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AbstraCt 

The paper considers the complexity of bilinear forms in a noncommutative ring. 

The dual of a computation is defined and applied to matrix multiplication and other 

bilinear forms. It is shown that the dual of an optimal computation gives an optimal 

computation for a dual problem. An nxm by mxp matrix product is shown to be the dual 

of an nxp by pxm or an mxn by nxp matrix product implying that each of the matrix 

products requires the same number of multiplications to compute. Finally an algorithm 

for computing a single bilinear form over a noncommutative ring with a minimum number 

of multiplications is derived by considering a dual problem. 

Introduction 

This paper is concerned with determininq the minimum number of multiplications 

necessary to compute certain bilinear forms over a noncommutative ring. We define the 

dual of a set of expressions and the dual of a computation in such a manner that the 

dual of the computation of a set of expressions is a computation for the dual of the 

expressions. Furthermore, a computation and its dual both use the same number of 

multiplications. This implies that the minimum number of multiplications necessary 

to compute a set of expressions is the same as that to compute its dual. 

The concept of duality is applied to matrix multiplication. The dual of a set of 

expressions representing the multiplication of two matrices is a set of expressions 

representing another matrix multiplication problem where the dimensions of the matrices 

have been permuted. Thus we are able to show that the minimum number of multiplications 

necessary to compute an nxm by mxp matrix product is the same as that required to compute 

an nxp by pxm or an mxn by nxp product. Optimal programs follow from previous 

results. Dual statements of several interesting theorems are presented. Finally it is 

shown that Strassen's algorithm for 2x2 by 2x2 matrix multiplication is unique to within 

a linear transformation. 

Definition of a Computation 

Let ~ be a commutative ring with a unit element and let ~ be a finite set of 

indeterminants. Let ~ be the noncommutative ring obtained by extending ~ by multi- 
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nomial expressions of the elements of 4. Throughout this section and the next F will 

denote the set of bilinear forms 

cij k aj x k I 1 < i <_ p, aj, x k E ~, cij k % 

T 
Similarly a and x will denote the column vectors (al,a 2,...,a m ) and 

(Xl,X 2, • . . ,Xn )T. 

We consider the notion of a computation (see Ostrowski [4]) as a sequence of in- 

structions fi = gi ~ hi where o stands for one of the binary operations of multi[- 

plication, addition or subtraction. Each fi is a new variable and each gi or h i 

is either an element of ~U ~ or a previously computed f.. A multiplication of two 
3 

elements of ~, neither of which is in ~ is assumed to take one unit of time. All 

other operations require no time to perform. The motivation for counting only multi- 

plications between elements in ~-~ is that in applications the elements of ~ may 

be large matrices (Strassen [5]) and thus the scheme is not only mathematically tract- 

able but also reflects the actual computation time within a constant factor. It is 

well known that without division computations of bilinear forms can be reduced to com- 

puting linear combinations of products of pairs of linear forms. This motivates the 

following definition of a computation. Express the set of expressions F as (aTx) T% 

n 

where X is an mxp matrix with elements of the form ~ c i xi, c i E ~. A computation 

l=l 

of F is an expression of the form M(Pa'Rx) where M , P and R are matrices of 

dimensions pxq, qxm and qxn whose elements are from ~, the symbol • indicates element 

by element multiplication, and M(Pa.Rx) (aTx) T. Since the straight forward method 

of evaluating M(Pa.Rx) uses q multiplications between elements in ~-~ , the 

computation is said to have q multiplications. 

Duality 

This section defines the dual of a set of bilinear forms and the dual of a com- 

putation. It is then shown that the dual of any computation of F computes the dual 

of F. 

Let b be the column vector °(bl'b2'''''bp)T , b i ~ ~ . The left dual of F is 

the system of equations given by (bTxT) T Let M(Pa.Rx) = (aTx) T be a computation 

of F. The P-dual of the computation is the computation pT(MTb-Rx). 

Lemma i: The P-dual of any computation of a system of expressions F computes the 

left dual of F. 

Proof: Let M(Pa-Rx) = (aTx) T be a computation of F. We must show that pT(MTb.Rx) 

is a computation of (bTxT) T. Let D be a diagonal matrix whose diagonal elements are 

the elements of the column vector Rx. Then (M(Pa.Rx)) T = (pa) T D M T. Since the elements 

.th tBy (aTx) T we mean the matrix whose ijt--h element is the jl-- element of aTx. Since 

the elements are from a noncommutative ring rather than a field (aTx) T ~ xTa in general. 
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of P commute with the elements of a, (pa)T = a T pT . Now aTp T D M T = aTx for all a 

implies pT D M T = X which in turn implies b T M D P = bTx T for all b. Thus (MTb)TDp = 

bTx T implying pT(MTb'Rx) = (bTxT) T 

In a similar manner the system of expressions F can be expressed as Ax where A is 

m 

matrix with elements of the form ~>i cia i, ci6 ~ " The right dual of F is the a pxn 

i=l 

system of equations given by ATb. If M(Pa. Rx) is a computation of F, then the R-dual 

of the computation is the computation RT(pa'MTb). The R-dual of a computation of a 

system of expressions F computes the right dual of F. 

