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ABSTRACT. It is shown that arithmetic expressions with n > 1 variables and constants; operations 
of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in 
time 4 log2n + 10(n - 1)/p  using p > 1 processors which can independently perform arithmetic 
operations in unit time. This bound is within a constant factor of the best possible. A sharper result 
is given for expressions without the division operation, and the question of numerical stability is 
discussed. 
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1. I n t r o d u c t i o n  

The question of how quickly ari thmetic expressions can be evaluated on a computer with 
several independent ari thmetic processors is of theoretical and practical interest. In  this 
paper we determine the answer to within a constant multiplicative factor (see Corollary 
2 in Section 4). All our proofs are constructive, and reasonably efficient algorithms for 
compiling expressions for subsequent execution on a parallel computer may be derived 
from our proofs. These algorithms compare favorably with those given in [1, 2]. 

We assume tha t  a number of processors are available and tha t  each can perform an 
ari thmetic operation (addition, multiplication, and sometimes division) in unit  time. 
The t ime required for accessing data,  storing results, communicating between processors, 
etc., is ignored. Also, the effect of rounding errors is neglected, except in Section 5. The 
results hold for exact ari thmetic with expressions over any commutat ive field. 

Several special cases have been considered previously. For example, Maruyama  [14] 
and Munro and Paterson [19] have shown tha t  polynomials of degree n can be evaluated in 
t ime log2n ~ 0 ((log2n) ~) if sufficiently many processors are available, and Brent  [3] has 
shown tha t  this is true for expressions of the form ao --{- xl (a~ ~ x2 (a2 T " "  (a~_l T 
a , x , )  • • • ) ) .  Baer and Bovet [1] and 5~uraoka [20] considered expressions with n distinct 
variables and operations of addition and multiplication over a commutat ive ring. I t  has 
recently been shown in [5] tha t  such expressions can be evaluated in time 2.465 log2n if 
sufficiently many processors are available. (For results tha t  apply if a fixed number of 
processors is available, see Section 5.) Kuck and Maruyama  [12] have shown tha t  con- 
t inued fractions of the form bo + a J  (bl + a2/ ( .  . . (b~-i  + a ~ / b ~ ) .  • • ) )  can be evaluated 
in time 2 log:n + 0 (1). Kuck [10], Maruyama  [15], and Muraoka  [20] have bonsidered 
expressions with a limited depth of parenthesis nesting and/or  a l imited number of 
divisions. See also [6, 8, 9, 13, 18] and the references given there. 
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Our results (Corollary i and Theorem 2) show tha t  parallelism may be used to speed 
up the evaluation of large arithmetic expressions. Knuth  [7] has shown that  most expres- 
sions which occur in real FORTRAN programs have only a small number of operands. 
Nevertheless, our results (or the method used to obtain them) may ultimately be of 
practical value, for Kuck [11] has shown tha t  an optimizing compiler for a parallel 
machine might generate large expressions when compiling programs like those studied by 
Kmlth  [7]. 

In  this paper we assume commutat ivi ty,  but  Maruyama  [16] has recently extended 
some of our results to expressions over noncommutat ive rings (e.g. rings of matrices).  

2. Notation and Assumptions 

We consider well-formed arithmetic expressions with the operations addition ("-F") ,  
multiplication ( " . " ) ,  and division ( " / " )  ; any level of parenthesis nesting; and distinct 
indeterminates (or " a toms" )  xl ,  x2, . . .  over a commutat ive field. We neglect the sub- 
traction operation because expressions containing it can easily be transformed into 
equivalent expressions w i t h "  + " ,  " * " , " / "  and (at most) some unary subtractions acting 
ona toms ,  e . g . a -  (b-~ c / ( d - -  e) -- f )  = a +  ( ( - b )  + c / ( ( - d )  W e )  -~ f ) .  

']?he restriction to expressions with distinct atoms means tha t  we do not consider ex- 
pressions such as a -4- x(b + x(c + x) ), a + 1/ (b + 1/ (c + l / d ) ) ,  and x l°°. 
However,  our results give upper bounds on the t ime required to evaluate such expres- 
sions, because they apply to the more general expressions a ~ ~l(b ~ x2(c ~ x3)), 
a ~ Ul/(b + u2/(e + ua/d)) ,  and xlx2 . . .  Xloo respectively. For further discussion and 
examples, see [5]. 

I f  E is an arithmetic expression then [ E I denotes the number of atoms (relabeled if 
necessary to become distinct) in E. If  T is a parse tree for E then [ T [ = [ E [  is the 

number  of terminal nodes of T. I f  [ T I > 1 we write T = L R, where L and R are the 
maximal proper subtrees of T. A subexpression of E is the expression corresponding to a 
subtree (not necessarily proper) of a parse tree for E. 

