ARE THERE COUNTER-EXAMPLES TO
THE BAILLIE – PSW PRIMALITY TEST?

CARL POMERANCE

1984

to Arjen K. Lenstra on the defense of his doctoral thesis

In [2] the following procedure is suggested for deciding whether a positive integer
n is prime or composite:
(1) Perform a base 2 strong pseudoprime test on n. If this test fails, declare n
composite and halt. If this test succeeds, n is probably prime. Go on to step (2).
(2) In the sequence 5, –7, 9, –11, 13, … find the first number D for which \((D/n) = -1 \).
Then perform a Lucas pseudoprime test with discriminant \(D \) on n (a specific
one of these tests as described in [2]). If this test fails, declare n composite. If this
test succeeds, n is “very probably” prime.

Although it first appeared in [2], the idea of trying such a combined test ori-
ginated with Baillie.

In an exhaustive search up to \(25 \cdot 10^6 \) in [2], no composite number was found
that passed both (1) and (2). In fact, if (1) is weakened to just an ordinary base 2
pseudoprime test, every composite \(n \leq 25 \cdot 10^6 \) fails either (1) or (2).

The authors of [2] have offered a prize of $30 (U.S.) for a composite number
\(n \) (with its prime factorization) that passes (1) and (2) or a proof that no such \(n \)
exists. Since the publication of [2], the second author has increased his $10 share
of the prize money ten-fold, so now the award stands at $120. (The cheap first and
third authors have not increased their shares as yet, although the third author has
contemplated offering a “bit” more.)

In the interests of helping Arjen start his post-doctoral career on a sound financial
footing, I will give here some hint on how a counter-example to this Baillie-PSW
“primality test” may be constructed. In fact, I will give a heuristic argument that
will show that the number of counter-examples up to \(x \) is \(\gg x^{1-\epsilon} \) for any \(\epsilon > 0 \). This
argument is based on one by Erdos [1] that suggested there are many Carmichael
numbers.

Let \(k > 4 \) be arbitrary but fixed and let \(T \) be large. Let \(P_k(T) \) denote the set of
primes \(p \) in the interval \([T, T^k]\) such that
(a) \(p \equiv 3 \mod 8, (5/p) = -1 \),
(b) \((p-1)/2 \) is square free and composed solely of primes \(q < T \) with \(q \equiv 1 \mod 4 \),
(c) \((p+1)/4 \) is square free and composed solely of primes \(q < T \) with \(q \equiv 3 \mod 4 \).
Of course, 1/8 of all primes (asymptotically) in \([T, T^k]\) satisfy condition (a), and it can be shown that the conditions that \((p - 1)/2\) and \((p + 1)/4\) also be square free still leave a positive fraction of all primes in \([T, T^k]\). Heuristically, the conditions that \(p - 1\) and \(p + 1\) are composed solely of primes below \(T\), allow us to keep still a positive proportion of all primes in \([T, T^k]\) (using \(k\) fixed). Finally, the event that every prime in \((p - 1)/2\) is 1 mod 4 should occur with probability \(c(\log T)^{-1/2}\) and similarly for the event that every prime in \((p+1)/4\) is 3 mod 4. Thus the cardinality of \(P_k(T)\) should be asymptotically as \(T \to \infty\)

\[
\frac{cT^k}{\log^2 T}
\]

where \(c\) is a positive constant that depends on the choice of \(k\). We now form square free numbers \(n\) composed of \(\ell\) primes of \(P_k(T)\), where \(\ell\) is odd and just below \(T^2/\log(T^k)\). The number of choices for \(n\) is thus about

\[
\binom{cT^k/\log^2 T}{\ell} > e^{T^2(1-3/k)}
\]

for large \(T\) (and \(k\) fixed). Also, each such \(n\) is less than \(e^{T^2}\).

Let \(Q_1\) denote the product of the primes \(q < T\) with \(q \equiv 1\) mod 4 and let \(Q_2\) denote the product of the primes \(q < T\) with \(q \equiv 3\) mod 4. Then \((Q_1, Q_2) = 1\) and \(Q_1Q_2 \approx e^T\). Thus the number of choices for \(n\) formed that in addition satisfy

\[
n \equiv 1 \text{ mod } Q_1, n \equiv -1 \text{ mod } Q_2
\]

should, heuristically, be at least

\[
e^{T^2(1-3/k)/e^{2T}} > e^{T^2(1-4/k)}
\]

for large \(T\).

But any such \(n\) is a counter-example to the Baillie-PSW primality test. Indeed, \(n\) will be a Carmichael number so it will automatically be a base 2 pseudoprime. Since \(n \equiv 3\) mod 8 and each \(p\) is also \(\equiv 3\) mod 8, it is easy to see that \(n\) will also be a strong base 2 pseudoprime. Since \((5/n) = -1\), since every prime \(p\) satisfies \((5/p) = -1\), and since \(p + 1 | n + 1\) for every prime \(p|n\), it follows that \(n\) is a Lucas pseudoprime for any Lucas test with discriminant 5.

We thus see that for any fixed \(k\) and all large \(T\), there should be at least \(e^{T^2(1-4/k)}\) counter-examples to Baillie-PSW below \(e^{T^2}\). That is, if we let \(x = e^{T^2}\), then there are at least \(x^{1-4/k}\) counter-examples below \(x\), so long as \(x\) is large. Since \(k\) is arbitrary, our argument implies that the number of counter-examples below \(x\) is \(\gg x^{1-c}\) for any \(c > 0\).

Remark. Both in the APR primality test and in the Cohen-Lenstra variation there is a part where many kinds of pseudo-primality tests are performed followed by a step where a limited amount of trial division is performed. No one has ever encountered an example of a number where the trial division was really needed – that is, every number that has made it through the pseudo-primality tests actually was prime. Perhaps an argument similar to the one here can show that in fact there are composite numbers that pass all the pseudo-primality tests and for which the trial division step is really needed to distinguish them from the primes.
REFERENCES

Department of Mathematics, University of Georgia, Athens, GA 30602 U.S.A.