Lemma 2: The R-dual of any computation of a system of expressions F computes the right 

dual of F. 

Proof: The proof is analogous to that of Lemma I. 

Theorem 3: There is a computation for the system of expressions computed by M(Pa. Rx) 

with q multiplications if and only if there is a computation with q multiplications 

for each of the systems of expressions computed by pT(MTb. Rx), RT(pa.MTb), RT(MTb-Pa), 

pT(Rx-MTb) and M(Rx-Pa). 

Proof: The result follows from the fact that a computation, its R-dual and its P-dual 

each have the same number of multiplications. 

Let M(Pa'Rx) be a computation of F and let c be a column vector such that M(Pa-Rx)= 

c. Let T, U, V be pxp, mxm, nxn matrices respectively with elements from 4" A trans- 

formation of a vector c of bilinear forms is the result of replacin @ each element of a 

and x by the corresponding elements of Ua, Vx in Tc. A transformation of the computa- 

tion M(Pa-Rx) is the computation TM(PUa-RVx). 

Lemma 4: The transformation of a computation of c is a computation of the transforma- 

tion of c. 

Corollary 5: If c' is a transformation of c, then c' can be computed in q multiplica- 

tions if c can be computed in q multiplications. If T, U and V are nonsingular and c' 

can be computed in q multiplications then c can be computed in q multiplications. 

Matrix Multiplication 

Let A, B and C be mxn, nxp and mxp matrices whose elements are from 4- We will 

show that there is a computation of AB with q multiplications if and only if there are 

computations for 

ATc, BTA T, BC T, cTA, CB T 

with q multiplications. In other words the number of multiplications needed to compute 

the product of an mxn matrix with an nxp matrix is the same as that required to compute 

an nxm by mxp, pxn by nxm, etc. If one uses the ordinary algorithms which require nmp 

multiplications then the result is not surprising. However, the result claims that no 

matter what method is used the minimum number of multiplications is the same. 

Let a,b,c be column vectors whose elements are those of A, B and C respectively in 

row order 

T) 
(e.g. a = (all, a12,... , aln , a21,... , amn) . 
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n 

/j aik bkj- The ij th element of AB is 

k=l 

dimensions mp x q, q x mn and q x np whose elements are from ~ such that M(Pa-Rb) 

computation for AB. 

Theorem 6: The following statements are equivalent. 

AB in row order using q multiplications. M (Pa • Rb) computes 

pT (MTc. Rb) " CB T " 

RT (MTc. pa) ,, (cTA) T ,, 

M(Rb-Pa) ,, (BTA T) T ,, 

pT (Rb. MTc) . (BC T) T . 

R T (Pa.MTc) ,, ATc - 

will prove only that (a) => (b). 

Therefore, there exist matrices M, P and R of 

| !  I I  I I  I I  I I  

I I  I !  I !  | I  I I  

I I  l |  I I  I I  I |  

I !  I !  I !  I I  I I  

a) 

b) 

c) 

d) 

e) 

f) 

Proof: We 

where 

I I  I I  I I  I I  I I  [ oo] 
Let D B be the mn by mp matrix 0B . 0 

00 "B 

is a 

M(Pa-Rb) computes AB in row order implies that M(Pa-Rb) = (aTDB)T by definition of a 

computation. This in turn implies 

pT(MTc-Rb) = (cTD~) T by Lemma i. 

Thus pT(MTc-Rb) computes CB T in row order. 

Corollary 7: The minimum number of multiplications required to multiply mxn by nxp 

matrices without using commutativity is the same as to multiply nxm by mxp, nxp by pxm, 

pxm by mxn, pxn by nxm, or mxp by pxn. 

Theorem 6 leads to new algorithms for multiplying various size matrices together. 

Some of the new algorithms are optimal, others are at least improvements over the best 

currently known. For example, in [3] it is shown that ~3pn + max(n,p))/2~multiplica- 

tions is sufficient for px2 by 2xn matrix multiplication. It follows that 

~3pn + max(n,p))/27 multiplications is sufficient for 2xp by pxn matrix multiplication. 

Since r7n/2~ multiplications are necessary and sufficient for 2x2 by 2xn matrix multi- 

plication [3] it follows that r7n/2~ multiplications are necessary and sufficient for 

2xn by nx2 matrix multiplication. Similarly since 15 multiplications are necessary and 

sufficient for 3x2 by 2x3 matrix multiplication, 15 multiplications are necessary and 

sufficient for 3x3 by 3x2 matrix multiplication. 

