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XI3STnXC'r. Let f(x) be one of the usual elementary functions (exp, log, artan, sin, cosh, etc.), and 
let M(n) be the number of single-precision operations reqmred to multiply n-bit integers. I t  is shown 
that f(x) can be evaluated, with relative error 0(2-'),  m O(M(n)log (n)) operations as n --~ ~,  for 
any floating-point number x (with an n-bit fraction) in a suitable finite interval. From the Sehonbage- 
Strassen bound on M(n), it follows that an n-bit approximation to f(x) may be evaluated 
in O(n logS(n) log log(n)) operations. Special cases include the evaluation of constants such as 
f,  e, and e'. The algorithms depend on the theory of elhptic integrals, using the arithmetic-geometric 
mean iteration and ascending Landen transformations. 
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1. Introduction 

We consider the number of operations required to evaluate the elementary functions 
exp(x) ,  log(x) ,  ~ a r tan(x) ,  s in(x) ,  etc., with relative error O(2-n) ,  for x in some 
interval  [a, b], and large n. Here, In, b] is a fixed, nontrivial  interval on which the relevant 
elementary function is defined. The results hold for computat ions performed on a multi-  
tape Turing machine, but  to simplify the exposition we assume tha t  a s tandard  serial 
computer  with a random-access memory is used. 

Let  M(x)  be the number of operations required to mul t ip ly  two integers in the range 
[0, 2~1). We assume the number representation is such tha t  addit ion can be performed in 
0 ( M  (n)  ) operations, and tha t  M (n) satisfies the weak regulari ty condition 

M(an)  <_ ~M(n) ,  (1.1) 

for some a and fl in (0; 1), and all sufficiently large n. Similar, but  stronger, conditions 
are usually assumed, either explicitly [11] or implici t ly [15]. Our assumptions are cer- 
ta inly valid if the Sch6nhage-Strassen method [15, 19] is used to mul t ip ly  n-bit  integers 
(in the usual b inary  representat ion) in 0 (n  log ( n ) log log (n)  ) operation s. 

The elementary function evaluations may  be performed entirely in fixed point, using 
integer ari thmetic and some implicit  scaling scheme. However, it  is more convenient to 
assume tha t  floating-point computat ion is used. For  example, a sign and magni tude 
representat ion could be used, with a fixed length binary exponent and an n-bit  binary 
fraction. Our results are independent of the part icular  floating-point number  system 
used, so long as the following conditions are satisfied. 
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1. Real numbers which are not too large or sma.ll can be approximated by floating- 
point numbers, with a relative error 0(2-~) .  

2. Floating-point addition and multiplication can be performed in O(M(n))  opera- 
tions, with a relative error 0 (2  -n) in the result. 

3. The precision n is variable, and a floating-point number with precision n may be 
approximated, with relative error 0 (2  -~) and in O(M(n))  operations, by a floating- 
point number with precision m, for any positive m < n. 

Throughout this paper, a floating-point number means a number in some representation . 
satisfying conditions 1 to 3 above, not a single-precision number. We say that  an opera- 
tion is performed with precision n if the result is obtained with a relative error 0(2-~) .  
I t  is assumed that  the operands and result are approximated by floating-point numbers. 

The main result of this paper, established in Sections 6 and 7, is tha t  all the usual 
elementary functions may be evaluated, with precision n, in O(M(n) log(n)) operations. 
Note that  O(M(n)n) operations are required if the Taylor series for log(1 -t- x) is 
summed in the obvious way. Our result improves the bound O(M(n) logS(n)) given in 
[4], although the algorithms described there may be faster for small n. 

Preliminary results are given in Sections 2 to 5. In  Section 2 we give, for completeness, 
the known result tha t  division and extraction of square roots to precision n require 
O(M(n)) operations. Section 3 deals briefly with methods for approximating simple 
zeros of nonlinear equations to precision n, and some results from the theory of elliptic 
integrals are summarized in Section 4. Since our algorithms for elementary functions 
require a knowledge of 7r to precision n, we show, in Section 5, how this may be obtained 
in O(M(n) log(n))  operations. An amusing consequence of the results of Section 6 is 
that  e" may also be evaluated, to precision nn, in O(M(n)  log(n))  operations. 