If  r is a real number  then Fr"] denotes the integer satisfying r _~ Fr~  ~ r + 1. 

3. Main Theorem 

Theorem i states slightly more than we use subsequently, but  the s ta tement  is necessary 
so tha t  the result may be proved by induction. The most interesting consec~uences of the 
theorem are stated in Corollaries 1 and 2 (Section 4). 

We first state, without proof, a trivial but  useful lemma. 
iLEMMA 1. I f  1 ~ m ~ n and T is a binary tree with I T I = n, then there is a subtree 

X1 = L~ Rl of T such that [ X I ~- m, I Ll l < m, and l Rl l < m. Als°, i f  x is °ne °f the 

terminal nodes of T, there is a subtree X2 = L2 R~ of T such that [ X2 [ >_ m and either 
(1) x is a terminal node of L2 and I L2 [ < m, or (2) x is a terminal node of R2 and I R2 [ < 

m .  

THEOR~ 1. Let E be any arithmetic expression with n (distinct) atoms and operations 
"-~-", "*", and " / "  over a commutative field. Suppose that su~eiently many processors 
capable of performing " + "  and " . "  (but not necessarily " / " )  in unit time are available. 
Let P1 (n) = 3 (n - 1), P2 (n) = max(o, 3n - 4), Qi(n) = max(O, l O n -  19), Q2(n) = 
max (O, lOn - 29), and 

~n --~ 1 /f n < 2 ,  
k = (W41og2(n--  1)3 /f  n _ > 3 .  

Then (1) and (2) below hold: 
(1) E = F/G, where F and G are expressions which can be evaluated simultaneously in 

time k -- 2 with P1 (n) processors and Q1 (n) operations. 



The Parallel Evaluation of General Arithmetic Expressions 203 

(2) I f  x is any atom of E, then E = (Ax + B ) /  (Cx + D), where A, B, C, and D are 
expressions which do not contain x and which can be evaluated simultaneously in time k with 
P2(n) processors and Q2 (n) operations. (Note that some of A, . . .  , G may be identically 
0 or 1.) 

PROOF. By inspection, the result holds for n < 4, so we assume that  n = N >_ 5 
(so k > 8). The proof is by induction on N. As inductive hypothesis we assume that  
parts (1) and (2) of the theorem hold for n < N. 

We shall show that  part (1) holds with n = N. Applying Lemma 1 with 
m = F (n -{- 1) /27  to a parse tree for E, we see that  there is a subexpression Xt = 
L101R1of E such that IX1 I _> (n ~- 1)/2, 151[ < n/2, IR, I -< n/2, and 01 = "-F",  
",", or "/". 

From the definition of k, n _~ 2 kI4 + 1 ; so I Lt I ~- n/2 < 2 T M  + I, and similarly for 
Ri • Thus, by part (I) of the inductive hypothesis, Li = F,/Gi and R, = F~/G~, where 
Fi, Gi, F2, and G2 can be evaluated simultaneously in time (k -- 4) -- 2 = k -- 6 
with P,(I Lt I) + P,(I R1 I) processors and QI(I Lt I) + Qi(I R1 I) operations. 

Now X1 = LiO,R, = (F,/G1)Oi(F2/G2) = F3/G3, where 

{F1G2-~-F2G, if 0 , =  "+",~  ~GiG2 if 0 , =  "'~-" o r " * " , }  
F~ = ~F,F2 if 0, "* '"  I and Ga = (G1F~ if 0, " / "  

[F1G2 if 01 " / " ,  

Hence F3 and G3 can be evaluated in time k - 4. 
Let Et be the expression formed by replacing Xt by an atom in E. Since [ E1 t = 

n + 1 - [Xi [  < (n + 1)/2 < 2 (k-4)/4 + 1, part (2) of the inductive hypothesis (applied 
to E~) gives E = (AiX~ + B~)/(C1X~ + DQ, where A1, B1, C, ,  and Di can be evaluated 
simultaneously in time/c - 4 with P2 ([ E1 {) processors and Q~ (I E l l )  operations. Since 
X,  = F3/G3, it follows that E = F/G, where F = A1F3 + B1Ga and G = CxF3 + D1G3 
can be evaluated in time k -- 2. 

