result must be rounded downward). To generate cases requiring

close rounding decisions, we attempt to �nd an integer x satisfying

2k�1 � x < 2k

for which (x+1=2)2 is close to a multiple of 2k. We seek solutions of the diophantine equation

(x+ 1=2)2 = 2k+jy + � mod 2k

or, multiplying by 4 to remove fractions,

(2x+ 1)2 = 2k+j+2y + 1 + 8m mod 2k

for various small integer values of m, in which j can be 0 or 1. (4� must be one more than
a multiple of eight, since all odd squares are congruent to 1 mod 8). We require y to satisfy
the same inequality as x. For any y which satis�es the above diophantine equation,

q
2k+jy = x+ 1=2 + o(�m=x);

so that the correctly rounded result is x+ 1 when m < 0, and x when m � 0.

Using these techniques, a large number of test cases were generated both for division and
square root, and our implementations of the algorithms presented in this paper successfully
rounded each example correctly.

8 Conclusions

Division and square root account for a small percentage of all oating point operations, but
the time it takes to execute them dominates some calculations. The extra time is even more

noticable for quad and multiple precision arithmetic. In this paper we have shown how to

speed up these calculations by an appreciable amount.

The primary improvement made to the standard Newton algoirthmn is to multiply by the
appropriate factor, the numerator for division and the input argument for square root, before

the last iteration instead of after. This trick works because the modi�ed equation is almost

exactly the Newton iteration for the desired function instead of a reciprocal approximation.

The key observation is that the reciprocal approxmation from the penultimate iteration is

su�ciently accurate to be used in the last iteration.

The performance improvement comes from avoiding any multiplications of full precision

numbers. An interesting result is that it becomes practical to do quad division and square

19

root in hardware because we can use the existing oating point hardware. Implementing

hardware to multiply two full precision numbers is impractical.

We have also showed how to compute the correctly rounded result with a minimum of

additional arithmetic. The method presented is a modi�cation of the Tuckerman test[6]

which works for both division and square root. We show how to extend Tuckerman rounding

to the case where the registers do not hold any extra bits.

Acknowledgements

We would like to thank David Bailey, Dennis Brzezinski, and Clemens Roothaan for their

help.

20

9 References

[1] American National Standards Institute, Inc. IEEE Standard for Binary Floating-Point
Arithmetic. Technical Report ANSI/IEEE Std 754-1985, IEEE, 345 East 47th Street,
New York, NY 10017, 1985.

[2] David H. Bailey. A Portable High Performance Multiprecision Package. RNR Techni-
cal Report RNR-90-022, NAS Applied Research Branch, NASA Ames Research Center,
Mo�ett Field, CA 94035, May 1992.

[3] Ned Chapin. 360/370 Programming in Assembly Language. McGraw-Hill, New York,
second edition edition, 1973.

[4] Hewlett-Packard, 3404 East Harmony Road, Fort Collins, CO 80525. HP-UX Reference,
�rst edition, January 1991.

[5] W. Kahan. Checking Whether Floating-Point Division is Correctly Rounded. Mono-
graph, Computer Science Dept., UC Berkeley, 1987.

[6] Peter Markstein. Computation of Elementary Functions of the IBM RISC System/6000.
IBM J. Res. Develop., 34:111{119, 1990.

[7] P. Monuschi and M. Mezzalama. Survey of Square Rooting Algorithms. IEE Proceedings,
137(1, Part E):31{40, January 1990.

[8] David A. Patterson and John L. Hennessy. Computer Architecture A Qualitative Ap-
proach. Morgan Kaufmann, San Mateo, CA, 1990.

21

A Basic Operations

The �gures in this section contain the code used for the operation counts of the various
multiplications in Table 1. These �gures assume that the hardware will provide all the bits of
the product and the leading quad precision part of the sum of two double precision numbers.
If the hardware does not have this capability, the multiplication and addition operations
must be replaced with functions such as those shown in Figures 2 and 3, respectively. In
this case, each addition counts as 4 operations and each multiplication as 12.

22

void prod(a,b,c)

double a[], b, c

f
long double t;

t = a[0]*b + a[1]*b;

c = (double t);

g

Figure 4: Full times half to half.

void prod(a,b,c)

double a[], b, c[]

f
long double d, t;

d = a[0]*b;

t = d + a[1]*b;

c[0] = (double t);

c[1] = t - c[0];

g

Figure 5: Full times half to full.

void prod(a,b,c)

double a[], b, c[]

f
long double s, t, u;

s = a[0]*b;

t = a[1]*b;

u = s + t;

c[0] = (double u);

c[1] = u - c[0];

c[2] = t + ((u-s)-(double t));

g

Figure 6: All bits of full times half.

23

void prod(a,b,c)

double a[], b[], c[]

f
long double t, u;

t = a[0]*b[0]+a[0]*b[1]+a[1]*b[0]+a[1]*b[1];

c[0] = (double t);

c[1] = t - c[0];

g

Figure 7: Full times full to full.

void prod(a,b,c)

double a[], b[], c[]

f
long double s, t, u, v, w;

s = a[0]*b[0];

t = a[0]*b[1]+a[1]*b[0];

u = a[1]*b[1];

v = t + s;

w = t - (v-s) + (u - (double u));

c[0] = (double t);

c[1] = t - c[0];

c[2] = (double w);

c[3] = w - c[2];

g

Figure 8: All bits of full times full.

24

B A bc Implementation

These algorithms have been tested using the Unix desk top calculator bc with programs
written in its C-like language. This utility does integer operations with an arbitrary number
of digits and oating point to any desired accuracy. We chose to implement the algorithms
with integers because it a�orded complete control over the bits included in the operations.