From [4, Th. 5.1], at least O(M(n)) operations are required to evaluate exp(x) or 
sin(x) to precision n. I t  is plausible to conjecture that  O(M(n) log(n))  operations are 
necessary. 

Most of this paper is concerned with order of magnitude results, and multiplieative 
constants are ignored. In  Section 8, though, we give upper bounds on the constants. 
From these bounds it is possible to estimate how large n needs to be before our algorithms 
are faster than the conventional ones. 

After this paper was submitted for publication, Bill Gosper drew my attention to 
Salamin's paper [18], where an algorithm very similar to our algorithm for evaluating 7r 
is described. A fast algorithm for evaluating log(x) was also found independently by 
Salamin (see [2 or 5]). 

Apparently similar algorithms for evaluating elementary functions are given by 
Borchardt [3], Carlson [8, 9], and Thacher [23]. However, these algorithms require 
O(M(n)n) or O(M(n)n ~) operations, so our algorithms are asymptotically faster. 

We know how to evaluate certain other constants and functions almost as fast as 
elementary functions. For example, Euler's constant ~ = 0.5772 . . .  can be evaluated 
with O(M(n)log s n) operations, using Sweeney's method [22] combined with binary 
splitting [4]. Similarly for r ( a ) ,  where a is rational (or even algebraic): see Brent [7]. 
Related results are given by Gosper [13] and Schroeppel [20]. I t  is not known whether 
any of these upper bounds are asymptotically the best possible. 

2. Reciprocals and Square Roots 

In  this section we show that  reciprocals and square roots of floating-point numbers may 
be evaluated, to precision n, in O(M(n))  operations. To simplify the statement of the 
following lemma, we assume that  M(x) = 0 for all x < 1. 

¢0 3 LEMMA 2.1. IrA' C (0, 1),then ~ , ~ M ( T  n) = O(M(n) ) as n--~ ~ .  
PI~OOF. If  ~ and ~ are as in (1.1), there exists k such that  k < a. Thus, ~ 7 ~  M('Y ~n) 

_< k ~ - o  M(c~n) < kM(n)/ (1  - f~) + 0(1) ,  by repeated application of (1.1). Since 
M(n) ~ ¢o as n ~ ~ ,  the result follows. 
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In  the following lemma, we assume that  1/c is in the allowable range for floating-point 
numbers. Similar assumptions are implicit below. 

LI~MA 2.2. I f  c is a nonzero floating-point number, then 1/c can be evaluated, to pre- 
cision n, in O( M ( n )  ) operations. 

PROOF. The Newton iteration 

x,+l -- x,(2 -- cx~) (2.1) 

converges to 1/c with order 2. In  fact, if x, = (1 - ~,)/c, substitution in (2.1) gives 
*,+l = ,2. Thus, assuming I*01 < ½, we have t*,1 < 2-2' for all i >_ 0, and x~ is a suffi- 
ciently good approximation to 1/c if k ~_ log2n. This assumes that  (2.1) is satisfied 
exactly, but  it is easy to show that  it is sufficient to use precision n at the last iteration 
(~ = k - 1), precision slightly greater than n/2  for i = k - 2, etc. (Details, and more 
efficient methods, are given in [4, 6].) Thus the result follows from Lemma 2.1. Since 
x / y  = x (1 / y ) ,  it is clear that  floating-point division may also be done in O ( M ( n ) )  
operations. 

LEMMA 2.3. I f  C ~_ 0 is a floating-point number, then c ~ can be evaluated, to precision n, 
in O( M ( n ) ) operations. 

PROOF. If C = 0 then c t = 0. If  c ~ 0, the proof is similar to tha t  of Lemma 2.2, 
using the Newton iteration x,+l -- (x, -b c/x,)~2. 

LEMMA 2.4. Forany f ixedk  > O, M ( k n )  = O ( M ( n ) ) a s h - - ,  ~ .  
PRooL Since we can add integers less than 2" in O ( M ( n ) )  operations, we can add 

integers less than 2 k" in O ( k M ( n ) )  = O ( M ( n ) )  operations. The multiplication of 
integers less than 2 k~ can be split into O(k ~) multiplications of integers less than 2", 
and O(k ~) additions, so it can be done in O(k2M(n) ) -- O ( M ( n )  ) operations. 

