@ COPYRIGHT NOTICE 0

© 1992 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the
copyright holder.

R IGIGI IRV BEO R IGIO 4G L
NEIIBI0IBIBIEISINIIEIONCIBINI0
1BI0ITRI0II0IE0IGIIBIRI0IBIC

The V.42bis Standard for

18101010101811816181810161816181
Gig10101a1B1BI8181RIBI0IBI0116T
R

Data-Compressing Modems

Clark Thomborson

University of Minnesota
at Duluth

The recently adopted CCITT V.42bis standard for data-compressing modems is a conservative
and economically implementable scheme, one discussed here from algorithmic, experimen-
tal, practical, and marketing standpoints. V.42bis compresses text about as well as the Lempel-
Ziv-Welch algorithm of the Berkeley Unix Compress utility; other Ziv-Lempel variants are
discussed briefly. Even though better compression ratios can be obtained with these variants,
V.42bis is eminently suitable for implementation on a contemporary modem.

any factors can affect modem

throughput. Important factors in-

clude the protocols used for data

compression, telephone signaling,
error correction, and computer-to-modem trans-
mission. To overcome some of these problems,
the CCITT V.42bis standard details a textual sub-
stitution scheme that allows a well-implemented
modem to achieve a 2.3:1 compression ratio on
English text. A modem implementing this stan-
dard delivers higher bandwidth, on compress-
ible files, than a noncompressing modem.

Two major V.42bis modem applications are
terminal-to-computer and computer-to-computer
communications over the telephone network.
However, text transmission is only a fraction of
current computer communication and this frac-
tion is rapidly decreasing. Better algorithms for
compressing text (and other types of data) are
being developed, but I believe V.42bis will be-
come the dominant method for text compression
for at least the next 10 years.

Background

Briefly, the V.42bis data compression method
is a textual substitution scheme based on Ziv and
Lempel’s second algorithm." V.42bis incorporates
Welch’s coding scheme? as well as Miller and
Wegman’s® (and, independently, Storer’s*®) idea

0272-1732/92/1000-0041$03.00 © 1992 IEEE

for incremental modification of a full dictionary
using a least recently used (LRU) heuristic. V.42bis
also has an efficient cleartext escape mechanism,
differing in implementation but not in spirit from
that proposed by Fiala and Greene. (See the Stan-
dards box for more information.)

In 1990 users could buy a modem with the
following characteristics:

e Price: $670 (discounted) to $1,150 (list)

e Modem-to-terminal or -computer connection:
EIA-232-D (300 to 38,400 baud)

e Modem-to-telephone network connection:
V.32 (300 to 9,600 bps)

e Error correction: V.42 (16-bit CRC with
retransmission)

e Data compression: V.42bis (modified Ziv-
Lempel)

o Implementation: 8-bit microprocessor (10-
MHz 780) with a 40-Kbyte RAM and 64-Kbyte
ROM.

1 will call such a device a V.42bis modem, al-
though I caution the reader that other uses of the
V.42bis standard are possible. The implementa-
tion and pricing information correspond to a
MultiTech MT932EAB, introduced in late July 1990.
Other manufacturers offered six similar products,
according to an informative set of product reviews.”

October 1992 41

Data compression

Standards

[encourage expert readers to look at Byrd's article on
V.42bis modems’ and/or Black’s discussion of the EIA-,
X-, and early V-series standards.®

Unfortunately, standards documents are very difficult
to read, even for an expert in the field. Even more ob-
tuse, but nonetheless important, are the US patents
granted in the last decade for data compression meth-
ods. These patents appear to cover implementations of
many of the algorithms I discuss. Michael Ernst of MIT,
mernst@theory.Ics.mit.edu, has collected a list of such
patents. If you have Internet access, you may retrieve
his list by anonymous ftp from mintaka.lcs.mit.edu:
/mitlpf/ai/patent-list.

One year later, the first V.32bis modems became commer-
cially available. All such modems include the V.42bis data
compression feature, so it is superfluous to call them V.32bis/
V.42bis modems. The advantage of a V.32bis modem over
the older V.42bis modem is that the V.32bis protocol pro-
vides higher (14,400 bps) raw bandwidth on the telephone
network than the older, slower 9,600-bps V.32 protocol of a
V.42bis modem. A V.32bis modem can deliver 50 percent
greater throughput than a V.42bis modem. However, as noted
in the adjacent Terms box and elsewhere, telephone net-
work bandwidth is only one of many possible bottlenecks.

PC Worlds December 1991 product reviews’ listed V.32bis
modems at $425 to $1,345, while V.42bis modems cost from
$399 to $1,395. The wide range of pricing is remarkable. The
name-brand manufacturers charge the higher prices for their
latest models. Available, however, are deep discounts, espe-
cially on discontinued lines. One distributor (Damark) of-

Terms

baud: The bandwidth of a communication channel, ex-
pressed in units of symbols per second. Baud is frequently
assumed to be equivalent to bps, but this is not always
true. If the symbols are taken from a binary alphabet, 1
baud is indeed 1 bps. However, if the symbols are taken
from a 16-valued set, each signal carries four bits, and 1
baud is 4 bps.

BCH coding: Any of a variety of error-correcting codes
based on work by Bose, Ray-Chaudhuri and Hocqeunghem.
Reed-Solomon codes form a related class. These codes
require much more computational power than the simple
CRC-check-and-retransmit method of V.42. However, they
impose much less overhead on the communication chan-
nel. Some of these codes can correct huge numbers of
errors without retransmission, making them invaluable in
satellite communication and other applications where er-
rors are frequent and retransmission is infeasible.

bis: A suffix indicating a modified standard, as in V.32bis
or V.42bis. Derived from the Latin bis meaning twice.

bps: Abbreviation for bits per second, a commonly used
unit for expressing the bandwidth of a communication
channel.

CCITT: Consultative Committee on Telephony and Te-
legraphy, a Geneva-based division of the International
Telecommunications Union, a New York-based United
Nations organization.

cleartext: Uncompressed data, often assumed to be
English words in ASCII code.

cps: Bandwidth of a communication channel in (8-bit)
characters per second. In this article, cps figures include

the overhead of timing and error control. Moreover, they
are adjusted for data compression, so an 8-bps connection
provides somewhat more or less than 1 cps of effective
bandwidth.

