Optimal normal bases

Shuhong Gao and Hendrik W. Lenstra, Jr.

Department of Combinatorics and Optimization	Department of Mathematics
University of Waterloo	University of California
Waterloo, Ontario	Berkeley, CA 94720
Canada N2L 3G1	U. S. A.
E-mail: sgao@violet.waterloo.edu	E-mail: hwl@math.berkeley.edu

Abstract. Let $K \subset L$ be a finite Galois extension of fields, of degree n. Let G be the Galois group, and let $(\sigma \alpha)_{\sigma \in G}$ be a normal basis for L over K. An argument due to Mullin, Onyszchuk, Vanstone and Wilson (Discrete Appl. Math. **22** (1988/89), 149–161) shows that the matrix that describes the map $x \mapsto \alpha x$ on this basis has at least 2n-1 non-zero entries. If it contains exactly 2n-1 non-zero entries, then the normal basis is said to be optimal. In the present paper we determine all optimal normal bases. In the case that K is finite our result confirms a conjecture that was made by Mullin et al. on the basis of a computer search.

Key words: normal basis, Galois theory.

1991 Mathematics subject classification: 12F10.

Acknowledgements. The first author acknowledges his Ph. D. supervisor Ronald C. Mullin for his help and continuous encouragement; he received partial financial assistance from NSERC grant #OGP0003071. The second author is grateful to the Institute for Advanced Study in Princeton, the Institute for Computer Research at the University of Waterloo, and the Université de Franche-Comté in Besançon for providing hospitality and support while this work was being done; he was supported by NSF under Grant No. DMS 90-02939.

Let $K \subset L$ be a finite Galois extension of fields, n the degree of the extension, and G the Galois group. A basis of L over K is called a *normal basis* if it is of the form $(\sigma\alpha)_{\sigma\in G}$, with $\alpha \in L$. Let $(\sigma\alpha)_{\sigma\in G}$ be a normal basis for L over K, and let $d(\tau, \sigma) \in K$, for $\sigma, \tau \in G$, be such that

(1)
$$\alpha \cdot \sigma \alpha = \sum_{\tau \in G} d(\tau, \sigma) \tau \alpha$$

for each $\sigma \in G$. Summing this over σ we find that

$$\sum_{\sigma} d(1,\sigma) = \operatorname{Tr} \alpha,$$

 $\sum_{\sigma} d(\tau,\sigma) = 0 \quad \text{ for } \tau \in G, \, \tau \neq 1,$

where $\operatorname{Tr} \alpha = \sum_{\sigma} \sigma \alpha \in K$ denotes the trace of α . Since α is a unit, the matrix $(d(\tau, \sigma))$ is invertible, so for each τ there is at least one non-zero $d(\tau, \sigma)$. If $\tau \neq 1$, then by the above relations there are at least *two* non-zero $d(\tau, \sigma)$'s. Thus we find that

$$\#\{(\sigma,\tau)\in G\times G: d(\tau,\sigma)\neq 0\}\geq 2n-1.$$

The normal basis $(\sigma \alpha)_{\sigma \in G}$ is called *optimal* if we have equality here.

The argument just given and the notion of an optimal normal basis are due to Mullin, Onyszchuk, Vanstone and Wilson [2]. They give several examples of optimal normal bases, and they formulate a conjecture that describes all finite extensions of the field of two elements that admit an optimal normal basis. In [1] this conjecture is extended to all finite fields. In the present paper we confirm the conjecture, and we show that the constructions given in [2] exhaust all optimal normal bases, even for Galois extensions of general fields.

Our result is as follows. If F is a field, we denote by F^* the multiplicative group of non-zero elements of F, and by char F the characteristic of F.

Theorem. Let $K \subset L$ be a finite Galois extension of fields, with Galois group G, and let $\alpha \in L$. Then $(\sigma\alpha)_{\sigma \in G}$ is an optimal normal basis for L over K if and only if there is a prime number p, a primitive pth root of unity ζ in some algebraic extension of L, and an element $c \in K^*$ such that one of (i), (ii) is true:

- (i) the irreducible polynomial of ζ over K has degree p-1, and we have $L = K(\zeta)$ and $\alpha = c\zeta$;
- (ii) char K = 2, the irreducible polynomial of $\zeta + \zeta^{-1}$ over K has degree (p-1)/2, and we have $L = K(\zeta + \zeta^{-1})$ and $\alpha = c(\zeta + \zeta^{-1})$.