3. Solution of Nonlinear Equations 

In  Section 6 we need to solve nonlinear equations to precision n. The following lemma is 
sufficient for this application. Stronger results are given in [4, 6]. 

LEMMA 3.1. I f  the equation f ( x )  -- c has a s~mple root ~" ~ O, f ~s Lipsch~tz continuous 
near ~', and we can evaluate f ( x )  to precision n in O(M(n)ch(n) ) operations, where ¢h(n) 
is a posztive, monotomc ~ncreasing funetwn, for x near ~', then ~" can be evaluated to precision 
n in O(M(n)e~(n))  operatzons. 

PROOF. Consider the discrete Newton iteration 

x,+l = x, -- h,( f(x,)  -- c ) / ( f ( x ,  + h,) - f ( x , ) ) .  (3.1) 

If  h, = 2 -'/~, x, - ~ = 0(2-~/2), and the right side of (3.1) is evaluated with precision 
n, then a standard analysis shows that  x.+l - ~" = 0 (2 - " ) .  Since a sufficiently good 
starting approximation xo may be found in 0(1)  operations, the result follows in the 
same way as in the proof of Lemma 2.2, using the fact that  Lemma 2.1 holds with M ( n )  
replaced by M ( n ) ~ ( n ) .  The assumption ~" ~ 0 is only necessary because we want to 
obtain ~ with a relative (not absolute) error 0 ( 2 - ' ) .  

Other methods, e.g. the secant method, may also be used if the precision is increased 
appropriately at each iteration. In  our applications there is no difficulty in finding a 
suitable initial approximation x0 (see Section 6). 

4. Results on Elliptic Integrals 

In  this section we summarize some classical results from elliptic integral theory. Most  of 
the results may be found in [1], so proofs are omitted. Elliptic integrals of the first and 
second kind are defined by 

F(&, a)  ffi (1 -- ~/n2a sin~O)-IdO (4.1) 
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and 

E ( ¢ ,  a )  -- (1 -- sin2a sin20)½dO, (4.2)  

respect ively .  F o r  our  purposes  we m a y  assume t h a t  a and  ~b are in [0, ~r/2]. The  comple te  
el l ipt ic integrals ,  F ( v / 2 ,  c~) and  E(Tr/2, a) ,  are s imply  wr i t t en  as F ( a )  and  E ( a ) ,  
respect ively .  

Legendre's Relation. We need the iden t i t y  of Legendre  [17]: 

E(a)F(~r /2  - a)  % E(~r/2 - a ) F ( a )  -- F(a)F(Tr /2  -- a)  = ~r/2, (4.3)  

and,  in par t icu lar ,  the  special case 

2 E ( v / 4 ) F ( v / 4 )  - ( F ( v / 4 ) ) 2  = v/2.  (4.4)  

Small Angle Approximation. F r o m  (4.1) i t  is clear t h a t  

a s  a - -~  O. 

Large Angle A pproximahon. 

F ( ¢ , a )  = ~ + O ( a  2) 

F r o m ( 4 . 1 ) ,  

(4.5) 

F(~/,, a )  = F(~b, ~-/2) + O ( r / 2  --  a)2, (4.6)  

uni formly  for 0 _< ~ ~ ~bo < ~r/2, as a ~ ~-/2. Also, we note  t h a t  

F ( ~ ,  ~r/2) = log tan(Tr/4  + ~b/2). (4.7) 

Ascending Landen Transformation. I f  0 <, a, < a,~1 < 7r/2, 0 < ~/',+1 < ~b, < 7r/2, 

sin a ,  = t a n 2 (a ,+ l / 2 ) ,  (4.8) 

and  

then  

sin(2~b,+l - -  ¢~,) = sin c~, sin ~b,, 

F ( ~ , + , ,  a ,+ , )  = [(1 + sin a,)/2]F(~b,, o~,). 