CRC: Cyclic redundancy code, usually a 16-bit signature
obtained by a simple hashing algorithm on keys with hun-
dreds of characters. CRC forms the basis of V.42 error con-
trol: A modem sends a few hundred characters (or less, if
there is not much data to send), followed by a 16-bit CRC.
The receiving modem computes a CRC on the data charac-
ters it receives, comparing it to the CRC it receives. If the
two CRC values are the same, it is unlikely that any trans-
mission errors occurred.

EIA-232-D: An internationally recognized standard for
the electrical and mechanical connections between a ter-
minal and a modem, or between a computer and a mo-
dem. Data transmits bit-serially, typically in an asynchronous
format of 8-bit characters with 2 or 3 timing bits per char-
acter. Other formats are possible. The maximum recom-
mended bandwidth is 19,200 baud, or about 1,920 cps in
an asynchronous format. Most V.42bis modems, and some
high-speed terminals and computers, will communicate
reliably over an EIA-232-D connection at 38,400 baud, or
3,840 cps. Some modems can communicate at 57,600 baud
using an EIA-232-D connection to a special board that plugs
directly into an IBM PC bus. This higher priced option,
using a synchronous format for character transmission with
little timing overhead, can provide 6,000 cps of bandwidth.

hash trie: A trie in which each node contains just one
pointer, referencing the node’s ancestor. The nodes are stored

42 IEEE Micro

fered a V.42bis modem, with limited supply, for $270. The
overlapping price ranges for V.32bis and V.42bis modems
indicate that the V.32bis modem is well on the way to sup-
planting the V.42bis modem, just as the V.42bis modem re-

cently supplanted an earlier, non-V.42bis generation of

high-speed modems.

Modem applications, performance, pricing

Terminal-to-computer and computer-to-computer commu-
nications employ the telephone network, either with a dial-
up connection or a leased line.

The distinguishing feature of a V.42bis modem is that it
can deliver higher bandwidth, in most applications, by the
use of a good algorithm for data compression. Experts may
wish to read the V.42bis Compression box on the next page
for detailed information on this algorithm. Nonexperts need
know only that the performance of a V.42bis modem will
vary with the compressibility (or incompressibility) of the

data being transmitted. For example, approximately a two-
fold improvement is typical in an application involving En-
glish text. Thus, when transmitting English text, a V.42bis
modem will deliver somewhat more than 2,000 characters
per second, up from about 1,000 cps on a V.42 modem. If
relatively incompressible data is being presented to the V.42bis
modem, or if some bottleneck exists in the system other than
the modem, the V.42bis modem will not deliver performance
improvement. On highly compressible data, such as spread-
sheets, V.42bis data compression can deliver up to a fourfold
improvement in bandwidth. Will this bandwidth improve-
ment be achieved in a given application? Read on to find the
factors, other than data compressibility, that can limit modem
performance.

User’s desired bandwidth. In a terminal-to-computer
application, a user typically accesses a remote computer with
a terminal in an office or home. All the user’s keystrokes are

continued on p. 46

in an array, allowing rapid access if a node’s index is known.
Searching for a string in a hash trie involves hashing the
string to find a set of possible indices for its node, then

the indexed nodes represents the input string.

data bits) into a signature (a shorter series of bits). The
best hash functions give distinct signatures for almost all
commonly encountered keys.

modem: A device performing the modulation/demodu-
lation function necessary to transmit digital signals over an
analog connection such as a telephone line.

Patricia trie: Binary trie in which each node contains
an integer index and two subtree pointers. The integer is
the index of the leftmost bit in which all keys in the left
subtree differ from all keys in the right subtree. Complete
keys are stored at the leaves of the tree.

pointer-list trie: A trie in which each node contains
pointers to siblings (nodes at the same level), one or more
descendants, and possibly to that node’s ancestor. Search-

sibling lists and the following of descendant pointers.
trie: A tree-shaped data structure for the storage and
reTRIEval of elements of a set of character strings. Typi-
cally, each node in a trie contains one character of data,
namely the first character of all the strings representing
that node’s descendants. A trie node must also contain one
or more pointers to other trie nodes, to define the connec-
tivity of the tree and let the trie be traversed efficiently.

Terms (continued)

testing (by traversing the ancestor chains) whether one of

hashing: The digital scrambling of a key (a series of

ing for a string in a pointer-list tree involves the traversal of

V-series interface: Any of a number of protocols for
data communications over the telephone network.

V.32: An internationally recognized standard for send-
ing digital information over a telephone connection with a
modem. The maximum bandwidth is 9,600 bps. Each sig-
nal carries 4 bits; the signaling rate is 9,600/4 = 2,400 baud.

V.32bis: A recent revision of V.32, allowing 14,400 bps.

V.42: A standardized method for error control over a V-
series interface, providing for retransmission of informa-
tion in case of error. This protocol typically has about 12
percent overhead, according to my MultiTech manual, so
a 9,600-bps V.32 connection with V.42 error control has
an effective bandwidth of (9,600/8)/112 percent = 1,060
cps. The overhead of the V.42 protocol will be larger on a
noisy telephone line, for example, on an overseas connec-
tion, so the available bandwidth will actually be less than
1,060 cps.

V.42bis: A standardized method for data compression
on a V-series interface. Single-bit errors can have cata-
strophic results, so V.42bis is normally used in conjunction
with the V.42 method for error control. On English text
that is compressible at 2.3 to 1, a 9,600-bps V.32 connec-
tion with V.42bis has a bandwidth limit of (2.3) * (9,600/
8)/112 percent = 2,440 cps. A 14,400-bps V.32bis connec-
tion with V.42bis data compression has a bandwidth limit
of about (2.3) * (14,400/8)/112 percent = 3,700 cps on
English text. Other types of data give rise to different com-
pression ratios, and thus to different bandwidth limits.

October 1992 43

Data compression

sent to the computer. The computer’s response to a key-
stroke is variable: Sometimes no data is sent, sometimes a
full-screen update of 2,000 characters is transmitted. Ideally,
the computer’s response to a user’s keystroke would be dis-
played on the user’s terminal within 0.1 second or so.