In case (i), the degree of L over K is p-1, and G is isomorphic to \mathbf{F}_p^* , where \mathbf{F}_p denotes the field of p elements. In case (ii), the prime number p is odd (because char K = 2), the degree of L over K is (p-1)/2, and G is isomorphic to $\mathbf{F}_p^*/\{\pm 1\}$. In particular, we see from the theorem that the Galois group is cyclic if there is an optimal normal basis.

In case (i) the irreducible polynomial of ζ over K is clearly equal to $\sum_{i=0}^{p-1} X^i$. We remark that, when K is a field and p is a prime number, we can give a necessary and sufficient condition for the polynomial $\sum_{i=0}^{p-1} X^i$ to be irreducible over K. Namely, it is irreducible over the prime field K_0 of K if and only if either char K = 0, or char $K \neq 0$ and char K is a primitive root modulo p, or char K = p = 2; and it is irreducible over Kif and only if it is irreducible over K_0 and $K_0(\zeta) \cap K = K_0$, where ζ denotes a zero of the polynomial in an extension field of K.

The formula for the irreducible polynomial of $\zeta + \zeta^{-1}$ over K in case (ii) is a little

more complicated. Let $a \prec b$, for non-negative integers a and b, mean that each digit of a in the binary system is less than or equal to the corresponding digit of b; so we have $a \prec b$ if and only if one can subtract a from b in binary without "borrowing". Further, write n = (p-1)/2. With this notation, the irreducible polynomial of $\zeta + \zeta^{-1}$ over K in case (ii) equals $\sum_i X^i$, where i ranges over those non-negative integers for which we have $2i \prec n + i$. To prove this, one first observes that, for any primitive pth root of unity ζ in any field, one has the polynomial identity

$$\prod_{j=1}^{n} (X - \zeta^{j} - \zeta^{-j}) = \sum_{j=0}^{[(n-1)/2]} (-1)^{j} \binom{n-1-j}{j} X^{n-(2j+1)} + \sum_{j=0}^{[n/2]} (-1)^{j} \binom{n-j}{j} X^{n-2j}.$$

Next one uses Lucas's theorem, which asserts that $a \prec b$ if and only if the binomial coefficient $\binom{b}{a}$ is odd. This leads to the formula stated above. Again, we can for any field K of characteristic 2 and for any odd prime number p = 2n + 1 give a necessary and sufficient condition for the polynomial to be irreducible over K. Namely, the polynomial is irreducible over the prime field \mathbf{F}_2 of K if and only if the group $\mathbf{F}_p^*/\{\pm 1\}$ is generated by the image of $(2 \mod p)$; and it is irreducible over K if and only if it is irreducible over \mathbf{F}_2 and $\mathbf{F}_2(\gamma) \cap K = \mathbf{F}_2$, where γ denotes a zero of the polynomial in an extension field of K.

We turn to the proof of the theorem. First we prove the "if" part. Let p be a prime number and ζ a primitive pth root of unity such that (i) or (ii) holds for some $c \in K^*$. Clearly, α gives rise to an optimal normal basis for L over K if and only if $c\alpha$ does. Hence without loss of generality we may assume that c = 1.

Let it now first be supposed that we are in case (i). Since ζ has degree p-1 over K, all primitive pth roots of unity ζ^i , $1 \le i \le p-1$, must be conjugate to ζ . Also, the elements ζ^i , $0 \le i \le p-2$, form a basis for L over K. Multiplying this basis by ζ , we see that the elements ζ^i , $1 \le i \le p-1$, form a basis for L over K as well, so this is a normal basis. Multiplication by ζ on this basis is given by

$$\zeta \cdot \zeta^{i} = \zeta^{i+1} \qquad (i \neq p-1),$$
$$\zeta \cdot \zeta^{p-1} = 1 = \sum_{i=1}^{p-1} -\zeta^{i}.$$

It follows that the normal basis is optimal.

