
Using fast power-series arithmetic in the

Kedlaya-Denef-Vercauteren algorithm

Daniel J. Bernstein ⋆

djb@cr.yp.to

The problem. Let K be a field of characteristic 0. Fix a positive integer g.
We’re given f, h,Q ∈ K[x] where f is monic, deg f = 2g + 1, and deg h ≤ g.
How do we compute P,R ∈ K[x] with deg R < 2g and Q − R = (2f ′ + hh′)P +
(1/3)(4f + h2)P ′? One can take (P,R) = (0, Q) if deg Q < 2g, so assume that
deg Q ≥ 2g.

Tiny example: Define K = C, g = 2, f = x5 + x4 + 1, h = x, and Q =
x7 + 11x5 + x + 1. How do we compute P,R ∈ C[x] with

x7 + 11x5 + x + 1 − R = (10x4 + 8x3 + x)P + (1/3)(4x5 + 4x4 + x2 + 4)P ′

and deg R < 4?

Application. Kedlaya introduced an algorithm for computing the zeta function
of a genus-g hyperelliptic curve over a finite field of size pn when p is odd.
Kedlaya’s algorithm uses roughly g4n3 bit operations for fixed p.

Denef and Vercauteren adapted Kedlaya’s algorithm to the case p = 2. The
Kedlaya-Denef-Vercauteren algorithm uses roughly g4n3 bit operations for a
“typical” curve but roughly g5n3 bit operations for some other curves.

At a meeting in Oberwolfach I asked Kedlaya about the discrepancy between
g4n3 and g5n3. He explained the problem of computing P,R from f, h,Q and
told me that this was one of the bottlenecks in the p = 2 case.

A slow solution. Apparently Denef and Vercauteren use the equation Q−R =
(2f ′ + hh′)P + (1/3)(4f + h2)P ′ to determine the coefficients of P one at a
time. The algebraic complexity of this computation over K—the number of
additions, subtractions, multiplications, and divisions of coefficients in K—grows
quadratically with g in the typical case deg Q = 4g.

Tiny example: Consider again the problem of finding P,R ∈ C[x] with x7 +
11x5 + x + 1 − R = (10x4 + 8x3 + x)P + (1/3)(4x5 + 4x4 + x2 + 4)P ′ and
deg R < 4. Assume that P will have degree at most 3; write P as P3x

3 +P2x
2 +

P1x + P0; write R as R3x
3 + R2x

2 + R1x + R0. The problem is now to find
P3, P2, P1, P0, R3, R2, R1, R0 such that

x7 + 11x5 + x + 1 − (R3x
3 + R2x

2 + R1x + R0)

= (10x4 + 8x3 + x)(P3x
3 + P2x

2 + P1x + P0)

+ (1/3)(4x5 + 4x4 + x2 + 4)(3P3x
2 + 2P2x + P1).

⋆

Permanent ID of this document: 4e30a3e7f413533744a20c9c48e7025f. Date of this

document: 2006.10.19.



Extract the coefficients of x7, x6, x5, x4, x3, x2, x1, x0 from this equation to form
a lower-triangular system of linear equations:

























1
0
11
0
0
0
1
1

























=

























14 0 0 0 0 0 0 0
12 38/3 0 0 0 0 0 0
0 32/3 34/3 0 0 0 0 0
1 0 28/3 10 0 0 0 0
2 2/3 0 8 1 0 0 0
4 2 1/3 0 0 1 0 0
0 8/3 2 0 0 0 1 0
0 0 4/3 2 0 0 0 1

















































P3

P2

P1

P0

R3

R2

R1

R0

























.

Use substitution to solve this system one variable at a time: use the first equation
1 = 14P3 to determine P3 = 1/14, then use the second equation 0 = 12P3 +
(38/3)P2 to determine P2 = −9/133, etc.

A faster solution. The following solution produces the same output but is
much more efficient than the one-at-a-time solution when g and deg Q − 2g are
large. This solution relies on standard FFT-based subroutines for fast power-
series multiplication, division, and square root. The higher-level aspects of the
solution are also standard, so I’d be embarrassed to receive any credit for the
solution; my interests here are purely expository, advertising yet another reason
that novices should learn how to use fast multiplication. Anyway, here’s the
solution:

• Compute (4f +h2)1/2 = (2)xg+1/2 +(· · · )xg−1/2 +(· · · )xg−3/2 + · · · to high
precision in the field K((1/

√
x)).

• Multiply by 3Q, producing 3Q(4f + h2)1/2 to high precision in K((1/
√

x)).
• Integrate with respect to x, producing

∫

3Q(4f +h2)1/2 dx to high precision
in K((1/

√
x)).

• Divide by (4f + h2)3/2 = (8)x3g+3/2 + (· · · )x3g+1/2 + (· · · )x3g−1/2 + · · · ,
producing (4f +h2)−3/2

∫

3Q(4f +h2)1/2 dx to high precision in K((1/
√

x)).
• Round to a polynomial P ∈ K[x].
• Compute R = Q − (2f ′ + hh′)P − (1/3)(4f + h2)P ′ in K[x].

Why does this work? Answer: Write ǫ = P−(4f+h2)−3/2
∫

3Q(4f+h2)1/2 dx.
Multiply by (4f + h2)3/2, differentiate, and divide by 3(4f + h2)1/2 to see that
R = (2f ′+hh′)ǫ+(1/3)(4f +h2)ǫ′. By construction ǫ = (· · · )x−1+(· · · )x−2+· · ·
so R = (2(2g+1)x2g+· · · )((· · · )x−1+· · · )+(1/3)(4x2g+1+· · · )((· · · )x−2+· · · ) =
(· · · )x2g−1 + · · · ; i.e., deg R < 2g as desired.

