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A hyperelliptic smoothness test. I

By H . W. LExstrA JR', J. P1nA%? AND CARL PoMERANCE?

! Department of Mathematics, University of California, Berkeley,
California 94720, U.S.A.
26 Goldthorns Avenue, Kew 3101, Australia
8 Department of Mathematics, University of Georgia, Athens, Georgia 30602, U.S.A.

This series of papers is concerned with a probabilistic algorithm for finding small
prime factors of an integer. While the algorithm is not practical, it yields an
improvement over previous complexity results. The algorithm uses the jacobian
varieties of curves of genus 2 in the same way that the elliptic curve method uses
elliptic curves, In this first paper in the series a new density theorem is presented for
smooth numbers in short intervals. It is a key ingredient of the analysis of the
algorithm.

1. Introduction

In this series of papers we present a probabilistic algorithm for finding small prime
factors of an integer. It may be used to detect and factor smooth numbers. We call
our algorithm the hyperelliptic curve method, as it uses the jacobian varieties of curves
of genus 2 over finite fields in the same way that the elliptic curve method (Lenstra
1987) uses elliptic curves over finite fields.

For real numbers a, b and x with > e set

L,[a,b] = exp (b(log ) (log log x)1~%).

Theorem 1.1. There are effectively computable positive constants c,, n, with the
following property. Given an integer n = n, that is not a prime power, the hyperelliptic
curve method obtains a non-trivial divisor of n in expected time at most

Lp[%? CO] (log n)z’
where p is the least prime divisor of n.

The run time is measured in bit operations. Our definitions of probabilistic
algorithm and expected time are as given by Lenstra & Pomerance (1992).

Corollary 1.2. There is a probabilistic algorithm with the following property. Given
integers n = n, and v = 3, the algorithm runs in time at most
Lv[%: CO] (logn)?’,
and obtains, with probability at least §, all prime factors p of n with p < v.
The hyperelliptic curve method is of purely theoretical interest; the following
comparisons with other methods are on a theoretical basis only.

The deterministic algorithm of Pollard (1974) and Strassen (1977), also described
in Pomerance (1982), was heretofore the best algorithm known for finding all prime
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398 H. W. Lenstra Jr, J. Pila and C. Pomerance

factors < v of a number n. It remains the best deterministic algorithm for this
purpose, running in time

O(v/v(logv)*log n log log n log log log n).

Their method is based on fast multiplication techniques; if these are used in the
hyperelliptic curve method, then the factor (log #)? in Theorem 1.1 may be replaced
by (log n)**°® for n->00.

If v is very small as a function of n, then the algorithm of Pollard and Strassen
remains faster than the hyperelliptic curve method. At the other extreme, if v is
relatively large, it is better to use a factoring algorithm that is insensitive to the size
of the factors. Specifically, the class group relations method (see Lenstra &
Pomerance 1992) is faster than the hyperelliptic curve method if v is of order at least
L, [3,2¢5%/1/3+0(1)] for n->c0.

Conjecturally, the hyperelliptic curve method is not as good as the elliptic curve
method. Under a reasonable hypothesis concerning the distribution of smooth
numbers in short intervals, the expected run time of the elliptic curve method is at

most
L[5, v2+0(1)] (log n)?,

where 7 is the number being factored, p its least prime divisor, and the o(1) is for
p—>00. Under a similar hypothesis, the expected run time of the hyperelliptic curve
method, with optimal choice of parameters, is actually at most

L3, 2+0(1)] (log )%,

with n, p and o(1) as above.

The algorithm of Corollary 1.2 may be used to recognize, with high probability,
numbers that are v-smooth, i.e. built up from prime factors less than or equal to v.
Smooth numbers play an important role in many algorithms that have been
proposed for the discrete logarithm problem and for factoring integers (see Lenstra
& Lenstra 1990). Our results may contribute to the run time analysis of such
algorithms. So far it has sufficed to use the elliptic curve method for this purpose:
while it has not been proved to recognize all smooth numbers, it does recognize many
of them (see Pomerance 1987; Lenstra & Pomerance 1992).