Next suppose that we are in case (ii), so that char K = 2 and $\alpha = \zeta + \zeta^{-1}$. If γ is conjugate to α over K, then a zero η of $X^2 - \gamma X + 1$ is conjugate to one of the zeroes ζ , ζ^{-1} of $X^2 - \alpha X + 1$ and is therefore a primitive pth root of unity. Then we have $\eta = \zeta^i$ for some integer i that is not divisible by p, so $\gamma = \eta + \eta^{-1} = \zeta^i + \zeta^{-i}$ for some integer i with $1 \leq i \leq (p-1)/2$. Since α has degree (p-1)/2, it follows that its conjugates over K are precisely the elements $\alpha_i = \zeta^i + \zeta^{-i}$ for $1 \leq i \leq (p-1)/2$. Note that for 0 < j < (p-1)/2we have $\alpha^j = (\zeta + \zeta^{-1})^j = \sum_{i=0}^{\lfloor (j-1)/2 \rfloor} {j \choose i} \alpha_{j-2i}$, and that $\alpha^0 = 1 = \sum_{i=1}^{p-1} \zeta^i = \sum_{i=1}^{(p-1)/2} \alpha_i$. This shows that the K-vector space spanned by α^j , $0 \leq j < (p-1)/2$, which is L, is contained in the K-vector space spanned by α_i , $1 \leq i \leq (p-1)/2$, form a normal basis for L over K. Multiplication by α on this basis is given by

$$\begin{aligned} \alpha \cdot \alpha_i &= \alpha_{i-1} + \alpha_{i+1} \qquad (1 < i < (p-1)/2), \\ \alpha \cdot \alpha_1 &= \alpha^2 = \alpha_2, \\ \alpha \cdot \alpha_{(p-1)/2} &= \alpha_{(p-3)/2} + \alpha_{(p-1)/2}. \end{aligned}$$

It follows that the normal basis is optimal. This completes the proof of the "if" part of the theorem.

We begin the proof of the "only if" part with a few general remarks about normal bases. Let $K \subset L$ be a finite Galois extension of fields, with Galois group G, and let $\alpha \in L$ be such that $(\sigma \alpha)_{\sigma \in G}$ is a normal basis for L over K. Let $d(\tau, \sigma) \in K$, for $\sigma, \tau \in G$, be such that (1) holds for each $\sigma \in G$. Applying σ^{-1} to (1) we find that

(2)
$$d(\tau, \sigma) = d(\sigma^{-1}\tau, \sigma^{-1}) \quad \text{for all } \sigma, \tau \in G.$$

We now express multiplication by α in the dual basis. Let β be the unique element of L satisfying $\operatorname{Tr}(\beta \cdot \alpha) = 1$ and $\operatorname{Tr}(\beta \cdot \sigma \alpha) = 0$ for all $\sigma \in G$, $\sigma \neq 1$, where $\operatorname{Tr}: L \to K$ denotes the trace map. Then for σ , $\tau \in G$ we have $\operatorname{Tr}(\sigma\beta \cdot \tau\alpha) = 1$ or 0 according as $\sigma = \tau$ or $\sigma \neq \tau$. It follows that $(\sigma\beta)_{\sigma\in G}$ is also a normal basis for L over K; it is called the *dual* basis of $(\sigma\alpha)_{\sigma\in G}$. We claim that multiplication by α is expressed in this basis by

(3)
$$\alpha \cdot \tau \beta = \sum_{\sigma \in G} d(\tau, \sigma) \sigma \beta$$
 for all $\tau \in G$

To prove this, it suffices to observe that the coefficient of $\alpha \cdot \tau \beta$ at $\sigma \beta$ is given by

$$\operatorname{Tr}((\alpha \cdot \tau \beta) \cdot \sigma \alpha) = \operatorname{Tr}((\alpha \cdot \sigma \alpha) \cdot \tau \beta) = \operatorname{Tr}\left(\sum_{\rho \in G} d(\rho, \sigma) \rho \alpha \cdot \tau \beta\right) = d(\tau, \sigma).$$

Let it now be assumed that $(\sigma\alpha)_{\sigma\in G}$ is an optimal normal basis for L over K. As we saw at the beginning of this paper this means the following. First of all, for each $\tau \in G$, $\tau \neq 1$, there are exactly two elements $\sigma \in G$ for which $d(\tau, \sigma)$ is non-zero, and these two non-zero elements add up to zero. Secondly, there is exactly one element $\sigma \in G$ for which $d(1, \sigma)$ is non-zero, and denoting this element by μ we have $d(1, \mu) = \operatorname{Tr} \alpha$. By (3), we can express the first property by saying that

(4) for each $\tau \in G$, $\tau \neq 1$, the element $\alpha \cdot \tau \beta$ equals an element of K^* times the difference of two distinct conjugates of β .