= sin a ,  and  v, = t an (G . /2 ) ,  then  (4.8) gives 

s,+1 = 28~/(1 -t- s , ) ,  

I f  s, 

and  (4.9) gives 

where 

v,+, = w # ( l  + (1 + m~)~), 

wa = tan  if,+, = (v, T w 2 ) / ( 1  - v,w2), 

w2 = tan(ff ,+l  - ~,/2) = w,/(1 -b (1 - wl2)t), 

and  

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

wl = sin(2~b,+l - -  ¢ , )  = 2 s x , / ( 1  + v,:) .  (4.15) 

Arithmetic-Geometric Mean Iteration. F r o m  the ascending Landen  t r ans fo rma t ion  
i t  is possible to  der ive  the  a r i thmet ic -geomet r ic  mean  i te ra t ion  of Gauss  [12] and  La- 
grange [16]: if ao = 1, bo = cos a > 0, 

a,+~ = (a ,  + b , ) /2 ,  (4,16) 

and  

b,+x = (a,b,) t, (4.17) 
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then 

Also, if Co = s m  a and 

then 

A n  I n f i n i t e  P r o d u c t .  

l im a ,  = 7 r / [ 2 F ( a ) ] .  ( 4 . 1 8 )  
s- too 

c,+i = a ,  - -  a , + l ,  (4.19) 

t - -1  2 
E ( a ) / F { a )  = 1 - -  2 c , .  (4.20) 

z ~ 0  

L e t s , , a , , a n d b ,  b e a s a b o v e ,  wi th  a = ~r /2  - ao , s o  so = 

b o / a o .  F r o m  (4.11),  (4.16),  and (4.17),  i t  follows t h a t  s, = b , / a ,  for all t > 0. Thus ,  
(1 4- s , ) / 2  = a , + l / a , ,  and 

f i  [(1 -t- ~,)/2J = h m  a, = ~ r / [ 2 F ( T r / 2  - -  ao)] (4.21) 
t ~ 0  l ~ o o  

follows from (4.18). (Another  connection between (4.11) and the ari thmetic-geometric 
mean i terat ion is evident if so = (1 - bo2/ao~) ~. Assuming (4.11) holds for i < 0, i t  
follows tha t  s_, = (1 - b,2/a,2)  ~ for all i > 0. This may  be used to deduce (4.18) from 
(4 .m) . )  

5. E v a l u a t i o n  o f  7r 

L e t a o  = 1, b0 = co = 2 , A = h m , ~ ® a , , a n d T  = lim,~= t, , where a, , b, , and  c, are  
' ~ "  ~ ,-~ j - -1  2 detined by (4.16),  (4.17), and (4.19) for i _> 1, and t, = ½ - 2..~2~o ~ c~. F r o m  (4.4),  

(4.18),  and (4.20),  we have  

~r = A 2 / T .  (5.1) 

Since a, > bo > 0 for all ~ >_ 0, and C,+l = a, - a,+l = a,+l - b , ,  (4.17) gives b,+l 
= = c 2 O ( c ~ + Q .  Thus,  the  process [(a,+~ + c ,+~) (a ,+ ,  - c,+,)] ~ a,+~ - O ( , + ~ ) ,  so c,+2 = 
converges wi th  order  a t  least  2, and logs n + 0 ( 1 )  i tera t ions  suffice to give an  error  
0 ( 2  -~) in the  es t imate  of (5.1).  A more  detai led analysis shows tha t  a 2, ~ / t ,  < ~- < a ,2 / t ,  

2 for all z > 0, and also a ,2 / t ,  - 7r ~-~ 8 ~ - e x p ( - 2 ' ~ - )  and 7r - a , + l / t ,  

7r~2 '+4 exp( - - 2 ' + ~  ") as i --~ ~ .  T h e  speed of convergence  is i l lustrated in Tab le  I. 
F r o m  the discussion above,  i t  is clear tha t  the following a lgor i thm,  g iven in pseudo- 

Algol, eva lua tes  ~" to precision n. 

Algor i thm for  ~- 

A ~-1,  B ~--- 2-I; T~-¼;  X ~--- 1; 
w h i l e A  -- B > 2 - ~ d o  

b e g i n  Y ~-- A;  A ~'- (A + B) /2;  B ~-- (BY)I; 
T ~ T - X ( A  -- Y ) ' ; X ~ 2 X  

e n d ;  
r e t u r n  A ~ / T  [or, better, (A + B)~/(4T)]. 