The relationship between the elliptic and the hyperelliptic methods has an
antecedent in primality testing. The random curve primality test of Goldwasser &
Kilian (1986) proceeds by choosing a random elliptic curve E over Z/pZ, where p is
the number being tested. They prove that their method runs in ‘random polynomial
time’ for most primes p. The same result for all primes is conditional on a standard
conjecture regarding the density of primes in short intervals, specifically of the form
[, x+c+/x]; the order of the group E(Z/pZ) of rational points of £ over Z/pZ
belongs to such an interval, with « & p, if p is prime. In the abelian variety primality
test of Adleman & Huang (1987, 1992), the elliptic curve is replaced by the jacobian
J of a curve of genus 2, which is a two-dimensional abelian variety. If p is prime, the
order of J(Z/pZ) belongs to an interval of the form [,z + cai], with « ~ p?, and the
analysis depends on the density of primes in intervals of that form. Such intervals are
not so short: a known density theorem enables Adleman & Huang to prove
unconditionally that all prime numbers can be recognized in random polynomial
time.

The idea of using jacobians of curves of genus 2 in place of elliptic curves in the
present context of factoring was inspired by the work just mentioned of Adleman &
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A hyperelliptic smoothness test. 1 399

Huang. Now the analysis hinges on the density of smooth numbers — as opposed to
prime numbers —in intervals of the same form. For the elliptic curve method, no
adequate density result is available; for the hyperelliptic curve method we are able
to supply one.

Theorem 1.3. Let ¢, = (1980000)3. There is an effectively computable constant x5 such
that if x > xy, z = L,[2,¢,], and o3 < y < x, then the number of z-smooth integers in the
1 8

wmterval [x, x+y] is at least y-exp (— (log z)7 (log log x)3).

This first paper in the series is devoted to the proof of Theorem 1.3. Our proof will
follow the same general lines as that of Harman (1991), who showed that if ¢ > 0 is
arbitrary and z = exp ((log 2)5*¢), y = a#*¢, then there is at least one z-smooth integer
in the interval [x,z+y] once « is sufficiently large depending on the choice of e.
Harman’s proof is in turn a refinement of an argument of Balog (1987) who showed
the same result but with z = 2¢. Friedlander & Granville (this volume) obtain an
asymptotic result for the number of z-smooth integers in the interval [z, x+y] when
y = 2122* and z > exp ((log x)5*¢).

In §2 we state a result more general than Theorem 1.3 and give a few lemmas. In
§3 we use a combinatorial argument to reduce the proof to the estimation of a certain
weighted sum. In §4 this estimation is carried out by an analytic argument. The
proof that Theorem 1.3 follows from the more general result stated in §2 is given at
the end of §4.

2. Smooth numbers in short intervals

If z, z are real numbers, let y(x, z) denote the number of positive z-smooth integers
Sz Ife<z<z, let

u = u(r,2) = (logx)/logz, a=a(x,z)= (loglogz)/log logz.
It is known (see Canfield et al. 1983) that if exp((log z)¢) < z < 2'™¢, then
Y(x,z) = x-exp (—u(log u+log log u+0,(1))).

(In fact an asymptotic formula is known in this range.) Thus if the z-smooth numbers
<« are not too wildly distributed, then we might expect, for numbers y with
VvV <y <z, that

Y(x+y,2)—Y(x,2) = y exp (—u(log u+log log u+0,(1))). (2.1)
The following theorem is a step in this direction.