Likewise, the second property is equivalent to $\alpha \cdot \beta = (\operatorname{Tr} \alpha)\mu\beta$, where $\mu \in G$. Replacing α by $c\alpha$ for $c = -1/\operatorname{Tr} \alpha$ we may, without loss of generality, assume that $\operatorname{Tr} \alpha = -1$. Then we have

(5)
$$\alpha \cdot \beta = -\mu\beta.$$

Also, from $(\operatorname{Tr} \alpha)(\operatorname{Tr} \beta) = \sum_{\sigma,\tau} \sigma \alpha \cdot \tau \beta = \sum_{\rho} \operatorname{Tr}(\alpha \cdot \rho \beta) = 1$ we see that we have $\operatorname{Tr} \beta = -1$.

If $\mu = 1$ then from (5) we see that $\alpha = -1$, so that L = K. Then we are in case (i) of the theorem, with p = 2, if char $K \neq 2$, and we are in case (ii) of the theorem, with p = 3, if char K = 2. Let it henceforth be assumed that $\mu \neq 1$.

We first deal with the case that $\mu^2 = 1$. From (5) we see that $\alpha = -\mu\beta/\beta$, so $\mu\alpha = -\mu^2\beta/\mu\beta = -\beta/\mu\beta = 1/\alpha$. Therefore we have

$$\alpha \cdot \mu \alpha = 1 = -\operatorname{Tr} \alpha = \sum_{\sigma \in G} -\sigma \alpha.$$

This shows that $d(\sigma, \mu) = -1$ for all $\sigma \in G$. By (3) and (4) this implies that for each $\sigma \neq 1$ there is a unique $\sigma^* \neq \mu$ such that

$$\alpha \cdot \sigma \beta = \sigma^* \beta - \mu \beta.$$

If $\sigma \neq \tau$ then $\alpha \cdot \sigma \beta \neq \alpha \cdot \tau \beta$, so $\sigma^* \neq \tau^*$. Therefore $\sigma \mapsto \sigma^*$ is a bijective map from $G - \{1\}$ to $G - \{\mu\}$. Hence each $\sigma^* \neq \mu$ occurs exactly once, and again using (3) we see that

$$\alpha \cdot \sigma^* \alpha = \sigma \alpha \quad \text{for } \sigma^* \neq \mu,$$

 $\alpha \cdot \mu \alpha = 1.$

It follows that the set $\{1\} \cup \{\sigma \alpha : \sigma \in G\}$ is closed under multiplication by α . Since it is also closed under the action of G, we conclude that it is a multiplicative group of order n + 1. This implies that $\alpha^{n+1} = 1$, and we also have $\alpha \neq 1$. Hence α is a zero of $X^n + \ldots + X + 1$. Since α has degree n over K, the polynomial $X^n + \ldots + X + 1$ is irreducible over K. Therefore n + 1 is a prime number. This shows that we are in case (i) of the theorem.

For the rest of the proof we assume that $\mu^2 \neq 1$. By (5) we have $d(1, \sigma) = -1$ or 0 according as $\sigma = \mu$ or $\sigma \neq \mu$. Hence from (2) we find that

(6)
$$d(\sigma, \sigma) = \begin{cases} -1 & \text{if } \sigma = \mu^{-1}, \\ 0 & \text{if } \sigma \neq \mu^{-1}. \end{cases}$$

Therefore $\alpha \cdot \mu^{-1}\beta$ has a term $-\mu^{-1}\beta$, and from $\mu^{-1} \neq 1$ and (4) we see that there exists $\lambda \in G$ such that

(7)
$$\alpha \cdot \mu^{-1}\beta = \lambda\beta - \mu^{-1}\beta, \qquad \lambda \neq \mu^{-1}.$$

We shall prove that we have

(8)
$$\operatorname{char} K = 2,$$

(9)
$$\alpha \cdot \mu \beta = \lambda \mu \beta + \beta,$$

(10)
$$\lambda \mu = \mu \lambda.$$

Before we give the proof of these properties we show how they lead to a proof of the theorem.