The number of multiplications necessary to compute the product of two 3x3 matrices 

is an interesting open problem. If 21 or fewer multiplications are sufficient then the 

asymptotic growth rate of Strassen's method [5] could be improved. An examination of 

3x2 by 2x3 and 3x3 by 3x2 matrix multiplication algorithms may shed some insight on the 

development of an algorithm for 3x3 by 3x3 matrix multiplication. 

Let A, X, C and Y be 3x2, 2x3, 3x3 and 3x2 matrices whose elements are from ~. 

Then 

I ml + m2 -m2 - m3 + m7 - m8 -ml - m5 - m13 + m15 1 

AX = -m I - m 4 + m 8 - m 9 m 3 + m 4 -m 3 - m 6 + mll - m12 

-m 2 - m 6 + m13 - m14 -m 4 - m 5 + ml0 - mll m 5 + m 6 
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m I = (all-al2)Xll m 6 = (-a31+a32)x23 

m 2 = al2(Xll+X21 ) m 7 = (all+a21) (Xll+X12+x21+x22) 

m 3 = a21xl2 m 8 = (all-al2+a21) (Xll+X21+x22) 

m 4 = a22x22 m 9 = (all-a12+a21-a22) (x21+x22) 

mll = (a22-a31+a32) (+x12+x13+x23) 

m12 = (-a21+a22-a31+a32) (+Xl2+Xl3) 

m13 = (a12+a31) (Xll-X23) 

m14 = (-a12-a32) (x21+x23) 

m 5 = a31(x13+x23 ) ml0 = (a22+a32) (+x12+x13+x22+x23) m15 = (all+a31) (Xll+Xl3) 

If 

M = 

p = 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 -1 -i 0 0 0 1 -i 0 0 0 0 0 0 0 

-i 0 0 0 -i 0 0 0 0 0 0 0 -i 0 1 

-i 0 0 -i 0 0 0 1 -i 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 -i 0 0 -i 0 0 0 0 1 -i 0 0 0 

0 -1 0 0 0 -i 0 0 0 0 0 0 1 -I 0 

0 0 0 -i -i 0 0 0 0 1 -i 0 0 0 0 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

1 -i 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 -i 1 

1 0 1 0 0 0 

1 -i 1 0 0 0 

1 -i i -i 0 0 

0 0 0 1 0 1 

0 0 0 1 -i 1 

0 0 -I 1 -i 1 

0 1 0 0 1 0 

0 -i 0 0 0 -i 

1 0 0 0 1 0 

R = 

1 0 0 0 0 0- 

1 0 0 1 0 0 

0 1 0 0 0 0 

0 0 0 0 1 0 

0 0 1 0 0 1 

0 0 0 0 0 1 

1 1 0 1 1 0 

1 0 0 1 1 0 

0 0 0 1 1 0 

0 1 1 0 1 1 

0 1 1 0 0 1 

0 1 1 0 0 0 

1 0 0 0 0 -i 

0 0 0 1 0 1 

1 0 1 0 0 0 

then M(Pa. Rx) computes AX in row order with 15 multiplications. By Theorem 6 pT(MTc-RVy) 

is an optimal algorithm for CY. Thus 

I 
n I + n 7 + n 8 + n 9 + n15 -n 1 

BY = n 3 + n 7 + n 8 + n 9 - n12 n4 

n 5 - n 6 -nll - ni2 + n13 + n15 n 6 

where 

+ n 2 - n 8 - n 9 + n13 - n141 

- n9 + nl0 + nll+ nl2 l 

+ nl0 + nll+ nl2 - n14 J 

n I = (Cll-Cl3-C21)Yll n 4 = (-c21+c22-c32)Y22 

n 2 = (Cli-C12-c31) (Yli+Yi2) n 5 = (-c13-c32+c33) (Y31+Y32) 

n 3 = (-c12+c22-c23)Y21 n 6 = (-c23-c31+c33)Y32 
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n 7 = c12(Yll+Y12+Y21+Y22 ) n12 = -c23(Y21+Y31 ) 

n 8 = (-c12+c21) (Yll+Y12+Y22) n13 = (-c13+c31) (Yll-Y32) 

n 9 = -c21(Y12+Y22 ) n14 = -c31(Y12+Y32 ) 

nl0 = c32(Y21+Y22+Y31+Y32 ) n15 = Cl3(Yll+Y31 ) 

nll= (c23-c32) (Y21+Y31+Y32) 

The algorithm for AX is the union of three optimal algorithms that compute 

I all el21 IXll Xl2 1 I all el2 i xll Xl3 1 I a21 a221 I xl2 Xl3 1 
, and 

ta21 a22 LX21 x22] a31 a32 x21 x23 ~a31 a32 x22 x23 

respectively such that each diagonal component of AX is computed with exactly two multi- 
plications. Furthermore, both algorithms computing a given diagonal component, compute 
it with the same two multiplications. Each of the three algorithms uses seven multipli- 
cations, but each pair of algorithms has two multiplications in common. Thus only 15 
multiplications are used in computing AX. 