TABLE I. CONVeRGeNCE OF 
A P P R O X I M A T I O N S  T O  ~r 

~ - aJ+l / t ,  a J / t ,  -- x 

0 2 .3 ' - -1  8 .6 ' - -1  
1 1 .0 ' - -3  4 .6 ' - -2  
2 7.4P--9 8 8'--5 
3 1.8"--19 3.1'--10 
4 5.5'--41 3.7'--21 



Fast Multiple-Preciszon Evaluatzon of Elementary Functions 247 

Since logan + 0 (1 )  i terations are needed, it  is necessary to work with precision n 
O(log log(n)) ,  even though the algorithm is numerically stable in the conventional 
sense. From Lemmas 2.2-2.4, each i teration requires O(M(n))  operations, so ~" may  be 
evaluated to precision n in O(M(n) log(n))  operations. This is asymptot ical ly  faster 
than  the usual O(n 2) methods [14, 21] if a fast mult ipl icat ion algori thm is used. A high- 
precision computat ion of ~" by a similar algorithm is described in [10]. Note that ,  becatrse 
the arithmetic-geometric mean i teration is not self-correcting, we cannot obtain a bound 
O(M(n) ) in the same way as for the evaluation of reciprocals and square roots by  New- 
ton's  method. 

6. Evaluation of exp(x) and log(x) 

Suppose 6 > O fixed, and m E [6, 1 - 6]. If  sin ~ o  = r o t ,  we may evaluate F(o~0) to pre- 
cision n in O(M(n) log(n))  operations, using (4.18) and the ari thmetic-geometric 
mean iteration, as for the special case F(7r/4)  described in Section 5. (When using (4.18) 
we need ~-, which may be evaluated as described above.) Applying the ascending Landen 
transformation (4.8)-(4.10)  with ~ = 0, 1, • • • , k - 1 and ~bo = ~'/2 gives 

F(~bk, ak) = t,=0 [(1 + s ina , ) /2 l  F(ao). (6.1) 

Since so = sin ao = m t > 6 t > 0, i t  follows from (4.11) tha t  8, ~ 1 as i --~ ~¢. In  fact, 
if 8, = 1 --  ~,, then ~,+1 = 1 - 8,+1 = 1 - 2(1 - e , )] / (2 --  e,) -~ e,2/8 + O(e,3), so 
8, --~ 1 with order 2. Thus, after k ~ log2n iterations we have ~k = 0 ( 2 - " ) ,  so 1r/2 - a~ 
= 0 ( 2  -~/2) and, from (4.6) and (4.7), 

F(~b~, ak) = log tan(Tr/4 + ~bk/2) + O(2-~).  (6.2) 

Assuming k > 0, the error is uniformly 0 ( 2  -~) for all m E [6, 1 -- 6], since ~bk _~ ~bl < lr/2. 
Define the functions 

U ( m ) =  i , ~  [(1 - t - s ina , ) /2 ]  t F(o~o) (6.3) 

and 

T(m) = tan(q-/4 + ~b~/2), (6.4) 

where ~® = l i m , ~  ~h,. Since 8, -~, 1 with order 2, the infinite product  in (6.3) is con- 
vergent, and U(m) is analytic for all m C (0, 1). Taking the limit in (6.1) and (6.2) 
as n (and hence k) tends to ~ ,  we have the fundamental  ident i ty  

U(m) = log T(m).  (6.5) 

Using (4.11)-(4.15),  we can evaluate U(m) = III~:lo [(1 + s,)/2]}F(clo) + 0 ( 2  -n)  
and T(m)  -- (1 + vk)/(1 - Vk) + O(2-n) ,  to precision n, in O(M(n) log(n))  opera- 
tions. The algorithms are given below in pseudo-Algol. 