Applying μ to (7) and comparing the result to (9) we find by (8) and (10) that $\mu \alpha \cdot \beta = \alpha \cdot \mu \beta$, which is the same as

(11)
$$\alpha/\beta = \mu(\alpha/\beta).$$

Multiplying (11) and (5) we find by (8) that $\alpha^2 = \mu \alpha$. By induction on k one deduces from this that $\mu^k \alpha = \alpha^{2^k}$ for every non-negative integer k. If we take for k the order of μ , then we find that $\alpha^{2^k} = \alpha$, which by the theory of finite fields means that α is algebraic of degree dividing k over the prime field \mathbf{F}_2 of K. Therefore we have $k = \text{order } \mu \leq \#G =$ $[L:K] = [K(\alpha):K] \leq k$. We must have equality everywhere, so μ generates G. By (11), this implies that $\alpha/\beta \in K$, and since $\text{Tr } \alpha = \text{Tr } \beta = -1$ we have in fact $\alpha = \beta$. Thus from (1) and (3) we see that

(12)
$$d(\sigma, \tau) = d(\tau, \sigma) \quad \text{for all } \sigma, \tau \in G.$$

Let now ζ be a zero of $X^2 - \alpha X + 1$ in some algebraic extension of L, so that $\zeta + \zeta^{-1} = \alpha$. Since α is algebraic over \mathbf{F}_2 , the same is true for ζ , so the multiplicative order of ζ is finite and odd; let it be 2m + 1. For each integer i, write $\gamma_i = \zeta^i + \zeta^{-i}$, so that $\gamma_0 = 0$ and $\gamma_1 = \alpha$. We have $\gamma_i = \gamma_j$ if and only if the zeroes ζ^i , ζ^{-i} of $X^2 - \gamma_i X + 1$ coincide with the zeroes ζ^j , ζ^{-j} of $X^2 - \gamma_j X + 1$, if and only if $i \equiv \pm j \mod 2m + 1$. Hence there are exactly m different non-zero elements among the γ_i , namely $\gamma_1, \gamma_2, \ldots, \gamma_m$. Each of the n conjugates of α is of the form $\mu^j \alpha = \alpha^{2^j} = \zeta^{2^j} + \zeta^{-2^j} = \gamma_{2^j}$ for some integer j, and therefore occurs among the γ_i . This implies that $n \leq m$. We show that n = m by proving that, conversely, every non-zero γ_i is a conjugate of α . This is done by induction on i. We have $\gamma_1 = \alpha$ and $\gamma_2 = \mu \alpha$, so it suffices to take $3 \leq i \leq m$. We have

$$\alpha \cdot \gamma_{i-2} = (\zeta + \zeta^{-1}) \cdot (\zeta^{i-2} + \zeta^{2-i}) = \gamma_{i-1} + \gamma_{i-3},$$

where by the induction hypothesis each of γ_{i-2} , γ_{i-1} is conjugate to α , and γ_{i-3} is either conjugate to α or equal to zero. Thus when $\alpha \cdot \gamma_{i-2}$ is expressed in the normal basis $(\sigma\alpha)_{\sigma\in G}$, then γ_{i-1} occurs with a coefficient 1. By (12), this implies that when $\alpha \cdot \gamma_{i-1}$ is expressed in the same basis, γ_{i-2} likewise occurs with a coefficient 1. Hence from (4) (with $\beta = \alpha$) and $\gamma_{i-1} \neq \alpha$ we see that $\alpha \cdot \gamma_{i-1}$ is equal to the sum of γ_{i-2} and some other conjugate of α . But since we have $\alpha \cdot \gamma_{i-1} = \gamma_{i-2} + \gamma_i$, that other conjugate of α must be γ_i . This completes the inductive proof that all non-zero γ_i are conjugate to α and that n = m.

From the fact that each non-zero γ_i equals a conjugate $\mu^j \alpha$ of α it follows that for each integer *i* that is not divisible by 2m+1 there is an integer *j* such that $i \equiv \pm 2^j \mod 2m+1$.

In particular, every integer *i* that is not divisible by 2m + 1 is relatively prime to 2m + 1, so 2m + 1 is a prime number. Thus with p = 2m + 1 we see that all assertions of (ii) have been proved.