The desired peak bandwidth is thus about 2,000 characters
in 0.1 second, or 20,000 cps, from the computer to the termi-
nal. Much less data flows in the other direction, since few
users type more than 10 characters per second. However, a
terminal with programmable function keys can transmit 100
or more characters as a result of a single-user keystroke, for
a peak (desired) bandwidth exceeding 1,000 cps.

I see no sign that these high-
bandwidth standards are
displacing the ubiquitous EIA-232
interface, nor have | seen any
terminals with high-speed

built-in modems.

Host computer bandwidth. When characters are sent
from the computer to the terminal, an application program,
such as an editor, running on that computer typically gener-
ates the characters one at a time. The application program
may call an operating system routine to transmit each charac-
ter. Alternatively, it may make one operating system call for
each line of 64 characters, or possibly just one call per screenful
of about 25 * 80 = 2,000 characters. Obviously, the character-
by-character processing in the application software, and in
the operating system, is a potential communication bottle-
neck. If the application is complicated, if the computer is not
very fast, or if the computer is multiprocessing many applica-
tions simultaneously, it may be unable to support the 20,000-
cps bandwidth peaks desired by the user.

Computer-to-modem bandwidth. The next step in trans-
mitting data from the computer to the user’s terminal is for
the operating system to send the character, or block of char-
acters, to a modem attached to the computer. This modem
then transmits the characters to the modem connected to the
user’s terminal, which then sends the characters to the user’s
terminal. Finally, the user’s terminal displays the characters.
Each of these steps is potentially a bottleneck. For example,
there may be a low-bandwidth connection between the com-
puter and its modem, a low-bandwidth modem-to-modem

46 IEEE Micro

connection, or a low-bandwidth modem-to-terminal connec-
tion. And the user’s terminal may be incapable of accepting
and displaying characters as rapidly as they are sent.

At my branch of the University of Minnesota, our campus
mainframes and workstations are networked to a bank of
modems. This computer-to-modem link has an upper limit
of about 1,000 cps. One reason for this limit is applicable to
many personal-computer-to-modem connections as well:
Every character transmission causes an interruption of the
computer’s CPU. Most computers cannot handle more than
about 1,000 interrupts per second.

Modem-to-modem bandwidth. The modem-to-modem
connection is the easiest to specify and analyze. A V.42bis
modem can send about 1,060 cps of uncompressed data on
a typical telephone connection. If 2.3:1 compression is
achieved, as is typical on English text, the available band-
width rises to about 2,440 cps. However, if the telephone
connection is impaired (but still within regulatory limits), the
bandwidth will drop by 30 percent or more,” or about 1,600
cps for text compressible at 2.3:1.

Modem-to-terminal bandwidth. This bandwidth will
present a bottleneck in some cases. Typically, the interface is
an EIA-232-D, which was originally designed to support at
most 1,920 cps. Note that this is significantly lower than the
2,440-cps bandwidth of a V.42bis modem-to-modem con-
nection when English text is transmitted. Fortunately, most
V.42bis modems, and some high-speed terminals and com-
puters, can communicate reliably at 3,840 cps, or more, over
an EIA-232-D interface.

The EIA-232-D standard is a recent update of the vener-
able RS-232C convention, which itself has been updated sev-
eral times. Yet another revision is in the works, but the
document describing EIA-232-E was unavailable at press time.

Another way to obtain a higher modem-to-terminal band-
width would be to avoid the EIA-232-D interface between
terminal and the modem. One could build the modem into
the terminal itself, in much the same way as an internal mo-
dem is attached to a bus in a personal computer. Alterna-
tively, one could use a high-speed terminal-modem interface
such as the 10-Mbaud EIA-422-A or the 100-Kbaud EIA-423-
A. However, I see no sign that these high-bandwidth stan-
dards are displacing the ubiquitous EIA-232 interface, nor
have I seen any terminals with high-speed built-in modems.

Terminal display bandwidth; flow control. Most mod-
em terminals can receive and transmit short bursts of infor-
mation at 3,840 cps but are unable to maintain this bandwidth
for an extended period of time. Then, the following flow
control mechanism is invoked to avoid losing data. When a
terminal’s input buffers become nearly full, it sends a pause
signal to the modem. The modem’s data buffers will then
start to fill up, eventually causing it to send a pause signal to
the transmitting modem. The transmitting modem’s output
buffers will then start filling up, possibly causing it in turn to

send a flow control signal to the transmitting computer.

A similar set of signals enables the transmission of data to
be reinitiated between any pair of components in the path
between the application program and the user’s terminal. If
the flow control mechanism has low latency, or if it is not
invoked very often, this mechanism permits the transmission
to proceed at the minimum bandwidth between any pair of
components.

Performance gain from a V.42bis modem. As may be
gathered from the foregoing discussion, it is not easy to know
if the data compression feature of the V.42bis modem will
result in a perceptible increase in performance over a
noncompressing V.42 modem. V.42bis offers higher band-
width for compressible data than does V.42, but unless the
telephone connection is the bottleneck, there will be no in-
crease in end-to-end bandwidth.

My experience may not be atypical: I have never observed
more than 1,000-cps bandwidth on full-screen updates of a
text editor on my home terminal (a Wyse-185) when it is
connected with a V.42bis modem to any of the computers at
my university. Since this bandwidth is below the 1,060 cps
provided by V.42, I see essentially no benefit from V.42bis.
One problem is that the connection from my workstation to
my university’s modem bank has a low bandwidth. I could
sidestep this connection by installing my own modem on
one of my workstations, or I could ask for an improvement
in my workstation’s connection to the modem bank, but
frankly, this seems like more trouble than it is worth. I can
tolerate a 1-second display time for a 1,000-character screen
of text, and I am not willing to spend very much time or
effort in improving this to 0.3 or 0.5 seconds.

However, some users have seen notable performance gains
from V.42bis. High-speed personal computers with high-per-
formance EIA-232-D ports exchange highly compressible (for
example, spreadsheet) data at speeds approaching the 3,840-
cps limit of the EIA-232-D interface.” This nearly fourfold
improvement over the 1,060-cps limit of a V.42 modem yields
sizable cost savings when transmitting long files over a long-
distance telephone connection. Even over a local telephone
connection, there would be sizable equipment and person-
nel savings in any application that involved transmitting long,
compressible files. A megabyte of highly compressible data
might be transmitted in as little as four minutes over a V.42bis
connection, instead of 15 minutes on a V.42 connection.