Theorem 2.1. There are effectively computable positive constants x,, ¢,, ¢y, ¢3 and c,,
such that in the range
v>a, Lifhe] <z<exp(loga)/logloga), v(w2)<y<az  (2.2)
we have
Y(x+y,z)—y(x,2) =y exp (—u(log u+log log u+c,)); (2.3)
in the range
x> 1w, exp((logxloglogx)f) <z<L,3 cz],} (2.4)
at exp (2¢,u® log u) < y < z, .
we have

3—4da 18
— >y — — 1 ; K;
Yty z)— Y(x,2) =y exp( (1 +48 3a_2)u log u 3—2 " log log u) (2.5)

Phil. Trans. R. Soc. Lond. A (1993)



400 H. W. Lenstra Jr, J. Pila and C. Pomerance

and in the range

v> 2, Lo <z .\exp<aogaﬂoglogxﬁ>} (2.6)

at exp (¢, u® log u) < y <
we let B be such that z = exp ((log x) (log log x)#) and we have
Y(x+y,2)— Y, 2) =y exp (—21u(log u)*3# (log log u)™). (2.7)

Furthermore, the expression a*exp (¢, u? log u) does not exceed at if (2.6) holds.

We shall only be applying the range (2.6) to the analysis of the algorithm, and then
only in the case z =L,[2 ¢,]. However, it is little extra work to prove the full
Theorem 2.1.

In our proof below, the constants implied by the notation O and the notation <
shall always be absolute. If /" is a finite set of positive integers and s is a complex
number, we denote by A4"(s) the Dirichlet polynomial X,_, n™%.

We now state some lemmas. For a complex number s, we denote by o the real part
of s and by ¢ the imaginary part.

Lemma 2.8. There are effectively computable positive constants x,, c,, cs, such that if
L is a real number with L > x, and £ (s) is the function %, _, ., 1%, then in the range

% <0< la
1 (g Lp®
1L () < ¢ L (1+Itl+ P( %(lo g(2+|t|))2))'

This result follows from the proof of Lemma 2 in Harman (1991). Namely, a trivial
estimate is used for |¢{| < L, an estimate of van der Corput type is used for L < || <
L'®, and the remaining range follows from estimates of Korobov and Vinogradov. We
may take 1/60000 as a value for ¢; in Lemma 2.8. This number is stated as a valid
choice for ¢g in Harman (1991) for the range |t| = L'®. A valid choice for ¢, in the van
der Corput range L < || < L*® is 1/3000. (Thanks are due to S. W. Graham for
informing us of this latter fact.)

Lemma 2.9. There is an effectively computable positive constant c, such that if U is
a positive real number, J is a positive integer and b, ...,b; are complex numbers, then

[

This result is Theorem 6.1 in Montgomery (1971).
Let Q(N) denote the number of prime factors of N counted with multiplicity.

J

Z b;]It

Jj=1

J
< (U+J) P 1b,[2.

Lemma 2.10. There are effectively computable positive constants &g, Cg such that iof L,
A are numbers satisfying L > x,, (2e log log L) < A < log L and & is the set of integers
I satisfying

(i) L<l<elL
(ii) 1 us free of prime factors below log L/log log L,
(iii) Q) < 4,

then in the range 1 < o < 1,

_ 1 (log L) 1
L(s)| < cg Lo (1 L .
200 < ey~ oo 1) exp (e 15 ) )

Phil. Trans. R. Soc. Lond. A (1993)




A hyperelliptic smoothness test. I 401

Proof. Let &£, be the set of integers ! satisfying conditions (i) and (ii). Let P denote
the product of the primes below w = log L/log log L. Then

o= T IP=Xpd) T F=3Iudd® T I
Izl<l§e1L alp L<é§eL dajp Lid<l<eL/d

Thus
[ %)< Zd™e
ap

Note that P = exp (O(log L/log log L)) = L°®/eloel) "We suppose z, is so large that
P < LY?* and L/P > x,. We have from (2.11) and Lemma 2.8 that

> .