The algorithm for CY is the dual of the algorithm for AX. Thus, there is a dual 
construction for it. This construction is described briefly below and followed by an 
example. 

Let W be the 3x2 matrix such that W = CY. Construct 
optimal algorithms that compute 

ic ii c w 1 
c21 c2 j LY l y22j LW21 c 3y31 c 3y32 

I I ~Yll 
Cll c13 : Yi2 

Lc31 c33 ~Y31 Y32 
i 
Wll - c12Y21 Wl2 - c12Y22 7 

w31 c32Y21 w32 - c32Y22 
, and 

c22 c23 ~Y21 Y22 21 - c21Yll w22 - c21Y12 

Lc32 c33 31 yn LWn c31Yn wn c31Yi2J 

such that each cii appears in exactly two linear combinations which are left hand sides 
of multiplications in each of the two algorithms involving cii. Furthermore, if ~ and 8 
are the right hand sides of the two multiplications in one algorithr, then e and 8 are 
the right hand sides in the other. Each pair of multiplications with the same right hand 
Whose left hand sides cii contain are merged by the formula A 

merge [(cii + Z I) ~, (cii + i2)~ ) = (cii + i I + £2)~, 
\ ! 

where £i and £2 are linear combinations of the components of C. Each of the three orig- 
inal algorithms contains seven multiplications and between each pair of algorithms, two 
pairs of multiplications are merged. Thus the composite algorithm uses 15 multiplications 
in computing CY. 
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The following example should clarify the above description. 

Example 

where 

=lC  J j  nl+n,+n5+n7 

j 
i 2c2 IY21Y221 

= I nS+n9 

• n8+nl0+nl2+nl4 
= I nl5+nl6 

• nl5+nl7+nl9+n21 

nl+n2 1 

-nl+n3+n5+n7 

n8-nll+nl3-nl4 l 
-ns+nll+nl2+nl4 

n16+n18+n20+n21] 
nl7-nl8 I 

J 

nl=Cl2 (Yl2+Y22) 

n2= (Cli-C12) Yi2 

n3= (c21-c22) (Y21-Y22) 

n4=c21 (Yli-Yi2+Y21-Y22) 

n5= (c12+c22) Y21 

n6= (Cli+C21) Yll 

n7= (c12+c21) (Yi2-Y21+Y22) 

Then 

n8=cl3(Yll+Y31 ) 

n9=(Cll-Cl3)Yll 

n10=(c31-c33) (-Y31+Y32) 

nlI=C31(-Yli+Yi2-Y31+Y32) 

n12=(c13+c33)Y32 

nl3=(Cll+C31)Yl2 

n14=(c13+c31) (Yli+Y31-Y32) 

nl5=C23 (Y21+Y31) 

nl6= (c22-c23) Y21 

n17 = (-c32+c33) Y32 

n18=c32 (-Y22-Y32) 

n19 = (-c23-c33) (-Y31+Y32) 

n20 = (-c22-c32) (Y21-Y22) 

n21 = (c23+c32) (Y21+Y32) 

where 

CY = 

ml-m4+m6-m7+m8 

-ml+m4+m5+m7+ml3 

-ms+m9+mll+ml2-ml3+ml5 

ml+m2+m8-ml0-ml2 

-ml+m3+m5+m7+ml4+ml5 

-m8+ml0+mll+ml2-ml4 

ml=n 1 

m2=merge(n2,nl3)=(Cll-Cl2+C31)Yl2 

m3=merge(n3,n20)=(c21-c22-c32) (Y21-Y22) 

m4=n 4 

m5=merge(n5,n16)=(c12+c22-c23)Y21 

m6=merge(n6,n9)=(Cll-Cl3+C21)Yll 

m7=n 7 

m8=n 8 

m9=merge(n10,n19)=(-c23+c31-c33) (-Y31+Y32) 

ml0=nll 

mll=merge(n12,n17)=(c13-c32+c33)Y32 

m12=n14 

m13=n15 

m14=n18 

m15=n21 

It is hoped that the techniques used above to construct algorithms for 3x2 by 2x3 
and 3x3 by 3x2 matrix multiplication can be applied toward developing an optimal algo- 
rithm for 3x3 by 3x3 matrix multiplication. To date no algorithm for the latter using 
less than 24 multiplications has been found. However, there is no indication that 
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24 multiplications is the minimum. 