Data-compression software. From the preceding para-
graph, one might assume that any application involving com-
puter-to-computer communication of compressible files will
benefit from V.42bis. This is not the case. The transmitting
computer could run a compression algorithm on its data be-
fore sending it to a noncompressing V.42 modem; the receiv-
ing computer can run the corresponding decompression
algorithm. This approach permits the user to select the com-
pression method most suitable for the data being transmitted.

If a user transmits scanned image data, for example, bypassing
the V.42bis feature helps more (10:1 compression is routine).
Another advantage of compressing data before transmitting it
to the modem is that an EIA-232-D connection is no longer a
bottleneck: It is perfectly capable of supporting the 1,060-cps
bandwidth of a noncompressing V.42 modem.

There are two disadvantages to this software data com-
pression scheme. Someone must install and maintain appro-
priate software on both computers. In addition, the
compression software will compete with the application soft-
ware for CPU time (and memory space) on both computers.

Each manufacturer must recoup
its engineering costs, marketing
costs, and approximately $40,000
in V.42bis patent licensing fees.

The V.42bis market. Due to the factors just discussed,
the market for V.42bis modems is limited. In computer-to-
computer applications, software data compression might of-
fer better performance. In computer-to-terminal applications,
the modem might not be the bottleneck. Thus there should
not be a large price differential between V.42 and V.42bis
modems. Indeed, one of the challenges to the V.42bis stan-
dards definition team was to develop a very low-cost data
compression method.

In mid-1990, shortly after the first V.42bis modems hit the
market, a typical V.42 modem listed for $800 or more, but
could be purchased for just over $600. Additionally, about
$50 was charged for the V.42bis feature. In the case of the
MultiTech product line, this feature was a minor modification
to an existing V.42 modem. The modification involved add-
ing another 8-Kbyte RAM chip and adding code to the ROM
for the data compression software. The existing Z80 micro-
processor apparently handled the extra CPU load of running
the V.42bis data compression algorithm in addition to the
V.42 error-correction protocol. The manufacturing cost of
adding V.42bis to an existing V.42 modem was thus a few
dollars. The profit margin on V.42bis might seem enormous
to some readers, however each manufacturer must recoup its
engineering costs, marketing costs, and approximately $40,000
in V.42bis patent-licensing fees.

In a completely redesigned modem, the V.42bis feature is
extremely low in production cost. Such a modem would have
a 16- or 32-Kbyte RAM chip instead of the 8-Kbyte RAM chip
in a V.42 modem. It might also have a slightly larger ROM to

October 1992 47

Data compression

accommodate the data compression software.

It is thus easy to understand why there were so few high-
speed modems on the market in late 1991 that do not in-
clude the V.42bis feature. At worst (on incompressible data
or on bandwidth-limited systems), V.42bis doesn’t help; at
best, it offers almost a fourfold improvement in bandwidth at
a nominal increase in cost.

It will soon become rare to
buy a high-speed modem

without BCH error control.

V.32bis modems. The higher bandwidth V.32bis was re-
cently approved by the CCITT, improving the raw bandwidth
of a V.32 modem-to-modem telephone connection by 50 per-
cent from 9,600 bps to 14,400 bps. Assuming the overhead of
V.42 error correction remains at about 12 percent for this higher
bandwidth connection, a V.32bis modem with V.42 error cor-
rection has a throughput limit of about (14,400/8)/112% = 1,610
cps on uncompressed data. This bandwidth limit would rise
significantly to 3,700 cps on data that is compressible at 2.3:1
when the V.42bis data compression feature is used.

Note that a V.32bis modem has no advantage over a V.42bis
(V.32) modem whenever the V.32 modem-to-modem con-
nection is not a bottleneck. This case is likely to occur when-
ever highly compressible data is being transmitted.

Measured bandwidths on real systems. No modem will
run at its limiting bandwidth in a real system, with its nonideal
flow control, limited buffer sizes, and slow EIA-232-D inter-
faces. For this reason, a number of researchers have con-
structed systems consisting of two PCs, two modems, a real
or simulated telephone connection, and a collection of test
files. As I discovered recently, the convention in this field is
to measure bandwidths, in bits per second (bps), at the EI1A-
232-D interface.

For example, Glass measured throughputs of 22,000 bps
on a text file with a V.32bis/V.42bis modem, and 16,000 bps
with a V.32/V.42bis modem.’ Since 10 bit-times on the EIA-
232-D interface are required to send an 8-bit character, Glass’s
measurement translates into data throughputs of 2,200 cps
and 1,600 cps. These throughputs are about 40 percent lower
than the ones I calculate here for text-file transmissions on
these modems, leading me to conclude that Glass’s system is
bandwidth-limited somewhere other than in the modem-to-
modem connection. My conclusion is supported by the fact
that Glass measured only 24,000 bps (2,400 cps) on highly
compressible database files, no matter which modem he used.

48 IEEE Micro

This is only 63 percent of the bandwidth limit of his E1A-232-
D connection which, ideally, would run at full bandwidth on
a highly compressible file transmission.

Using a different test system, Henderson measured 24,000~
bps throughput on a text file transmitted on a V.32/V.42bis
modem." This data throughput of 2,400 cps very closely agrees
with the 2,440-cps bandwidth limit for V.32/V.42bis text trans-
missions (assuming 2.3:1 compressibility and 12 percent over-
head for error correction). I conclude that Henderson's system
does not suffer from bandwidth bottlenecks, other than the
modem-to-modem connection under test.

The future. Another development in telephone network
signaling, hovering on the near-future horizon for many years,
is the Integrated Services Digital Network (ISDN). When and
if local telephone loops are digitized, dial-up connections
will run at 8,000 cps, without a modem:. This is over twice the
bandwidth of EIA-232-D, so this standard will finally be ob-
solete. One might make ISDN file-transfer connections with
a special interface board on a personal computer, implement-
ing V.42bis data compression and V.42 error correction. The
result would be an effective bandwidth of nearly 20,000 cps
for English text and 13 Kbytes/s for executables.

Even though digital signaling (ISDN) may never become
widely available, other methods of analog signaling on the
telephone network may become standardized soon. The
14,400-bps signaling of V.32bis has been surpassed by V fast
transmissions at 19,200 bps, and even 24,000 bps. Standard-
ization of V fast is expected soon. In conjunction with V.42bis
data compression, data throughputs of up to 7,000 cps for
English text are thus feasible. The slow EIA-232-D computer-
to-modem interface becomes even more problematical at these
data rates.