AZgorithm for U (m) 
A ~ 1 ;  B, , -  (1--  m)~; 
w h i l e  A --  B > 2 -~/s d o  

b e g i n  C ~-- (A + B ) / 2 ;  B ~-  (AB)} ;  A ~-- C e n d ;  
.4 ~ ~/(A + B ) ;  S ~-  rot; 
w h i l e  1 --  E > 2 -"/I d o  

b e g i n  A ~-- A ( I  -}- ~q)/2; ~q ~-  2S½/(1 q- S )  e n d ;  
r e t u r n  A (1 -[- ~q)/2. 

Algorithm for T(m) 

w h i l e l - - ~  > 2 - ~ d o  
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b e g i n  W ~-- 2 S V / ( 1  -t- VZ); , 
W *- W/(1  + (1 --  WS)t); 
W ~-  (V + W ) / ( 1  - VW);  
V ~ W/(I + (1 + W'p); 
,S ~ 2SJ/(1 + ,S) 

e n d ;  
r e t l l r n  (1 "~ V ) / ( 1  --  V) .  

Properties of U(m) and T(m). From (4.21) and (6.3),  

U(m) = ( ~r/2)F( ao)/F( ~'/2 - ceo), (6.6) 

where sin c~0 = ni t as before. Both F ( ~ )  and F(~-/2 - ce0) may  be evaluated by the 
ari thmetic-geometric mean iteration, which leads to a slightly more efficient algori thm 
for U(m) than  the one above, because the division by (1 -{- S)  in the final "while"  
loop is avoided. From (6.5) and (6.6), we have the special cases U(½) = Ir/2 and T(½) 
= e "/2. Also, (6.6) gives 

U(m)U(1 - m) = ~r~/4, (6.7) 

for all m E (0, 1). 
Although we shall avoid using values of m near 0 or 1, i t  is interesting to obtain asymp- 

totic expressions for U(m) and T(m) as m --~ 0 or 1. From the algorithm for T(m), 
T(1 - ~) = 4~ -~ - ~i + O(et) as ~--~ 0. Thus, from (6.5), U(1 - ~) = L(~) - ~/4 
-{- O(e~), where L (+) = log (4/~+). Using (6.7),  this gives U(~) = r2/[4L(~) ] + O(e/L~), 
and hence T(e)  = exp(~r2/[4L(~)]) + O(~/L2). Some values of U(m) and T(m) are 
given in Table I I .  

Evaluation of exp(x). To evaluate exp(x) to precision n, we first use identi t ies such 
as exp(2x) = (exp(x) )  2 and e x p ( - x )  = 1/exp(x)  to reduce the  argument  to a 
suitable domain, say 1 _< x _< 2 (see below). We then solve the nonlinear equation 

U(m) = x, (6.8) 

obtaining m to precision n, by  a method such as the one described in Section 3. F rom 
Lemma 3.1, with (b(n) = log(n) ,  this may  be done in O(M(n)log(n)) operations. 
Final ly,  we evaluate T(m) to precision n, again using O(M(n)log(n)) operations. 
F rom (6.5) and (6.8), T(m) = exp(x) ,  so we have computed exp(x)  to precision n. 
Any prel iminary transformations may  now be undone. 

Evaluation of log(x). Since we can evaluate exp(x)  to precision n in O(M(n) log(n) )  
operations, Lemma 3.1 shows tha t  we can also evaluate log(x)  in O(M(n) log(n) )  
operations, by  solving the equation exp(y)  = x to the desired accuracy. A more direct 
method is to solve T(m) = x (after  suitable domain reduct ion) ,  and then evaluate U(m). 

Further detads. If  x E [1, 2] then the solution m of (6.8) lies in (0.10, 0.75), and i t  
may  be verified tha t  the secant method, applied to (6.8), converges if the s tar t ing ap- 
proximations are m0 = 0.2 and ml = 0.7. I f  desired, the discrete Newton method or 
some other locally convergent method may  be used after a few iterations of the secant 
method have given a good approximation to m. 