Let D be a 3x3 matrix with elements from 4. Then CD can be computed with 24 multi- 

plications by partitioning the problem into a 3x2 by 2x3 and a 3xl by ix3 matrix multi- 

plication problem or by partitioning the problem into a 3x3 by 3x2 and a 3x2 by 3xl 

problem. These two partitions result in dual computations for 3x3 by 3x3 matrix multi- 

plication. A third computation, also with 24 multiplications, can be obtained by using 

both of the above combining techniques. In this case find optimal algorithms that com- 
pute 

Ic clic12] Idlldl21, I clIc13 ] Idlldl31and [c22c231 Id22d231 

so that there are three pairs of multiplications used in computing the diagonal elements 

of CD such that the two multiplications in each pair are either the same multiplication 

or can be merged into a single multiplication. Thus 18 multiplications are used. To 

these are added the six multiplications c13d32 , c12(d23-dll), (c23+c13)d31, (c21+c31)d13 ' 

c31d12, and c32(d21-d33). 

illustrated below. 

ml=(Cll-Cl2)dll 

m2=cl2(d21+dll ) 

m3=c21d12 

m4=c22d22 

The computation of CD minus the above six multiplications is 

m8=(Cll-Cl3)dll 

m9=cl3(d31+dll ) 

m10=c31(d13+d33 ) 

mll=(-c31+c33)d33 

m5=(Cll+C21 ) (dll+d12+d21+d22) ml2 =(cll+c31 ) (dll+d33) 

m6=(Cli-C12+c21-c22) (d21+d22) m13 =(-c13-c33) (d31+d33) 

m7=(Cli-C12+c21) (dll+d21+d22) m14 =(c13+c31 ) (dll-d33) 

m15=c32(d23+d33 ) 

m16=(-c32+c33)d33 

m17=c23d32 

m18=c22d22 

m19=(c23+c33) (-d22-d23-d32-d33) 

m20=(-c22+c23-c32+c33) (-d22"d23) 

m21=(c23-c32+c33) (-d22-d23-d33) 

Yll = merge (ml,mS) + m 2 + m 9 Y23 = -ml0 - m18 + m20 - m21 - merge(mll'ml6) 

Yi2 = -m2 - m3 + m5 - m7 Y31 = -m9 - m13 + m14 - merge(mll'ml6) 

Yi3 = -ml0 + m12 - m14 - merge(ml'mS) Y32 = -m15 - m17 - m19 + m21 

Y21 = -m4 - m6 + m7 - m9 - merge(ml'mS) Y33 = merge (mll,ml6) + ml0 + m15 

Y22 = m3 + m4 + m17 

In addition to helping find optimal (or better) algorithms for matrix multiplica- 

tion, Theorem 6 or its more general form, Theorem 3, can be applied to previously pub- 

lished theorems to yield new results. For example, the following appear in [3]. For 

sake of simplicity the theorems are expressed for ~ being the integers. Some of the 

theorems are more general. 

A set of vectors Vl,V2,...,v p with elements from ~ are nondependent such that 

P 

civ i is a vector with elements from ~, each c i an element of ~ implies each ci=0. 
i=l 

Since an expression can be considered to be a one dimensional vector, the notion of non- 

dependence applies also to expressions. 

8o 



Lemma 8: (Winograd) Let A be an mxn matrix whose elements are from ~and let 

T 
x = (Xl,X2,...,Xn) where Xl £ ~. If A has p nondependent columns, then any computation 

of Ax requires at least p multiplications. 

Lemma 9: Let ~ be a field and let F = {fl,...,fk,...,fp} be a set of expressions, 

where fl,...,fk are nondependent and each can be expressed as a single product. If F can 

be computed with q multiplications, then there exists an algorithm for F with q multipli- 

cations in which k of the multiplications are fl,...,fk. 

Lemma 10: Let A and X be 2x2 and 2xn matrices respectively whose elements are from ~. 

If an algorithm for computing AX has k multiplications of forms all~, (a12+a21)~, and 

(all+al2+a21) Y, then the algorithm requires at least 3n + k multiplications. 

Corollary Ii: Let T be the group of transformations generated by the set of transforma- 

tions which: 

(i) interchange the two rows of A, two columns of X, or the two columns of A and 

the two rows of X. 

(2) either add (subtract) row i of A to row j of A, column i of X to column j of A, 

or add (subtract) column i of A to column j of A and simultaneously subtract 

By applying transformations from T we also 

(all+a12+a22)Y 

(all+a21+a22)Y 

(add) row j of X to row i of X. 

have similar theorems for 

(a) (all+a21)~, (a12+a21+a22)8, 

(b) (all+al2)~, (a12+a21+a22)B, 

(c) (all+a12+a21+a22)e, (a12+a21) 8, (all+a22)Y 

(d) (a21~ , (all+a22)8, (all+a21+a22)8 

(e) ~a21+a22)~, (all+a12+a22) 8, (all+al2+a21) y 

(f) a12~, (all+a22) 8, (all+a12+a22)sY 

(g) (a12+a22)e, (all+a21+a22) 8, (all+al2+a21) Y 

(h) a22~,(a12+a21) 8, (a12+a21+a22)Y 

Lemma 12: Let A and X be 2x2 and 2xn matrices respectively whose elements are from ~. 