The programs that follow use a few utility routines. The routine h(a,n) returns the �rst
n base obase digits in a, where obase is the number base used for output; l(a,n), the
second n base obase digits of a. The function table look up is a place holder for the usual
procedure for getting the �rst guess.

25

Figure 9: Program in bc to compute the square root of the full precision number A to nearly 2n

bits.

define s(A,n)f
auto b,c,d,E,x,y,z

b = h(A,n)

x = table look up(b) /* (n/4)-bits */

y = h(x*x,n)/n^2

z = (n^6-h(b*y,n)/2)/n^4

x = (x*n^2+h(x*z,n))/n^2 /* (n/2)-bits */

y = h(x*x,n)/n^2

z = ((n^6-h(b*y,n))/2)/n^4

x = h(x*n^2+h(x*z,n),n)/n^2 /* n-bits */

/* Last iteration */

y = h(b*x,n)/n^4 /* sqrt(h(A)) */

c = x/2 /* 1/(2y) */

d = h(A-y*y,n) /* A - y^ 2 */

E = (y*n^4+h(c*d,n))/n^4 /* Almost 2n bits */

return (E)

g

26

Figure 10: Program in bc to compute the quotient of two full precision numbers, B/A, to nearly 2n

bits.

define d(B,A,n)f
auto c,d,e,F,x,y,z

c = h(B,n)

d = h(A,n)

x = table look up(a) /* (n/4)-bits */

z = (n^4-h(d*x,n))/n^2

x = (x*n^2+h(x*z,n))/n^2 /* (n/2)-bits */

z = (n^4-h(d*x,n))/n^2

x = x*n^2+h(x*z,n) /* n-bits */

/* Last iteration */

y = h(c*x,n)/n^4 /* h(B)/h(A) */

e = h(B*n^2-A*y,n)/n^2 /* B - A*h(y) */

F = (y*n^4+h(e*x,n))/n^4 /* Almost 2n bits */

return (F)

g

27

Figure 11: Tuckerman test. The value of u determines the bit position for the test, �k .

define t(b,a,y,u)f
g[1] = h(a,n)*h(y,n); g[2] = h(a,n)*l(y,n)

g[3] = l(a,n)*h(y,n); g[4] = h(b,n)-h(g[1],n)

g[5] = h(g[4],n)-l(g[1],n); g[6] = h(g[5],n)-h(g[2],n)

g[7] = h(g[6],n)-h(g[3],n); g[8] = h(g[7],n)+l(b,n)

g[9] = h(g[8],n)-h(a,n)*u

if (g[9] <= 0) return (0)

if (g[9] > 8*n^2) return (1)

g[10] = l(a,n)*l(y,n); g[11] = l(g[2],n)+l(g[3],n)

g[12] = h(g[10],n)+h(g[11],n); g[13] = l(g[5],n)-h(g[12],n)

g[14] = l(g[6],n)+l(g[7],n); g[15] = h(g[13],n)+h(g[14],n)

g[16] = l(g[9],n)+h(g[15],n); g[17] = h(g[9],n)+h(g[16],n)

g[18] = h(g[17],n)-l(a,n)*u

if (g[18] <= 0) return (0)

if (g[18] > 10*n) return (1)

g[19] = l(g[13],n)+l(g[14],n); g[20] = l(g[10],n)+l(g[11],n)

g[21] = h(g[20],n)+l(g[12],n); g[22] = h(g[19],n)-h(g[21],n)

g[23] = l(g[15],n)+h(g[22],n); g[24] = l(g[18],n)+h(g[23],n)

g[25] = l(g[17],n)+h(g[24],n); g[26] = l(g[16],n)+h(g[25],n)

g[27] = h(g[18],n)+h(g[26],n)

if (g[27] <= 0) return (0)

if (g[27] > C) return (1)

g[28] = l(g[20],n)+l(g[21],n); g[29] = l(g[19],n)-h(g[28],n)

g[30] = l(g[22],n)+l(g[23],n); g[31] = h(g[29],n)+h(g[30],n)

g[32] = l(g[24],n)+l(g[25],n); g[33] = l(g[26],n)+h(g[31],n)

g[34] = h(g[32],n)+h(g[33],n); g[35] = l(g[27],n)+h(g[34],n)

g[36] = h(g[27],n)+h(g[35],n)

if (g[36] <= 0) return (0)

return (1)

g

28

Figure 12: Getting the error to half an ULP or less on a machine with extra bits in the registers.

The functions u(A) and d(B,A) return the square root and quotient, respectively, with at most

four bits in error. Routine t performs the Tuckerman test with ULP u. f and g are the square root

and quotient with an error no larger than 1/2 ULP.

R = u(A) /* 1 ULP square root */

F = R + t(A,R,R,u) /* 1/2 ULP square root */

S = d(B,A) /* 1 ULP quotient */

G = S + t(B*nV^2,A,S,u) /* 1/2 ULP quotient */

Figure 13: Getting the error to half an ULP or less on a machine without extra bits in the registers.

We assume an error as large as 15 ULPs.

/* Square Root */

R = u(A) /* Square root */

u = 10

V = u*(R/u) /* Set trailing bits to 0 */

if (t(A,R,R,2*u) > 0) v = v + u /* Borrow? */

while (u > 1) f
V = V + (u/2)*t(A,V,V,u)

u = u/2

g
F = V + t(A,V,V,1) /* Final rounding */

29