As computational power and memory become cheaper,
more powerful methods for data compression and error con-
trol will no doubt become commonplace in the modem mar-
ket. V.42bis could be revised to take advantage of recent
work on data compression algorithms. Also, the V.42 error
control protocol could be revised to incorporate a BCH or
Reed-Solomon code that would greatly reduce the bandwidth
and latency problems associated with V.42’s retransmission
after each single-bit error. One referee asserts that a BCH
encoder/decoder chip would cost just $50 at present, if pur-
chased in quantity. With the price multipliers typical of a
high-technology field, this would increase the cost of a mo-
dem by perhaps $200. However, the cost of a BCH chip will
no doubt drop rapidly in the next few years, possibly to the
point where it will soon become rare to buy a high-speed
modem without BCH error control.

Experimental results

John Copeland, of the V.42bis study group, kindly sent me
C-language source code for an implementation of the V.42bis
standard. The comments and experimental results in this sec-

tion are obtained from his version 6.83, dated July 16, 1989,
of the hv42b3.c code. Hayes Microcomputer Products, Inc.
owns the copyright to this code, which it says is “distributed
for experimentation aimed at developing a CCITT V.42 data
compression standard.”

The Hayes code implements the V.42bis dictionaries as
rchild/Isibling/rsibling/parent pointer tries. It sorts sibling lists
by their suffix character.)

When I ran the Hayes code on my Sun 3/50, it compressed
my 100-Kbyte test files at rates of 6 to 10 Kbytes of input data
per second. On a 10-MHz Z80, I estimate that the Hayes code
would run two to four times slower, due to the lower MIPS
rate and the narrower data bus. Some optimization of the
code may thus be necessary to keep the CPU from becoming
the bottleneck in a V.42bis modem, especially since the CPU
in such a modem has a number of other tasks. The CPU must
handle V.42bis compression on the transmission channel,
V.42bis decompression on the receiving channel, as well as
V.42 error correction and V.32 packetizing on both channels.
(Perhaps the ATI 9600etc/e modem has a CPU bottleneck of
this sort, which would explain why it was unable to deliver
more than 1,977-cps throughput, on an experimental setup
where its fastest competition ran at 3,440 cps.)’

I have run a number of compression measurements on the
V.42bis implementation used by the study group. All mea-
surements reported involve the following five files. The first,
labeled csh, is the 122,880-byte executable C shell in my Sun
4.2 Unix. The second test file, Essays, consists of 176,369
bytes of concatenated freshman essays. It is cleartext English,
containing no text-formatting commands. The third file, News,
is 210,931 bytes of articles representing a (small) portion of a
day’s Usenet feed. This file is a good test of a compression
algorithm’s ability to respond quickly to a rapidly changing
source, since the article header fields are quite different from
the article bodies, and the article bodies are also variable
(ranging from cleartext English to source code). The fourth
file, Pascal, is 119,779 bytes of source code to a student-
written program and is highly compressible, due to its re-
peated use of long identifiers. The fifth and final test file, Tex,
is the 201,746-byte Latex manual, vintage 1984, containing
both cleartext and text-formatting commands.

Table 1 shows the compression ratios obtained by the Hayes
code on the five test files, when the length of the longest
code word is 16 and the maximum length of the dictionary
varied between 512 and 4,096. In this table, and throughout
this section, 1 define compression ratio to be the length of the
compressed file divided by the length of the input file. A
compression ratio of 0.43 is thus the 2.3:1 compression I've
already mentioned as the performance of V.42bis on a sample
text file, Essays.

Note that increasing the size of the dictionary noticeably af-
fects the compression ratio for all files save csh. Perhaps the
most striking feature of Table 1, however, is that even a short,

Table 1. Effect of dictionary size on
V.42bis compression ratio,
when maximum code word length is 16.

Dictionary size

Test files 512 1,024 2,048 4,096
Csh 0.65 0.62 0.62 0.62
Essays 0.57 0.49 0.45 0.43
News 0.70 0.64 0.60 0.56
Pascal 0.52 0.41 0.35 0.31
Tex 0.59 0.50 0.45 0.42

Table 2. V.42bis compression ratio,
for various dictionary sizes,
when maximum code word length is 6.

Dictionary size
Test files 512 1,024 2,048 4,096

Csh 0.65 0.63 0.63 0.64
Essays 0.57 0.49 0.46 0.43
News 0.70 0.64 0.60 0.57
Pascal 0.53 0.43 0.38 0.35
Tex 0.60 0.51 0.46 0.44

512-code word dictionary is sufficient to obtain good compres-
sion on the test files. I've presented results only for test files long
enough that large dictionaries may become useful. On short
files, short dictionaries do just as well as long dictionaries.

Table 2 is identical to Table 1, except that the length of the
longest code word is restricted to 6 characters. These figures
are only slightly larger than those of Table 1, indicating that
the code word-length parameter is not very important to
V.42bis performance, at least for the five test files.

Table 3 on the next page shows the compression ratios
obtained by the Unix Compress utility? on the five test files,
as a function of dictionary size. Compress is a poor algorithm
for small dictionaries. Even with a 64K dictionary, it is only
slightly better than V.42bis with a 4K dictionary.

Tables 4 and 5 compare the performance of the Hayes
code with a 4K-code word dictionary (maximum code word
length is 16) with that of a number of other Ziv-Lempel vari-
ants. Where possible, I use the abbreviations of the Fiala-
Greene work.

Table 4 consists of those algorithms which, like V.42bis,
send code word indices in straight binary form. The algo-
rithms of Table S gain compression, at some penalty in speed,
by using Huffman or arithmetic codes to compress the code

October 1992 49

Data compression

Table 3. Unix-Welch compression ratio,
for various dictionary sizes.

Dictionary size

Test files 512 1,024 2,048 4,096 65,536
Csh 0.98 0.82 0.89 0.75 0.64
Essays 0.67 0.53 0.49 046 040
News 0.91 0.73 0.71 0.67 054
Pascal 0.70 0.50 0.43 0.37 030
Tex 0.85 0.61 0.53 048 0.39

word indices.