Any algorithm for computing AX which has k multiplications of types all~ , a128 , and 

(all+al2) Y has at least 3n+k/2 multiplications. 

Corollary 13: By transformations we have similar theorems for a21e, a22B, (a21+a22)Y 

and for (all+a21)e, (a12+a22)8, (all+a12+a21+a22)Y. 

Applying Theorems 3 and 6 to each of the above yields several new theorems. However, 

only one new theorem for each will be presented. The others are similar. 

Lemma 14: (Fiduccia) Let A be an nxm matrix whose elements are from ~and let x be an 

arbitrary vector. If A has p nondependent rows, then any algorithm computing Ax requires 

at least p multiplications. 

Lemma 15: Let ~ be a field and F be the set of expressions 

m n 

<~i cijajBijI 1 ~ i ~ p; aj E ~' cij E ~; Bij = ' =  k=l ~ dijkXk' dijk E ~' Xk E ~) where 

Bij = ... = Bpj, 1 ~ j ~ t. Let B be the pxt matrix whose ijt_h element is cijBij. 
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If F can be computed with q multiplications and B has t nondependent columns, then F can 

be computed with q multiplications in which al,...,a t appear in exactly one multiplica- 

tion each and that multiplication has the form (a i + £i)Bi where 

m 

£j = ~ £ijai, Zij £ ~, 1 ~ j ! t. 
i=t+l 

Lemma 16: Let A and X be 2xn by nx2 matrices respectively whose elements are from $. 

If an algorithm for computing AX = Y has k multiplications that are used only in com- 

puting Yll or only in computing Yi2 and Y21 or only in computing Yli' Yi2' and Y21' then 

the algorithm requires 3n+k multiplications. 

Corollary 17: By applying transformations in T we have similar theorems for 

(a) Yll and Y21; YI2' Y21 and Y22; Yli' YI2 and Y22 

(b) Yll and Yi2; Yi2' Y21 and Y22; Yli' Y21 and Y22 

(c) Yli' YI2' Y21 and Y22; Yi2 and Y21; Yll and Y22 

(d) Y21; Yll and Y22; Yli' Y21 and Y22 

(e) Y21 and Y22; Yli' Yi2 and Y22; Yli' Yi2 and Y21 

(f) YI2; Yll and Y22; Yli' Yi2 and Y22 

(g) Yi2 and Y22; Yli' Y21 and Y22; Yli' Yi2 and Y21 

(h) Y22; Yi2 and Y21; Yi2' Y21 and Y22 

Lemma 18: Let A and X be 2xn by nx2 matrices whose elements are from ~. Any algorithm 

for computing AX = Y which has k multiplications used only in computing Yll' Yl2 or both 

has at least 3n+k/2 multiplications. 

Corollar[ 19: By transformations we also have theorems for 

(a) Y21; Y22; Y21 ~ and Y22; 

(b) Yll and Y21; Yi2 and Y22; Yli' YI2'Y21 and Y22" 

Instead of using Theorems 3 and 6 to prove the above we can construct "dual" proofs. 

As an example, we will present a proof for Lemma 18, the dual of Lemma 12. 

Proof of Lemma 18: 

We first state some results without proofs. 

n 

(i) Let al,...,a p be n-vectors whose elements are of the form 7. cixi,ci £ ~and 

i=l 

xi ~ ~. Then al,...,a p are nondependent if and only if they are linearly in- 

dependent. 

(2) Let C and D be mxn matrices whose elements are from ~ . If C and D have k 1 

and k 2 nondependent columns respectively then C+D has at most kl+k 2 nondepen- 

dent columns. 

(3) Let C be a 2xn matrix whose elements are from ~. If C has k nondependent 

columns, then row 1 or row 2 of C has at least k/2 nondependent elements. 
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Let ml,...,m k be the k multiplications which are assumed to be used only in com- 

puting Yll' Yl2 or both. Then Yll = M1 + F1 and Yi2 = M2 + F2 where M 1 and M 2 are sums 

of the ml,...,m k and F 1 = Yll - M1 and F 2 = Yi2 - M2" Without loss of generality we can 

assume 

= Gx and = Hx where x = [Xll,Xl2,...,Xnl,Xn2] 
M 2 F 2 

2 n 

and G and H are 2x2n matrices whose elements are of the form ~ ~ cijaij, cij ~ 9. 

i=l j=l 

Let G' and H' be the matrices resulting when we set a21 = ... = a2n = 0. G' has at most 

k nondependent columns by Lemma 8. Since = G' + H' x, G' + H' must have 2n non- 

Yi2 J 

dependent columns. Hence by (2) H' has at least 2n-k nondependent columns and by (3) 

row i, i is 1 or 2, has at least n-k/2 nondependent elements. Therefore, by (i) H has 

n-k/2 elements in row i of the form 

n n n 

~_~7 cjalj + .~7 dka2k' cj, dk E 9, such that the ~7 cjalj parts of each element 

j=l k=l j=l 

are linearly independent. 