TABLE II. THE FUNC'rlONS U(m) AND T(m) 

m U (m) T (m) m U (m) T (m) 

0 01 0 6693 1.9529 
0.05 0,8593 2.3615 
0 .10  O, 9824 2.6710 
0.20 1.1549 3.1738 
0.30 1.2972 3.6591 
0.40 1.4322 4.1878 
0.50 1.5708 4.8105 

0.60 1.7228 5.6004 
0.70 1.9021 6 6999 
0.80 2.1364 8.4688 
0.90 2.5115 12.3235 
0.95 2.8714 17.6617 
0 .99  3.6864 39.8997 
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Similarly, if x E [3, 9], the solution of T ( m )  = x lies in (0.16, 0.83), and the secant 
method converges if m o =  0.2 and m~ = 0.8. 

If  x = 1 +4- e where e is small, and for domain reduction the relation 

log(x) = log(Xx) -- log(),) (6.9) 

is used, for some X E (3, 9), then log(Xx) and log(X) may be evaluated as above, but 
cancellation in (6.9) will cause some loss of precision in the computed value of log(x). I f  
[el > 2-~, it is sufficient to evaluate log(Xx) and log(X) to precision 2n, for at most n 
bits are lost through cancellation in (6.9). On the other hand, there is no difficulty if 
[e I < 2 -n, for then log(1 -4- e) = e(1 + O(2-n)) .  When evaluating exp(x), a similar 
loss of precision never occurs, and it is sufficient to work with precision n + O(log log(n)),  
as in the evaluation of ~" (see Section 5). To summarize, we have proved: 

THEOREM 6.1. I f -  ~ < a < b < ~ , then O ( M ( n )  log(n)) operations su~ce to evalu- 
ate exp(x)  to precision n, uniformly for all floating-point numbers x E [a, b], as n ~ ~ ; 
and simdarly for log(x) i f  a > O. 

7. Evaluation of Trigonometric Functzons 

Suppose 6 > 0 fixed, and x E [6, 1]. Let so = sin s0 = 2 -'j~ and Vo = tan(~b0/2) = 
x / ( 1  + (1 + x~)t), so tan ~b0 = x. Applying the ascending Landen transformation, as 
for (6.1), gives 

F(~bk, ak) = t,~o [(1 +4- s,)/2l F(&0, SoL (7.1) 

Also, from (4.5) and the choice of so, 

F(~bo, So) = artan(x) + O(2-n). (7.2) 

From (4.11), s,+l > s,i, so there is somej  < log2n + O(1) such that  s~ E [~, ~]. Since 
s. -~ 1 with order 2, there is some k .< 2 log2n + O(1) such that  1 - sk = O(2-~). From 
(4.6) and (4.7), F(~k,  otk) = log t an (v /4  + &k/2) + O(2-") .  Thus, from (7.1) and 
(7.2), 

artan(x) = ~ [2/(1 + s,)]~ log t a n ( r / 4  + ~k/2) + O(2-~). (7.3) 
~,,~0 y 

If  we evaluate tan(~-/4 + ~bk/2) as above, and use the algorithm of Section 6 to evaluate 
the logarithm in (7.3), we have artan(x) to precision n in O ( M ( n )  log(n))  operations. 
The algorithm may be written as follows. 

Algorithm for arian(x), x E [~, 11 
S ~ 2-~1~; V ~ x/(1 + (1 + x2)l); Q ~-- 1; 
w h i l e l - - S  > ~ d o  

beg in  Q ~- 2Q/(I ~- S); 
W ~ 2SV/(1 + vs); 
W ~--W/(1 + (1 - WS)~); 
W ~- (V + W)/(t - VW); 
V ~-- W/(1 + (1 + W*)~); 
S ~ 2Sy(1 +S) 

e n d  ; 
r e t u r n  Q log((1 -I- V ) / ( I  - V)). 

After k iterations, Q ~ 2 ~, so at most 2 logan + O( 1 ) bits of precision are lost because V 
is small. Thus it is sufficient to work with precision n + O (log (n)) ,  and Lemma 2.4 justi- 
fies our claim that  O ( M ( n )  log (n))  operations are sufficient to obtain artan (x) to pre- 
cision n. 

If  x is small, we may use the same idea as that  described above for evalu- 
ating log(1 + e) : work with precision 3n /2  + O(log(n))  if x > 2 -n/2, and use ar tan(x)  
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= x(1 + 0 (2  -~) ) if 0 <_ x ~_ 2 -~/2. (Actually, it is not necessary to increase the working 
precision if log( (1 + V) / (1 - V) ) is evaluated carefully.) 