Algorithms under text. Expert readers may be interested
in the following paragraphs; others may skip to the Discus-
sion section.

LZRW1 is a high-speed ZL1 scheme!" recently released into
the public domain by Ross Williams.*?

Allb is a very high-speed ZL2 scheme! released in late 1990
into the public domain for research use only, by Brandon S.
Allbery. This code can be retrieved under the name
compact_sv, from volume 15, number 89, of the archives for
the Internet news group, comp.sources.misc.

UW is the standard Unix-Welch Berkeley Compress utility,
a ZL2 variant,! with 16-bit codes (64K dictionary entries).

Al, B1, A2, B2, and C2 are Fiala and Greene’s algorithms.
Al is a ZL1 scheme'! with a 4K-character buffer, augmented
with a literal transmission mode using a suffix trie to acceler-
ate the buffer searches. Its compressed output contains two
types of code words: literal x, meaning that the decompressor
should pass the next x characters directly to the output, and
copy X ¥, meaning that the decompressor should go back y
characters in the output buffer and append the next x char-
acters to the output buffer. B1 is similar to A1, but optimized
for speed. It builds a Patricia trie with only some of the
substrings contained in the last 4K characters of input. A2

and B2 are similar to A1 and B1 with 16-Kbyte buffers and a
static Huffman back end. C2 is designed for maximum com-
pression. Its Patricia trie contains all the substrings contained
in the last 16K characters of input. It gains compression effi-
ciency over the usual ZL1 scheme, since it does not waste
code space on duplicate substrings. Because A2, B2, and C2
use a Huffman code to send trie indices, I have listed their
compression ratios in Table 5.)

MW1 and MW2 are the Miller-Wegman algorithms,? as
implemented by Dan Greene of Xerox PARC.! MW1 is a ZL2
variant, with a 4,096-entry dictionary, a least recently used
replacement algorithm, and Welch-style output coding. MW2
is like MW1, augmented with string extension. It is thus an
ID-LRU, in Storer’s terminology.’

MWP, of Table 5, is a high-compression, high-speed imple-
mentation of MW2 by Roberto Pasqui of IBM Italy. It uses a
static Huffman code with only three code lengths. The short-
est codes refer to the most recently used set of 128 code
words; medium-length codes refer to a set of less recently
used 512 code words; and the longest codes refer to the
oldest 4,096 code words.

Y64 and Y512 are the yabba coders, placed into the public
domain recently by Dan Bernstein. Readers can retrieve these
codes from volume 24, postings number 73 through 76, of
the comp.sources.unix archives. yabba is a ZL2 variant' that
adds one string pcto its dictionary for each input character c,
where p is the longest suffix of the already processed input
such that p is currently in the dictionary. The higher com-
pressing Y512 has a 512K-entry dictionary; Y64 has a 64K-
entry dictionary.

Like MWP, the Rogers-Thomborson code RT* uses a back-
end coder to transmit frequently used code words with fewer
bits than the rarely used ones. However, since RT uses an
adaptive arithmetic code rather than a static Huffman code, it
is very slow. RT grows its dictionary in a similar fashion to
the MW2 and MWP algorithms, except that it does not add
new dictionary entries ending with a blank space when ex-
tending characters. In such cases, only string extension oc-

Table 4. Compression ratios of Ziv-Lempel algorithms that
do not also employ Huffman or arithmetic coding. Boldface entries are row minima.
Algorithms
Test files V42 LZRWI1 Allb uw Al B1 MW1 MW2 Y64 Y512
Csh 0.62 0.65 0.62 0.64 0.61 0.62 0.62 0.57 0.64 0.60
Essays 0.43 0.59 0.48 0.40 0.45 0.44 0.42 0.40 0.39 0.37
News 0.56 0.65 0.60 0.54 0.56 0.55 0.56 0.53 0.54 0.49
Pascal 0.31 0.39 0.35 0.30 0.25 0.25 0.31 0.17 0.25 0.22
Tex 0.42 0.52 0.46 0.39 0.41 0.39 0.41 0.35 0.40 0.35

50 IEEE Micro

curs. This heuristic tends to increase
the fraction of dictionary entries that
are complete English words or
phrases, when the input is textual.
Since there are usually few ASCII

Table 5. Compression ratios of algorithms
employing Huffman or arithmetic coding.
Boldface entries are row minima over Tables 4 and 5.

blanks in a binary file, their compres-

Algorithms

B2 C2 MWP RT LHarc Freeze BSTW ppmC

sion is not degraded much. Note that Test files A2
RT compresses slightly better than

MWP, on all but the csh binary. Most Csh 0.54
of this improvement is due to the Essays 0.40
nonblank heuristic, not to the arith- News 0.48
metic coding; but this hypothesis de- Pascal 0.15
serves test. Tex 0.34

055 052 051 055 051 050 069 0.47
039 036 036 034 040 039 039 0.29
048 044 047 045 048 046 053 0.40
0.14 0.3 017 0.16 0.19 015 0.24 0.8
033 031 032 031 036 033 038 027

LHarc (see Table 5) is a public-do-
main code from Japan in common use
for distribution of personal computer software on floppy disks.
To install such packages, users must typically wait minutes
for the software to be decompressed onto their hard disk or
alternate floppy drive. I obtained a Unix version of LHarc
over the Internet, in volume 11, numbers 17-18, of the
comp.sources.misc archives. On my Sun 3/50, LHarc runs at
about 2 Kbytes/s, or about 15 times slower than the Unix
Compress utility UW. As may be seen from Table 5, how-
ever, LHarc has better compression ratios. No documenta-
tion was included with my version of LHarc. It appears to run
in two passes: a ZL1 coding! with a 4-Kbyte buffer followed
by a dynamic Huffman recoding of the Ziv-Lempel indices.
This Huffman back end probably accounts for most of the
compression improvement and speed degradation, relative
to UW.