L/jd<l<eL/d

(2.11)

L ol 1 (log (L/d))?
el < 2 d(L/d) (1+|t|+ep< <log<2+|t|>>2))
e 1 (log L) -
s el (1+Itl+eXp( (10g(2+ltl))))£:d
o 1 (log L)
<yl (m+exp( 5CGM))IOgIOgL (2.12)

for some absolute positive constant c,.
Let £ denote the set of le % for which condition (iii) fails. Then

1L ()| = |L(s) = L) < | L)+ L (). (2.13)
We now estimate |4 (s)|. We have for any real number v > 1,
1 220
AM=Zsri I
lef lef

2
vty To=vt o] <1+3+3?L“)
pp

pll=w<p<eL w<p<eL

Thus if 1 < v < {w,

Ly<v1t 11 (1 +%> < v exp ( > %) <vlexp (2vloglog L), (2.14)

w<p<eL w<p<eLp

if x, is sufficiently large. Letting v = A4/(2 log log L), we have 1 < » < lw. Thus from
(2.14) and our hypothesis we have

1% (5)] < (eL)"™" %(1) < (eL)*" A~4(2e log log L) < (eL)'= A~
and Lemma 2.10 now follows from (2.12) and (2.13). O

3. A combinatorial beginning

In this section we begin the proof of Theorem 2.1. Suppose z is a large number (how
large will be determined as we proceed) and suppose z is a number in the range
L,[21] < z < exp (log #/log log ). We thus have the numbers u, & determined by
the equations z = 2'/* = exp ((log x)*). Let L, k, M be given as follows:

24 u®logu

L =2, k:[_
cg logz

1,M=ﬁUWW, (3.1)

Phil. Trans. R. Soc. Lond. A (1993)



402 H. W. Lenstra Jr, J. Pila and C. Pomerance

where ¢ is the constant introduced in Lemma 2.8. We shall choose the constant c,
in (2.2) so that ¢, = (6/c,)i which implies that k = 1 for z in the range (2.2). We shall
choose y so that )

y =x/M = 2z LED2, (3.2)
In addition, we shall choose the constant ¢, in (2.4), (2.6) so that ¢, = 9/c,. Note that
if &k > 2, then
72 u®log u

k+1<
¢ logz

so that L*D/2 < exp ((18/c¢s) u® log w) = exp (2¢c,u® log u). Also note that in the
range (2.6), we have
25 u®logu

k+1<
cg logz
for x sufficiently large, so that L%**V/2 < exp (c, u® log u). Thus the value of y given by
(3.2) is slightly smaller than the lower bound specified for y in (2.4) and (2.6) and is
exactly equal to the lower bound for y in (2.2). Proving the theorem for y given by
(3.2) is thus sufficient to establish the theorem in general.

We shall choose the constant ¢, in (2.6) so that ¢, = (33/c,). A simple calculation
shows that for all sufficiently large x and z > L,[2, ¢,] we have a exp (¢, u® log u) < 7,
which is one of the assertions of Theorem 2.1.

Let . be the set of integers m with M < m < eM such that every prime factor p
of m is in the range el < p < z. Let

v=Ilog M/logz=w—1k+1). (3.3)
From our choice of ¢, we have for all sufficiently large x that
k+1 < qu. (3.4)

From (1.7) in Theorem 2 in Saias (1993) and from Theorem 1 and (iv), (v) of Lemma
4 in Saias (1992) (cf. Theorem 6 of Friedlander 1976) we have

M(1)= X m™* =exp(—vlogv—wvloglogv+0(v)).
mel

Thus
M (1)? = exp (— (u—1k) (log u+log log u+ O(1))). (3.5)
We now give three definitions of a set % of integers depending on the three ranges
for z in Theorem 2.1. If z is in the range specified in (2.2), we let £ be the set of
integers [ with L <] < eL. If z is in the range specified in (2.4), we let Z be the set
of integers described in Lemma 2.10 where A satisfies

Alog A = ey (log z)/u?. (3.6)

Finally if z is in the range specified in (2.6), we let & be the set of integers described
in Lemma 2.10 where A satisfies