Assume ~is a field. We can remove n-k/2 multiplications from Q by 

(i) removing ml,...,m k 

(2) equating an appropriate choice of n-k/2 elements in row i of H to zero and 

solving for n-k/2 alj'S. 

The new algorithm computes Y21 and Y22 which requires 2n multiplications. Hence Q 

must have had at least 3n+k/2 multiplications. If ~is not a field 3n+k/2 is still a 

lower bound. 

Theorems 3 and 6 and the preceding lemmas lead to the following lemmas for 2x3 by 

3xn matrix multiplications (and hence 2xn by nx3, 3x2 by 2xn, 3xn by nx2, nx2 by 2x3, 

and nx3 by 3x2 matrix multiplications). 

Lemma 20: Let A and X be 2x3 and 3xn matrices respectively whose elements are from 4- 

Any algorithm for computing AX which has k multiplications of forms all~ , a128 , 

(all+al2)~, a13~ , (all+al3)~, (a12+a13)%, and (all+al2+al3)~ has at least 4n+2k/3 mul- 

tiplications. 

Proof: Similar to Lemma 12. 

Corollary 21: Extend the definition of T in Corollary ii in the obvious way to 2x3 by 

3xn matrix multiplication. Then by transformations in T we have similar results for 

(a) a21~, a228 , (a21+a22) ~, a236, (a21+a23)~, (a22+a23)%, (a21+a22+a23)~ 

(b) (all+a21)e, (a12+a22)B, (all+a12+a21+a22)T, (a13+a23)d, (all+a13+a21+a23)~, 

a +a +a +a +a +a )~ 
(all+a13+a22+a23)%' ( ii 12 13 21 22 23 " 

Corollary 22: If n=3, and Q is an optimal algorithm for computing AX, then k ~ 4. 
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Corollary 23: Let n=3 and let Q be an optimal algorithm for computing AX. Let S A be the 

set of all multiplications in Q that begin with 

all, a12, all+12, a13, all+al3, a12+a13 , all+al2+al3 , a21, a22, a21+a22 , a23, 

a21+a23, a22+a23 , a21+a22+a23 , all+a21 , a12+a22 , all+a12+a21+a22 , a13+a23 , 

all+a13+a21+a23 , a12+a13+a22+a23 , all+a12+a13+a21+a22+a23 • 

Then 

(i) at most 12 multiplications of Q are in S A. 

(ii) no two multiplications of Q that are in S A have the same left hand side. 

Proof 

(i) Follows from corollary 22. 

(ii) Suppose some multiplication of Q is in S A. By applying transformations from T we 

can assume without loss of generality that multiplication has the form all~. set 

all = 0. This removes at least one multiplication from Q. Q now computes 

(I) 

0 a12 al3 ] 

a21 a22 a23 

X±l x12 x13 | 

J x21 x22 x23 

x31 x32 x33 

By Lemma 15 we can assume that setting a21 = 0 causes three multiplications to disappear. 

The resulting computation is a 2x2 by 2x3 matrix multiplication which requires ii multi- 

plications. Thus if setting all = 0 removed more than one multiplication Q must orig- 

inally have had 16 multiplications and hence was not optimal. Therefore Q had only one 

multiplication of form alle. 

For the remainder of this discussion on matrix multiplication let ~= Z2, the inte- 

gers modulo 2. We will conclude this section by showing that Strassen's algorithm for 

2x2 by 2x2 matrix multiplication is unique to within a transformation of T (as defined 

in Corollary ii). That is, every optimal algorithm for 2x2 by 2x2 matrix multiplication 

can be obtained from any given optimal algorithm for 2x2 by 2x2 matrix multiplication by 

applying a transformation of T to the latter. Let A and X be 2x2 matrices whose elements 

]T ,X22]T are from ~. Let a = [all,a12,a21,a22 and x = [Xll,Xl2,X21 . Let M, P, R be 4x7, 

7x4, and 7x4 matrices respectively whose elements are from ~such that M(Pa. Rx) computes 

AX in row order. M(Pa. Rx) uses 7 multiplications and hence is an optimal algorithm. 

Lemma 24: For fixed P and R, M is unique. 

Proof: Assume M(Pa-Rx) = M' (Pa.Rx) where M' is a 4x7 matrix whose elements are from 

and M ~ M'. Then there exists an equation m I + ... + m k = 0, k ~ i, where m i is an entry 

of the column vector Pa. Rx. Thus m I can be replaced by (m 2 + m 3 + ... + mk) , implying 

that AX can be computed with 6 multiplications. In [3] it is shown that 7 multiplica- 

tions are required. Therefore, M is unique. 