Freeze is a public-domain code that recently emerged from
the Soviet Union. It is archived in volume 17, numbers 68
and 74, of the comp.sources.misc news group. Like LHarc,
Freeze is a ZL1 (first Ziv-Lempel) variant with a dynamic
Huffman back end, although it has an 8-Kbyte buffer. Since
single-character literals appear in the output stream, Freeze
is more precisely an LZSS (Lempel-Ziv-Szymanski-Storen'
variant."'? Its output coding appears to work a little better
than that of LHarc, and it runs at about the same speed. Of a
512-symbol alphabet, the first 256 symbols denote single-
character literals; one symbol marks an end-of-file; and the
last 255 symbols indicate the length / of the match (1 < /<
256). If a multiple-character match is selected, the next bits in
the compressed stream indicate the most-significant 6 bits of
the position of the match. These bits are sent with a static
Huffman code of 1 to 8 bits. The 7 least significant bits of the
match position transmit in binary.

As may be seen in Table 5, the Bentley-Sleator-Tarjan-Wei
code' achieves very good compression ratios for every file
except csh. Dan Greene's implementation provided the data
in Table 5. This data agrees with my independently coded
implementation to within 0.01.

BSTW’s compression ratios are remarkable, it uses less than

6 Kbytes of space for its data structures. A BSTW compressor,
in my implementation, uses two linked lists of 239 cells con-
taining words of up to 16 characters each. One list contains
only alphanumeric words; the other list contains
nonalphanumeric words. The compressor parses the input
file into an alternating sequence of maximal length alphanu-
meric and nonalphanumeric words. Zero-length words in the
lists allow for the eventuality that the input contains alphanu-
meric (or nonalphanumeric) substrings of length greater than
16. A previously encountered word transmits with an adap-
tive Huffman encoding of the list position and then moves to
the front of its list. A new word transmits with an escape
code followed by an adaptive Huffman encoding of the
cleartext word.

The Bell-Cleary-Moffat-Witten code ppmC'®"” of Table 5 is
based on a variable-order Markov modeling of the source,
with arithmetic coding used to communicate state transitions.
It achieves impressive compression ratios, however it requires
the largest amount of data space (730 Kbytes) of any algo-
rithm in my tables.

Readers interested in more data on the relative performance
of compression algorithms should access the comp.
compression news group on Internet. One contributor, Peter
Claus Gutman, is currently developing a large body of data
on the Calgary corpus of test files."”

Discussion. As indicated in Tables 4 and 5, V.42bis ob-
tains markedly worse compression ratios than many other
algorithms. Let's look at competing algorithms to see if they
offer a significant advantage in the V.42bis application.

The LZRW1 and Allb algorithms offer significantly worse
compression ratios than V.42bis. However, they run two or
three times more rapidly on my Sun 3/50 than any other
algorithm I have tested. I observed speeds of 50-70 Kbytes/s
and 90-120 Kbytes/s on this 1-MIPS machine, using Sun’s
optimizing compiler on these C codes. Even higher band-
widths could be obtained with CPU-specific code tuning. The
LZRW1 and Allb algorithms would thus be preferable to
V.42bis in applications that are cost-limited but not I/O chan-

October 1992 51

Data compression

Readers interested in more
data on the relative performance
of compression algorithms
should access the
comp.compression news

group on Internet.

nel-limited, for example, in a compressing interface to a low-
cost tape or disk drive. For the low-cost modem application,
however, the better compressing V.42bis algorithm is clearly
preferable, since a 10-MHz Z80 is sufficient to keep up with
a telephone modem’s low-speed serial 1/0 channels.

The UW algorithm achieves slightly better compression
than V.42bis on the test files, at the expense of 16 times the
data space. Since a low-cost modem is limited in memory,
UW is not an appropriate choice. Furthermore, as shown in
Table 3, a memory-limited UW is not competitive in com-
pression ratio with V.42bis.

Fiala and Greene’s algorithm Al requires 145 Kbytes to
compress with a 16K-entry dictionary; their other algorithms
require even more space. Further research is necessary to
decide if any of these algorithms are competitive with V.42bis,
when restricted to a 10- or 20-Kbyte dictionary and an 8-bit
microprocessor. Still, the A2, B2, and C2 algorithms would
be a promising starting point for research on a future data
compressjon standard.

Despite its LRU-Huffman back end, MWP runs at a re-
spectable 10-20 Kbytes/s on my test files, on an IBM PS/2
mod 80, 16-MHz 80386 under DOS 4.0, according to private
correspondence from Victor Miller. By way of comparison,
the Unix Compress utility UW runs at 25-50 Kbytes/s on the
test files on my Sun 3/50, and my V.42bis implementation
runs at only 6-10 Kbytes/s. Even though my V.42bis imple-
mentation is not optimized for speed, I believe MWP would
be at least as fast as V.42bis, even on an 8-bit microprocessor
such as a Z80. Despite its impressive speed and compression
ratios, however, MWP is not immediately applicable to the
design of today’s low-cost V.42bis modems, since it requires
60 Kbytes of space for its data structures.

BSTW requires just 6 Kbytes of data space, so it would fit
in a low-cost modem. However, its adaptive Huffman encod-
ing would severely limit the bandwidth of any such modem’s
low-performance processor. A much more expensive mo-
dem could employ a special-purpose, high-bandwidth,
Huffman- (or arithmetic-) encoder/decoder chip, as well as a

52 IEEE Micro

high-speed hardware implementation of BSTW.* The poor
performance of BSTW on nontextual data could pose a prob-
lem in many applications, although one might envision a
revision to V.42bis allowing a compressor to enter BSTW
mode whenever suitable data was received.

As noted earlier, a V.32bis/V.42bis modem is usually lim-
ited by factors other than its compression ratio. In high-per-
formance, relatively cost-insensitive applications, bottlenecks
such as the EIA-232-D can be removed, and other data com-
pression schemes would be markedly superior to V.42bis.
Thus MWP (perhaps with the RT conditional dictionary entry
heuristic), the Fiala-Greene algorithm B2, BSTW, and ppmC
deserve attention in the next round of standards-making
activity.

THIS EXAMINATION OF SOME OF THE PRACTICAL, algo-
rithmic, and marketing aspects of the V.42bis standard has
not uncovered any serious flaws in its specification. On the
contrary, the algorithm embodied in this standard is competi-
tive with other Ziv-Lempel variants, if these are required to
run in a small data space on an 8-bit microcomputer.