Alog A = ¢, (log log x)2. (3.7)
Let &(x, z) denote the set of ordered (k + 3)-tuples (m,n,r,1,,...,1,) where m,ne /4,
ly,....ly€ %, ris a prime or prime power and mnrl, -, < x+y. Since by (3.1)

x+y <x+y< 2x _
mnly--l, — MPL* = M2L*

r< 2L,

Phil. Trans. R. Soc. Lond. A (1993)



A hyperelliptic smoothness test. I 403

the product N of the entries of any element of ¥ (x,2) is a z-smooth integer. For any
integer N, let R, ,(N) denote the number of (m,n,r,l,...,l;)€F(x,z) with N =
mnrl,-+l,. For any positive integer N there is a unique factorization N = N, N,, where
each prime factor of N, exceeds eL and each prime factor of N, is at most eL.. Thus if
(m,n,r,ly,...,1,)€F(x,2) and N=mnrl; I, then N, =mn and N, = rl---l,. We
conclude that R, ,(N) is at most the number of ordered factorizations of N, as a
product of two positive integers times the number of ordered factorizations of N, as
a product of a prime or prime power times the product of k positive integers. Further,
in the ranges (2.4) and (2.6), each of these k positive integers has at most A prime
factors. That is,

R, (V) < dy(Vy) X dy(Ny/7), (3.8)

TIN5, Q(N,/1) <kA

where d;(w) is the number of ordered factorizations of the positive integer w into j
positive integers (so that d, is the well-known divisor function), where r runs over
primes and prime powers and where the dash indicates that there is no restriction on
Q(N,/r) when zis in the range (2.2). Since d;(w) < j%*, we have from (3.8) and the fact
that k = 1 in the range (2.2) that

[290Q(,), if (2.2) holds,

R, (N)< (3.9)
|22k, if (2.4) or (2.6) hold.

From the definition of ./, if R, ,(N) > 0, then Q(,) = O(u) so that

20N 0, (3.10)
In addition we have
Q(N,) < log, N, = O(log x) = u®®. (3.11)
In the range (2.2) we have by (3.9)—(3.11) that

R, ,(N) <e%® (3.12)

for any integer N.
Suppose now that z is in the range (2.4). From (3.1) we have
48 u®log u

log bk < —
log ¢, logz

(3 log u—log log z+1log log u+O(1)).

From (3.6) we have that log log 4 is small compared with log 4 when z is large, so
that

log 2

A
=% u*(log log z—2 log u)

for all large x. Thus using log u = (1 —«) log log « and log log z = « log «, we have

3 log u—log log z+1log log u+ O(1)

< .
kA log k < 48u 10g u 1Og log z2—2 log u

(3—4a) log log x+1log log u+ O(1)

= 48u log u-
48u log (Baa—2) log log
3—4a 16 U
< —.
< 483a_2u10g u+3a_2ulog logu+0(3a_2)

Phil. Trans. R. Soc. Lond. A (1993)



404 H. W. Lenstra Jr, J. Pila and C. Pomerance
Hence from (3.9)(3.11) we have for any integer N,

4o lo —I—1
M08 T TS

R, .(N)<exp (483 u log log u) (3.13)

for all large z. ,
Suppose finally z is in the range (2.6). Writing z as exp ((log x)3(log log x)#), we have
from (3.1) and (3.7) that

kA log k < %(log x)¥(log log z)**(log log log x)™! < 19u(log u)**(log log u)™!

for all large «. Hence from (3.9)—(3.11) we have for any integer N and all sufficiently
large x that
R, (N) < exp (20u(log u)* *(log log u)™). (3.14)

Let R, , = maxy R, ,(N). We conclude from (3.12)—(3.14) that for sufficiently large
x we have

exp (O(u)), if (2.2) holds,
3 17 .
R, . < p(48§—2 log u+3 2u log log u), if (2.4) holds, (3.15)
exp (20u(log u)**(log log u)™), if (2.6) holds.
For w such that « < w < x+1y, let
Sz,z,y(w) = S(w) = 2 A(r).