Theorem 25: Any optimal algorithm Q for 2x2 by 2x2 matrix multiplication is unique 

to within a transformation of T. 

Proof: Divide the multiplications of Q into two disjoint sets S A and SB, where the 
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multiplications in S A have left hand sides which can be mapped onto all by a transforma- 

tion in T and the multiplications in S B have left hand sides which can be mapped onto 

all + a22 by a transformation in T. In [3] it is shown that an optimal algorithm must have 

six multiplications from S A and one from S B. Since any element of S B can be mapped to 

any other element of S B by a transformation in T we can assume without loss of generality 

that Q has a multiplication of the form (all+a22)~. Lemmas i0 and 12 tell us that the 

remaining multiplications have forms 

(a12+a22)~ 2, (all+a21)~3 , a22~ 4, (all+a12)~5 , (a21+a22)~6 , all~7 ° 

Since the transformations of T preserve AX, any transformation that sends all+a22 into 

itself will send the set of remaining left hand sides into itself. Thus we can assume 

without loss of generality that 

(all+a22) 

(a12+a22) 

(all+a21) 

Pa = a22 

(all+al2) 

(a21+a22) 

all 

By the same reasoning and using duals of Lemmas i0 and 12, we can conclude that the 

right hand sides of the multiplications of Q must be a transformation of 

{Xll+X22 , x21+x22, Xll+Xl2 , x22, Xll+X21 , x12+x22, Xll}" 

Since for any two sets of possible right hand sides there exists a transformation in T 

that sends one to the other without changing the set of left hand sides corresponding to 

the former, we can assume without loss of generality that 

(Xll+X22) 

(x21+x22) 

(Xll+Xl2) 

WRx = x22 where W is a 7x7 permutation matrix 

(Xll+X21) 

(x12+x22) 

_ Xll 

We need only show that R is unique. 

Somehow we must form the product a12x21 . Hence one of the four multiplications 

(a12+a22) (x21+x22) , (a12+a22) (Xll+X21) , (all+al2) (x21+x22) , and (all+al2) (Xll+X21) must 

be present. Assume (al2+a22) (Xll+X21) is in Q. Then (all+al2) (Xll+X22) must also be in 

Q since this is the only way to cancel the product al2Xll from (a12+a22) (Xll+X21) and to 

introduce the term a12x22. However, we cannot obtain a12x21 and a12x22 in separate ex- 

pressions. Thus (a12+a22) (Xll+X21) is not in Q. Similar arguments eliminate 
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(all+al2) (x21+x22) and (all+al2) (Xll+X21) , leaving (al2+a22) (x21+x22) . 

Considering products involving a12 , a21, Xl2, x21 we find that (al2+a22) (x21+x22) , 

(all+a21) (Xll+Xl2) , a22(Xll+X21 ) , (all+a12)x22 , (a21+a22)Xll , all(X12+x22 ) are in Q. 

This leaves (all+a22) to match with (Xll+X22) . 

Since the left and right hand sides can match up only one way R is unique. Thus by 

Lemma 24 M is unique and thus, the algorithm is unique to within a transformation of T. 

GeneralExpressiOns 

Let al,...,am, Xl,...,x n, d, be in ~and let Cll,Cl2,...,Cmn be in ~. Let 

[al,...,am ]T, x = [Xl,...,Xm ]T and d = [d]. In this section we develop an effective a 

procedure which will yield an optimal algorithm for computing a single expression 

n m 

j=l i=l 

cijaix j • 

n m 

Vari [6] accomplishes the above provided that ~ ~-~ ~ cijaix i = 0 if and only if 

j =i i=l 

a. = x. = 0 for all i,j. Vari has subsequently removed this condition. Using Theorem 3, 
i 3 

we give a second proof. 

Theorem 26: There exists an effective procedure which yields an optimal algorithm for 

computing the expression 

n m 

I I cijaixj- 
j=l i=l n m 

Proof: Theorem 3 tells us that an optimal algorithm for computing ~ ~ cijaixj 

j =i i=l 

the P-dual of an optimal algorithm for computing the set of expressions 

is 

n 

S = { ~>' cijdx jli=l ..... m}. 

j=l 

The minimum number of multiplications needed to compute this set of expressions equals 

n 

the maximum number of nondependent expressions in the set { >.~ cijxjli l,...,m}. 

j=l 

Clearly, then we can find matrices M, P, R of appropriate dimensions such that M(Pd. Rx) 

computes S with the minimum number of multiplications. Then pT(MTa'Rx) computes 

m n 

I oijaixj 
i=l j=l 

with the minimum number of multiplications. 
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