Consider the number of processors required to compute F and G as above. In  the first 
k - 6 steps we compute F1, G,,  F~, G2 and start computing A1, B1, C1, and Dt ,  using 
Pi(I L, [) + Pl([ R1 [) + P2(] E1 I) processors. From time k -- 6 to/c -- 4 we compute 
Fa and G3 and finish computing A1, B~, C~, and D , ,  using 2 + P2(I Et I) processors. 
Finally, from time k -- 4 to k -- 2 we compute F and G, using four processors. Thus, 
the number of processors required is 

max [Pl([ L, [) + P,(I R~ I) + P2(I E~ I), 2 + P~(I E1 I), 4] 
= m a x [ 3 ( I L ,  I + ] R l l  + IE ,  I) - 1 0 , 3 ( I L l l  + IR , ] )  - 6 , 3 1 E t l  - 2,41 
< 3 ( n -  1) = P~(n), 

as lL~ I + IRl l  + IE l l  = n +  1, IL t l  + l R l l  < n ,  lEvi  _~ ( n +  1)/2, a n d n  > 2. 
Now consider the number of operations required to compute F and G as above..Since 

3 _~ (n + i ) /2 _~ I X,  I = I LI I T I Rl l, the definition of Ql gives Q~ (I Ll l) + Q , ( I R I I - ~  
10 (I L~ I + I Rt I) - 29. Thus, the number of operations is at most 

10 + Qi(I L1 I) + Q,(I R, I) -i- Q~(I E1 I) 
_< max [10(I L1 [ -t- l Ri I + [ E, l) - 48, 10(I L1 [ q- [Rt 1) - 191 
< 10n -- 19 = Ql(n), 

so part  (1) holds with n = N. 
To complete the proof, we must show that part (2) holds with n = N. Let x be an 

atom of E. Applying the second half of Lemma 1 with m = F(n  q- 1)/2"1 to a parse 
tree for E, we see that  there is a subexpression X~ = L~O~R2 of E such that  ] Xz I >- 
(n + 1)/2, 0~ = "q--", " . " ,  or " / " ,  and either x is an atom of L~ and I L~ I -< n/2, or 

x is an atom of Rz and [ Rz [ <_ n/2. We shall suppose that  x is an atom of L~. (The 
proof is similar if x is an atom of R2 .) 
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Let E2 be the expression formed by replacing X2 by an atom in E. Thus I E~ I = 
n "t- 1 -- I X2 ] < (n + 1) /2  < 2 (k-~)/~ + 1, and part  (2) of the inductive hypothesis 
(applied to E2) gives E = (A2X2 -4- B~)/(C~X2 -4- D2), where A~, B2, C2, and D~ can 
be evaluated simultaneously in time k - 4 with P2(I E2 I) processors and Q2(I E~ t) 
operations. 

Similarly, L~ = (Asx + Bs)/(C3x "4- D~), where A~, Bs,  C3, and D8 can be evaluated 
in time k - 4 with P2(I L2 1) processors and Q2(I L2 t) operations. Also, since I R21 <_ 
n - 1, part  (1) of the inductive hypothesis shows that  R~ = F4/G4, where F4 and G4 can 
be evaluated in time k -- 2 with P~ (I R2 [) processors and Q1 ([ R2 l) operations. 

From X2 -- L282R~ and the above expressions for E, L2, and R2, we find that  E = 
(Ax "4- B ) /  (Cx + D) ,  where 

{(A~C3)F4 + (A2A3 + B2Ca)G4 if 02 = " + " ,  
A = ~(A2A3)F4-4- (B2C3)G4 ' if 02 = "*", 

( (A~A3)G4 + (B~C3)F4 if 02 = " / " ,  

and B, C, and D are given by similar expressions. Thus A, B, C, and D can be evaluated 
in time k. 

The number of processors required to compute A, • • • , D simultaneously in time k is 
at  :most 

max [P2(] E~ I) "4- P2([ L2 ]) + P~(I R2 I), 8 "4- P~([ R2 {)] 
= max [3(] E2I + I L ~ I - 4 - ] R 2 I )  - 11, 3 ( t L ~ I - 4 - ] R 2 I )  - 7 ,  

3(IE2 I -4 - IR~I )  - 7 ,  3 IR~I + 51. 
Since [ E~ [ -4-IL~[ + IR~I = n + 1, [n2 [  "4- IRE[ < n, IE21 -4-IR~I _< n, 
and n > 1, the number of processors required is at most 3n - 4 = P~(n) provided 
31R~l + 5 _< 3 n -  4, i.e. provided [R~[ < n -  3. I f [ R ~ [  = n - 2 o r n -  1, the 
expressions for A, B, C, and D simplify, and a straightforward examination of cases 
shows that  P~ (n) processors suffice. 