(m,n,r,1y,..,lp)el(x,z)
mnrl, ...ﬁké(w, w+y/2]

Note that A(r) < log r < log z < e*. Thus
Ylaty.2)—y(@2) > Ywtiy.2)—Y(w,2) > e R S(w). (3.16)

We shall show in the next section that

max  S(w) = y-exp (— (u+3k) (log u+1log log u+0(1))). (3.17)

r<w<a+y/2

Using that k& = 1 in the range (2.2), k < u/logu in the range (2.4), and, for all large
x, k < ju in the range (2.6) (cf. ( )) Theorem 2.1 will follow from (3.15)—(3.17).

4. An analytic conclusion

In this section we conclude the proof of Theorem 2.1 and give a proof of Theorem
1.3.

As we saw in §3, Theorem 2.1 follows from (3.17). To show (3.17), it is sufficient
to show that

fx+y/28(w) dw = y*-exp (— (u+3k) (log w+log log u+ O(1))). 4.1)

x

For both w and w4y not integers, we have

Sy = 5 mgg (5) A (5 2 (5 U E g

Phil. Trans. R. S8oc. Lond. A (1993)



A hyperelliptic smoothness test. I 405
This is the Perron formula and it corresponds to display (2.9) in Harman (1991). Let

A(s) _ T+y/2 (w_'__é_y)s_ws do = (x+y)s+1_2(x+%y)s+l+xs+l
L s s(s+1) '

Thus interchanging the order of integration, we have
Jxﬂ//z — 1 [2Hie §
S(w)dw = (8) M (8)> L (s)* A(s)ds. (4.2)
z 2mi ot ¢
We now move the path of integration to the curve ¥ =%, U 6, U 6, U %; U %, where
G ={s:s=1+it,[t| =},
€, ={s:s=1+it,x/y < |t| < a},
={s:s=1+it, T <|t| < x/y},
G ={s:s=0+it,1—a<o<1,|t|=T},
G, ={s:s=1—a+it,|{| < T},

and where T' = exp (icq(log 2)®/(log x)?),a = 1/log T. We take the orientation of the
curve € to be upwards. If x is sufficiently large the only singularity of the integrand
in (4.2) encountered when moving the path of integration to % is the simple pole of
—{¢' /¢ at s = 1 with residue 1. This follows from the zero-free region 1 —1/log |t| < o
of ¢(s) for |¢| sufficiently large. We thus have from (4.2) that

We now estimate the main term in (4.3). First note that 4(1) = 3y*. Next note that
Z(1) is at least the sum of the reciprocals of the primes in the interval (L, eL], so that
for large « we have ¥ (1) > 1/(2log L) = 1/log z. Thus

L(1)* = (log 2)7F = exp (—ka log log x) = exp (—(a/(1 —a)) k log u).
Using a < 1—log log log #/log log « and k& = 1 in the range (2.2), we have
exp (—2u), if (2.2) holds,
Py > [exp (—2u) ' (2.2)
Iexp(—él:/c log w), if (2.4) or (2.6) holds.
Thus from (3.5) we have
ML 1)A(L) = y? exp (— (u+3k) (log u+1log log u+0O(1))).

Hence to show (4.1) and ultimately Theorem 2.1, it shall be sufficient to show, in light
of (3.4), that

f é’E(s);%(8)2;.?(8)’%1(8) ds < y?exp (—2u log u). (4.4)
%
To show this we shall use Lemmas 2.8, 2.9 and 2.10 as well as
(€/0(s) €log(lt|+2) on &, (4.5)
2 .0—1
A(s) < {?/ X, tl < a/y (4.6)
e, > a/y

which correspond to (5.13) and (5.11) in Harman (1991).
Phil. Trans. R. Soc. Lond. A (1993)



406 H. W. Lenstra Jr; J. Pila and C. Pomerance
Fort=1,2,3, 4,5, let

E, = j ¢ (8) M ()2 L (s)* A(s) ds.
¢

If we show each E, < y* exp (—2u log ), we will have (4.4) and the theorem.