Using the identity ar tan(x)  = ~r/2 - a r tan(1 /x)  (x > 0),  we can extend the do- 
main to [0, ~ ). Also, since a t t a R ( - x )  = - a r t a n ( x ) ,  there is no difficulty with negative 
x. To  summarize, we have proved the following theorem. 

THEOREM 7.1. O( M(  n) log(n)) operations su~ice to evaluate arran(x) to precision n, 
unijbrmly for all floating-point numbers x, as n .-~ ~ .  

Suppose O E [5, ~'/2 - 5]. From Lemma 3.1 and Theorem 7.1, we can solve the equa- 
tion ar tan(x)  = 0/2 to precision n in O ( M ( n )  log(n))  operations, and thus evaluate 
x = tan(8/2) .  Now sin 0 = 2x/(1 + x 2) and cos 0 = (1 - x : ) / (1  -b x ~) may  easily be 
evaluated. For arguments outside [5, ~'/2 - 5], domain reduction techniques like those 
above may  be used. Difficulties occur near certain integer multiples of ~'/2, but these 
may  be overcome (at  least for the usual floating-point number representations) by in- 
creasing the working precision. We state the following theorem for sin(x), but  similar 
results hold for the other trigonometric functions (and also, of course, for the elliptic 
integrals and their inverse functions). 

THEOREM 7.2. I f  [a, b] ~ ( - -~ ,  7r), then O( M ( n) log(n)) operations su~ce to evaluate 
sin(x) to precision n, uniformly for aU floating-point numbers x E [a, b], as n --~ ~ . 

8. Asymptotic Constants 

So far we have been concerned with order of magnitude results. In  this section we give 
upper bounds on the constants K such that  w(n)  ~ ( K  W o ( 1 ) ) M ( n )  logan, where w(n)  
is the number  of operations required to evaluate r ,  exp(x),  etc., to precision n. The fol- 
lowing two assumptions will be made. 

1. For all ~ > 0 and , > 0, the inequality M(~/n) < (~/ + , ) M ( n )  holds for suffi- 
ciently large n. 

2. The number of operations required for floating-point addition, conversion between 
representations of different precision (at  most  n),  and multiplication or division of 
floating-point numbers by small integers is o ( M ( n ) )  as n --~ ~ .  

These assumptions certainly hold if a standard floating-point representation is used and 
M ( n )  ~ n ( log(n))"  (log log(n))  a for some a > 0, provided j3 > 0 if a = 0. 

The following result is proved in [4]. The algorithms used are similar to those of Sec- 
tion 2, but  slightly more efficient. 

THEOREM 8.1. Preczsion-n diviswn of floating-point numbers may be performed in 
(4 + o(1) ) M ( n )  operations as n --~ ~ ,  and square roots may be evaluated in (11/2 .4- 
o ( I ) ) M (n) operations. 

Using Theorem 8.1 and algorithms related to those of Sections 5-7, the following re- 
sult is proved in [5]. 

THEOREM 8.2. ~r may be evaluated to precision n in (15/2 -]- o(1) ) M ( n) logsn opera- 
tions as n --~ ¢~. I f  ~r and log 2 are precomputed, the elementary function f ( x )  can be evalu- 
ated to precision n in (K  + o ( 1 ) ) M ( n )  logan operations, where 

K = ~13 ~.f /(a ')  = log(x) or exp(x),  
( 34 if f ( x )  -~ arran(x), s in(x),  etc., 

and x is a floating-point number ~n an interval on which f ( x )  is defined and bounded away 
from 0 and ~ .  

For purposes of comparison, note that  evaluation of log(1 -I- x) or log((1 + x ) /  
( 1  - x))  by the usual series expansion requires (c + o ( 1 ) ) M ( n ) n  operations, where c 
is a constant of order unity (depending on the range of x and the precise method used). 
Since 13 log2n < n for n ~ 83, the O ( M ( n )  log(n))  method for log(x) should be faster 
than the O ( M ( n ) n )  method for n greater than a few hundred. 
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