Similarly, if I E~ I > 2 and I L~ I > 2, the number of operations required is at most 
28 + q2([ E~ I) + Q2([ L2 [) + Q~([ R2 [) _< 10n - 30 < q2(n). I f [E~  I -< 2 or[ L~ [ < 2 
or both, the expressions for A, B, C, and D simplify, and Q~ (n) operations suffice. This 
completes the proof of part  (2), so the theorem follows by induction on N. 

4. Consequences of Theorem 1 

We need the following lemma, which is of some independent interest. 
LEMMA 2. ~ff a computation C can be performed in time t with q operations and suffi- 

cie.ntly many processors which perform arithmetic operations in unit time, then C can be" 
performed in time t -4- (q -- t ) /p  with p such processors. 

PROOF. Suppose that  st operations are performed at step i, for i = 1, 2, • • • , t. Thus 
~t Z,~-x s~ = q. Using p processors, we can simulate step i in time Fsdp'3 • Hence, the 

computation C can be performed with p processors in time 

~ - 1  [-s,/p-1 _< (1 -- 1/p) t  -4- ( l /p )  ~ = 1  s, = t -4- (q -- t ) /p .  

COROLLARY 1. Let E be as in Theorem I and suppose that p processors which can perform 
addition, multiplication, and division in unit time are available. Then E can be evaluated in 
time 4 log2n + 10(n -- 1)/p.  

PROOF. Suppose that  n _> 3, for otherwise the result is trivial. By Theorem 1, 
E = F/G, where F and G can be evaluated in time [-4 log2 (n -- 1)7 -- 2 < 4 log2n -- 1 
with less than I0 (n - 1) operations. Applying Lemma 2 with t = r 4  log2 (n - 1)'3 -- 2 
and q = 1 0 ( n -  1), we see that  F and G can be evaluated in time 4 1 o g 2 n -  1 + 
10 (n -- 1 ) /p  with p processors. Finally, E = F/G can be evaluated in one more unit of 
time. (Note that  only one division is performed, so the result is easily modified if a divi- 
sion takes longer than an addition or multiplication.) 
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COROLLARY 2. Let r (n, p) be the maximum time required to evaluate arithmetic expres- 
sions with n atoms, using p processors which can perform arithmetic operations in unit time. 
Let ¢(n ,  p) = max(log2n, ( n - -  1) /p ) .  Then, for all n >_ 1 and p ~  1, ¢ (n ,  p)  _~ 
v(n, p) ~ 14~(n, p) .  

PROOF. Consider the expression x~ ~ x2 ~ . . .  + xn. By a fan-in argument,  its 
evaluation requires t ime at  least logan. Also, at  least n -- 1 operations must be performed, 
so p processors require time at  least (n - 1)/p.  Hence, the lower bound on r (n ,  p) is 
established. The upper bound follows from Corollary 1. 

5. Concluding Remarks 

Corollary 2 establishes the complexity of parallel evaluation of general ari thmetic ex- 
pressions to within a constant factor. The constant 14 can doubtless be reduced by more 
refined arguments, and the lower bound for T (n, p) can be improved slightly (see [5]). 

The proof of Theorem 1 simplifies, and the constants can be reduced, if division is 
excluded. Corresponding to Corollary 1 we have the following, which is slightly weaker 
than Theorems 1 and 2 of [5] if p ~ n, but  much stronger if p is of order n or less. 

THEOREM 2. Let E be any arithmetic expression with' n (distinct) atoms and operations 
" ~ " and " . "  over a commutative ring. I f  p processors which can perform " ~ " and " , "  in 
unit time are available, then E can be evaluated in time 4 log2n -b 2 (n -- 1)/p.  

A proof of Theorem 2 is given in [4], where we also show that ,  for real expressions and 
approximate arithmetic, the evaluation of E in the t ime given by Theorem 2 is numeri- 
cally stable (in the sense that the computed result can be obtained by making small 
relative changes in the values assigned to She atoms and then performing exact ari thme- 
t ic) .  Unfortunately,  this result does not extend to expressions with division, and exam- 
ples found by a program of Miller I17] show tha t  the algorithm implied by the proof of 
Theorem 1 is not  always numerically stable. Hence, it  is an open question whether gen- 
eral ari thmetic expressions can be evaluated stably in the time given by Corollary 1. 

Acknowledgments. David Kuck and Kiyoshi Maruyama  made several s t imulat ing 
suggestions, without which this paper might not have been written. Webb Miller kindly 
verified the numerical instabil i ty mentioned above, and a referee's comments were 
useful in clarifying the proof of Theorem 1. 
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