The integral on €,. We use the trivial estimates £ (s) < 1, #(s) < 1 on %, as well as
(4.5), (4.6) obtaining

00 2
E1<j 1Ogtdt<xlogx— y L1 log x

from (3.2). Thus E, < y® exp (—2u log u).
The integral on €,. From (4.5) and (4.6) we have

g, <f (L4124t logtdt

z/y
” 1
< 2?log x max |$(1+it)|’cj |4 (1+it)|* = dt.
x/y<t<z z/y ¢
From Lemma 2.9 and integration by parts we have

[ st <orea( s L) [ areo( £ L)t

3
z/y mel x/y men M ¢

<ty Loy v
x

.%'/y me./lm xM
using (3.2) for the last step. If (2.2) holds, Lemma 2.8 implies that
max |Z(1+it)| < exp (—cg(log L)?/(log x)?) = exp (—icq(log 2)/u?),
zly<t<w
while if (2.4) or (2.6) holds, Lemma 2.10 and (3.6), (3.7) imply that
max |Z(1+it)| < exp(—5¢q° (log z)/u?) log log .
z/y<t<z
Thus in every case we have
E, < y?log x exp (— {5k cs(log 2) /u?+ O(k log log log )),
where k is given by (3.1). Thus E, < y? exp (—2u log u).
The integral on %,. From (4.5) and (4.6) we have
/Y
E, <y*logx max |Z(1 +it)|"f |4 (1+it)|> de.
T<t<z/y T
From Lemma 2.9 and (3.2) we have

z/Y
(A +iEdt <2 5 -—<—
JT ) ymeﬂm yM
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From Lemmas 2.8 and 2.10 we have
max |L(1+it)] < T log log x = exp (—4cq(log 2)/u?) log log «,
T<t<z/y
so that as with E, we get K, < y? exp (—2u log u).
The integral on 6,. We use Lemmas 2.8 and 2.10 to get that
Lo+iT) K LT loglog T = L' exp (—icq(log z)/u?) log log T

for o such that 1—1/logT=1—a <o <1. We also use the trivial estimate
| M (o +iT)| < M*~°. Thus from (4.5) and (4.6) we have

1
E, < y*log T exp (—ikcq(log z)/u?+ O(k log log log x))f LFA=o) J2a=o) go-ldg,

1-a
By (3.1) we have
1 1 1
10g TJ Llc(l—cr)M‘Z(l—o‘) xa‘—l do = _J Lo‘—l dO' < 1,
1-a A J1-q
so that £, < y? exp (—2u log u).
The integral on €,. From Lemmas 2.8 and 2.10 we have

a

144

| (1 —a+it)| <€ log log L

on %;. Using the trivial estimate |.# (1 —a+it)] <K M* and (4.5), (4.6), (3.1), we have

T
E, < y?ao LF* M?* log T(log log x)* e2® j (1+)~*de

0
< 2 L%(log T)*(log log x)¥ e°® < y? exp (—2u log u).
This completes the proof of Theorem 2.1. O

Remark. S. W. Graham has pointed out to us that using the methods on pp. 62 and
63 of Titchmarsh (1986) one may obtain an estimate for 2(s) = X, _, <., p~*, where
p runs over primes, of the same general flavour as Lemma 2.8, though a little weaker.
Suppose we were to substitute Z(s) for Z(s) in the proof of Theorem 2.1. We then
would not need Lemma 2.10 and the estimate for R, , would be much simpler.
Further, for a large part of the range (2.4) we would obtain an estimate of the same
quality as (2.3). However, the estimate for 2(s) is sufficiently weaker than the one
for #(s) that we would not be able to prove anything about the range (2.6), which
is the only range we actually apply in the analysis of our algorithm.

Proof of Theorem 1.3. The result follows easily from Theorem 2.1, from the choice
of ¢, given in the proof of the Theorem, and from the remark following Lemma 2.8
concerning the choice of cg. O
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