It remains to prove (8), (9), and (10). The hypotheses are that α gives rise to an optimal normal basis with $\operatorname{Tr} \alpha = -1$, that β gives rise to the corresponding dual basis, that μ and λ satisfy (5) and (7), and that $\mu^2 \neq 1$. The main technique of the proof is to use the obvious identity $\rho \alpha \cdot (\sigma \alpha \cdot \tau \beta) = \sigma \alpha \cdot (\rho \alpha \cdot \tau \beta)$ for several choices of ρ , σ , $\tau \in G$.

From (5) we see that

$$\mu\alpha \cdot (\alpha \cdot \beta) = \mu\alpha \cdot (-\mu\beta) = -\mu(\alpha \cdot \beta) = \mu^2\beta,$$

and from (7) we obtain

$$\alpha \cdot (\mu \alpha \cdot \beta) = \alpha \cdot \mu (\alpha \cdot \mu^{-1} \beta) = \alpha \cdot \mu (\lambda \beta - \mu^{-1} \beta) = \alpha \cdot \mu \lambda \beta - \alpha \cdot \beta = \alpha \cdot \mu \lambda \beta + \mu \beta$$

Therefore we have

(13)
$$\alpha \cdot \mu \lambda \beta = \mu^2 \beta - \mu \beta.$$

From $\mu \neq \mu^{-1}$ and (6) we see that $d(\mu, \mu) = 0$, so (13) implies that

(14)
$$\lambda \neq 1$$

By (2) and (7) we have $d(\lambda^{-1}\mu^{-1}, \lambda^{-1}) = d(\mu^{-1}, \lambda) = 1$. Also, $\lambda^{-1}\mu^{-1} \neq 1$ by (7), so from (4) we obtain

(15)
$$\alpha \cdot \lambda^{-1} \mu^{-1} \beta = \lambda^{-1} \beta - \kappa \beta$$
 for some $\kappa \in G, \ \kappa \neq \lambda^{-1}$.

We have $\lambda^{-1}\mu^{-1} \neq \mu^{-1}$ by (14), so (6) gives

(16)
$$\kappa \neq \lambda^{-1} \mu^{-1}.$$

From (7) and (15) we obtain

$$\lambda \alpha \cdot (\alpha \cdot \mu^{-1} \beta) = \lambda \alpha \cdot (\lambda \beta - \mu^{-1} \beta) = \lambda (\alpha \cdot \beta - \alpha \cdot \lambda^{-1} \mu^{-1} \beta) = -\lambda \mu \beta - \beta + \lambda \kappa \beta,$$

and (15) gives

$$\alpha \cdot (\lambda \alpha \cdot \mu^{-1} \beta) = \alpha \cdot \lambda (\alpha \cdot \lambda^{-1} \mu^{-1} \beta) = \alpha \cdot (\beta - \lambda \kappa \beta) = -\mu \beta - \alpha \cdot \lambda \kappa \beta.$$

Therefore we have

(17)
$$\alpha \cdot \lambda \kappa \beta = -\mu \beta + \lambda \mu \beta + \beta - \lambda \kappa \beta.$$

By (16) we have $\lambda \kappa \neq \mu^{-1}$, so by (6) the term $-\lambda \kappa \beta$ does not appear in $\alpha \cdot \lambda \kappa \beta$. It must therefore be canceled by one of the other terms of (17). We have $\lambda \kappa \neq 1$ by (15), so it is not canceled by β . Therefore it is canceled either by $\lambda \mu \beta$ or by $-\mu \beta$. We shall derive a contradiction from the hypothesis that it is canceled by $\lambda \mu \beta$; this will prove that it is canceled by $-\mu\beta$.

Suppose therefore that $\lambda \kappa \beta = \lambda \mu \beta$. Then we have $\kappa = \mu$, so (17) gives

(18)
$$\alpha \cdot \lambda \mu \beta = \beta - \mu \beta.$$

By (2) and (18) we have $d(\mu^{-1}\lambda\mu,\mu^{-1}) = d(\lambda\mu,\mu) = -1$, and since by (14) we have $\mu^{-1}\lambda\mu \neq 1$ it follows that

(19)
$$\alpha \cdot \mu^{-1} \lambda \mu \beta = \nu \beta - \mu^{-1} \beta$$
, for some $\nu \in G, \ \nu \neq \mu^{-1}$.