My data shows that a well-implemented V.42bis modem
can achieve 2.3:1 compression on English text, 1.6:1 com-
pression on 68000 object code, and 3.2:1 compression on
Pascal source code. The best compression ratios I observed,
for any data compression algorithm, were 3.4:1 on English
text, 2:1 on object code, and 7:1 on my highly compressible
sample of Pascal. The algorithms achieving these ratios re-
quire significantly more computational resources than does
V.42bis, so they would not be viable in the current market
for modems. Still, it is clear that a revision to the V.42bis
standard could offer 50 percent or more additional band-
width in many applications.

The future of data-compressing modems is uncertain. Mi-
crocomputers and their memory are rapidly becoming
cheaper, by 20 percent to 30 percent per year. Thus the quick-
and-inexpensive algorithmic choices embodied in V.42bis will
soon be outmoded, and the more computationally expen-
sive but better-compressing algorithms I've mentioned will
become economical for text transmission. However, text trans-
mission is only a fraction of current computer communica-
tion over the telephone network, and this fraction is rapidly
decreasing. Source-specific compression algorithms (for voice,
image, fax) can be run efficiently on a personal computer,
achieving much higher compressjon ratios than are offered
by any of the algorithms discussed here, for these nontextual
sources.

Following this line of reasoning, the V.42bis standard will
continue to be used in low-cost computer-to-ASCII-terminal
communications, but it will find less and less applicability in
computer-to-computer communications. I would not expect
to see many modems making use of the V.42bis feature in
the year 2000, when a 10-MIPS personal computer should be

only a little more expensive than an ASCII terminal. Source-
specific data compression algorithms will run on such com-
puters at high bandwidth, not only for communication but
also for mass storage devices. [

Acknowledgments

Former UMD students Clyde Rogers and Julie Redland, or
Dan Burrows and Bill Marko of UMD Information Services,
ran many of the experiments I've described. I am indebted to
John Copeland, of Hayes Microcomputer Products, Inc., for a
copy of the source code to a V.42bis-compliant compressor
and for the test files used by the V.42bis study group. I thank
Dan Greene of Xerox PARC, Tim Bell of the University of
Calgary, and Victor Miller of IBM for taking the time and
trouble to run our test files through their compressors. Tele-
phone conversations with Ashok Patel and Warren Henderson
corrected my misunderstandings about their throughput mea-
surement data. Last but not least, I thank the (four!) referees
of my manuscript for their detailed and thoughtful reviews.

The National Science Foundation, through its Design, Tools
and Test Program, supported this research under grant num-
ber MIP 9023238.

References

1. J.Zivand A.Lempel, “Compression of Individual Sequences via
Variable-Rate Coding, ” EEE Trans. Information Theory, Vol. 24,
No. 5, 1978, pp. 530-536.

2. T.A. Welch, "A Technique for High-Performance Data
Compression,” Computer, Vol. 17, No. 6, June 1984, pp. 8-19.

3. V.S Millerand M.N. Wegman, “Variations on a Theme by Zivand
Lempel,” in A.Apostolico and Z.Galil, eds., NATO AS/ Series, Vol.
F12, Combinatorial Algorithms on Words, Springer-Verlag, Berlin,
1985, pp. 131-140.

4. LA Storer, "Textual Substitution Techniques for Data Compression, ”
ibid., pp. 111-129.

5. J.A.Storer, Data Compression: Methods and Theory, lEEE Computer
Society Press, Los Alamitos, Calif., 1988.

6. E.W. Fiala and D.H. Greene, "Data Compression with Finite
Windows,“ Commun. ACM, Vol. 32, No. 4, Apr. 1989, pp. 490-
505.

7. M. Byrd, "9600-bps Modems: Breaking the Speed Barrier,” PC
Magazine, Dec. 11, 1990, pp. 307-346.

8. U.Black, Physical Level Interfaces and Protocols, CS Press, 1988.

9. B.Glass, “High Speed Modems,” PC World, Dec. 1991, pp. 236-
242.

10. W.L.Henderson, Jr., and S.S. King, “Testing V.32 Modems—the
Right Way ... (cont'd),” Data Communications, May 1991, pp.
99-105.

11. J.Zivand A.Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Trans. Information Theory, Vol. 23, No. 3,
1977, pp. 337-343.

12. R.N. Williams, ”An Extremely Fast Ziv-Lempel Data Compression
Algorithm,” Proc. Data Compression Conf., IEEE, New York, Apr.
1991, pp. 362-369.

13. C.Rogers and C.D. Thomborson, “Enhancements to Ziv-Lempel
Data Compression,” Proc. 13th Int'| Computer Software and
Applications Conf., Sept. 1989, pp. 324-330.

14, J.A.Storer and T.G. Szymanski, “Data Compression via Textual
Substitution,” J. ACM, Vol. 29, No. 4, 1982, pp. 928-951.

15. J.L.Bentleyetal., "ALocally Adaptive Data Compression Scheme,”
Commun. ACM, Vol. 29, No. 4, Apr. 1986, pp. 320-330.

16. J.G. Cleary and LH. Witten, “Data Compression Using Adaptive
Coding and Partial String Matching,” /EEE Trans. Computers,
Vol. COM-32, No. 4, Apr. 1984, pp. 396-402.

17. T.C.Bell,).G. Cleary, and I.H. Witten, Text Compression, Prentice
Hall, Englewood Cliffs, N.J., 1990.

18. C.D.Thomborson and B. W-Y Wei, “ Systolic Implementations of
a Move-to-Front Text Compressor,” Proc. 1989 ACM Symp.
Parallel Algorithms and Architectures, ACM, New York, June
1989, pp. 283-291.

Clark Thomborson teaches computer
science and computer engineering at the
Duluth campus of the University of Min-
nesota but is currently on a one-year sab-
batical at MIT, where he will teach and
conduct research. He has also served on
the faculty of the University of California,
Berkeley, Computer Science Division.

Thomborson received his bachelor’s degree in chemistry,
master’s in computer science/computer engineering from Stan-
ford, and doctorate in computer science from Camegie Mellon
University. He has published more than 40 articles on spe-
cial-purpose hardware implementations of algorithms, VLSI
theory, graph theory, algorithmic analysis and the effects of
military funding on academic science and engineering. He is
a member of the IEEE and ACM.

Direct any questions regarding this article to the author at
the Massachusetts Institute of Technology, Laboratory for
Computer Science, 545 Technology Square, Cambridge, MA
02139; or e-mail at cthombor@theory.lcs.mit.edu.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 165

Medium 166 High 167

October 1992 53