Now we have on the one hand

$$\alpha \cdot (\mu \alpha \cdot \lambda \mu \beta) = \alpha \cdot \mu (\alpha \cdot \mu^{-1} \lambda \mu \beta) = \alpha \cdot \mu (\nu \beta - \mu^{-1} \beta) = \alpha \cdot \mu \nu \beta + \mu \beta,$$

by (19), and on the other hand

$$\mu\alpha \cdot (\alpha \cdot \lambda\mu\beta) = \mu\alpha \cdot (\beta - \mu\beta) = \mu(\alpha \cdot \mu^{-1}\beta - \alpha \cdot \beta) = \mu\lambda\beta - \beta + \mu^2\beta,$$

by (18) and (7). This leads to

$$\alpha \cdot \mu \nu \beta = \mu \lambda \beta - \beta + \mu^2 \beta - \mu \beta.$$

Since 1, μ , μ^2 are pairwise distinct, the term $\mu\lambda\beta$ must be canceled by one of the other three terms. Therefore $\mu\lambda \in \{1, \mu, \mu^2\}$, so λ belongs to the subgroup generated by μ , and therefore $\lambda\mu = \mu\lambda$. But then (13) and (18) give $\mu^2 = 1$, contradicting our hypothesis. We conclude that the term $-\lambda\kappa\beta$ in (17) is canceled by $-\mu\beta$, that is, $-\mu\beta - \lambda\kappa\beta = 0$. This implies that $\mu = \lambda\kappa$ and $2\mu\beta = 0$. This proves (8), and (17) gives (9). From (15) we obtain

(20)
$$\alpha \cdot \lambda^{-1} \mu^{-1} \beta = \lambda^{-1} \beta + \lambda^{-1} \mu \beta.$$

Combining this with (2) we find that $d(\mu^{-2}, \mu^{-1}\lambda) = d(\lambda^{-1}\mu^{-1}, \lambda^{-1}\mu) = 1$, and since $\mu^{-2} \neq 1$ this gives

$$\alpha \cdot \mu^{-2}\beta = \mu^{-1}\lambda\beta + \nu\beta$$
 for some $\nu \in G$.

This implies that

$$\lambda \alpha \cdot (\mu \alpha \cdot \mu^{-1} \beta) = \lambda \alpha \cdot \mu (\alpha \cdot \mu^{-2} \beta) = \lambda \alpha \cdot \mu (\mu^{-1} \lambda \beta + \nu \beta) = \lambda \mu \beta + \lambda \alpha \cdot \mu \nu \beta,$$

whereas (20) and (7) lead to

$$\mu \alpha \cdot (\lambda \alpha \cdot \mu^{-1} \beta) = \mu \alpha \cdot \lambda (\alpha \cdot \lambda^{-1} \mu^{-1} \beta) = \mu \alpha \cdot \lambda (\lambda^{-1} \beta + \lambda^{-1} \mu \beta)$$
$$= \mu (\alpha \cdot \mu^{-1} \beta + \alpha \cdot \beta) = \mu (\lambda \beta + \mu^{-1} \beta + \mu \beta) = \mu \lambda \beta + \beta + \mu^2 \beta.$$

Therefore we have

$$\lambda \alpha \cdot \mu \nu \beta = \lambda \mu \beta + \mu \lambda \beta + \beta + \mu^2 \beta.$$

This is conjugate to $\alpha \cdot \lambda^{-1} \mu \nu \beta$, so two terms on the right must cancel. From $1 \notin \{\lambda \mu, \mu \lambda, \mu^2\}$ it follows that β does not cancel any of the other terms. Hence two of $\lambda \mu \beta$, $\mu \lambda \beta$, $\mu^2 \beta$ must cancel, so that we have $\lambda \mu = \mu \lambda$, or $\mu \lambda = \mu^2$, or $\mu^2 = \lambda \mu$. In each of the three cases λ and μ commute. This proves (10), which completes the proof of the theorem.

References

- R. C. Mullin, A characterization of the extremal distributions of optimal normal bases, Proc. Marshall Hall Memorial Conference, Burlington, Vermont, 1990, to appear.
- R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, R. M. Wilson, Optimal normal bases in GF(pⁿ), Discrete Appl. Math. 22 (1988/89), 149–161.