I omitted one important detail above: What does “high precision” mean?
Answer: We compute the first deg Q − 2g + 1 coefficients of each series; this is
enough information to determine P ∈ K[x]. This means that we compute

• the coefficients of xg+1/2, xg−1/2, . . . , x3g−deg Q+1/2 in (4f + h2)1/2;
• the coefficients of xdeg Q+g+1/2, xdeg Q+g−1/2, . . . , x3g+1/2 in 3Q(4f + h2)1/2;
• the coefficients of xdeg Q+g+3/2, . . . , x3g+3/2 in

∫

3Q(4f + h2)1/2 dx; and
• the coefficients of xdeg Q−2g, . . . , x0 in (4f + h2)−3/2

∫

3Q(4f + h2)1/2 dx.



Rounding to P ∈ K[x] means simply copying the coefficients of xdeg Q−2g, . . . , x0.
This computation has algebraic complexity essentially linear in g, rather than

quadratic in g, in the typical case deg Q = 4g. More precisely, this computation
has algebraic complexity O(g lg g lg lg g), with the lg lg g disappearing for some
choices of K. The complexity here is within a constant factor of the complexity
of multiplication, division, and square root; I haven’t analyzed or optimized the
constant factor. Similar comments apply to other ranges of deg Q.

Tiny example: Consider once again the problem of finding P,R ∈ C[x] with
x7 + 11x5 + x + 1 − R = (10x4 + 8x3 + x)P + (1/3)(4x5 + 4x4 + x2 + 4)P ′ and
deg R < 4. Compute the first 4 coefficients of each of the following series:

(4x5 + 4x4 + x2 + 4)1/2

= 2x5/2 + 1x3/2 − (1/4)x1/2 + (3/8)x−1/2 + · · · ;

3(x7 + 11x5 + x + 1)(4x5 + 4x4 + x2 + 4)1/2

= 6x19/2 + 3x17/2 + (261/4)x15/2 + (273/8)x13/2 + · · · ;
∫

3(x7 + 11x5 + x + 1)(4x5 + 4x4 + x2 + 4)1/2 dx

= (12/21)x21/2 + (6/19)x19/2 + (261/34)x17/2 + (273/60)x15/2 + · · · ;

(4x5 + 4x4 + x2 + 4)−3/2

∫

3(x7 + 11x5 + x + 1)(4x5 + 4x4 + x2 + 4)1/2 dx

= (1/14)x3 − (9/133)x2 + (4677/4522)x1 − (22149/22610)x0 + · · · .

Now round to P = (1/14)x3−(9/133)x2+(4677/4522)x1−(22149/22610)x0 and
compute R = x7+11x5+x+1−(10x4+8x3+x)P −(1/3)(4x5+4x4+x2+4)P ′ =
(89871/11305)x3 − (3764/2261)x2 + (6977/3230)x − (857/2261).

Impact on the application. Consider the cost of computing the zeta function
of a genus-g hyperelliptic curve y2 + h(x)y = f(x) over a field of size 2n. “Cost”
here refers to bit operations.

The Denef-Vercauteren “Theorem 1” reports cost “O((gλ + gν)g4+ǫn3+ǫ).”
As a mathematician I feel compelled to point out that the order of quantifiers
here is horribly unclear. Do the authors mean “for each ǫ > 0 there exists n0

such that for each n ≥ n0 there exist g0, c such that for each g ≥ g0 the cost is at
most c(gλ + gν)g4+ǫn3+ǫ”? Do they mean “for each ǫ > 0 there exist c, d0 such
that for each n, g with ng ≥ d0 the cost is at most c(gλ + gν)g4+ǫn3+ǫ”? There
are many other possibilities. How is a reader supposed to apply this “theorem”
without redoing the analysis?

Anyway, the Denef-Vercauteren parameters λ and ν refer to the size and
ramification of the polynomial h in the curve y2 + h(x)y = f(x). Specifically,
gλ is (modulo further O confusion) shorthand for deg f − 2 deg h, and gν is
shorthand for the maximum exponent in the factorization of h.

For a uniform random curve, usually deg h = g, and usually h has very
few repeated factors, so gλ + gν is close to 1. On the other hand, I can imagine
users selecting curves where gλ is much larger. Consider, for example, the Lange-
Stevens hyperelliptic-curve addition formulas; one reason that these formulas are



so fast is that they force h to have small degree. Perhaps users are also interested
in curves where gν is large.

Evidently there are two different ways that the Denef-Vercauteren cost can
grow more quickly than g4+o(1)n3+o(1):

• gλ = deg f − 2 deg h can grow more quickly than go(1); e.g., deg h could be
around g − √

g, or around g/2. My impression is that the problem here is
exactly the problem I’ve addressed, and that the one-at-a-time solution is the
Denef-Vercauteren bottleneck; I speculate that the fast-arithmetic solution
eliminates this bottleneck.

• gν , the maximum exponent in the factorization of h, can grow more quickly
than go(1); for example, h(x) could be xg/2(x − 1)(x − 2) · · · (x − g/2). My
impression is that this is a completely different problem, caused by Denef
and Vercauteren working modulo, e.g., (x(x − 1) · · · (x − g/2))g/2. Without
looking more closely at the computation—which I’m certainly not planning
to do any time soon—I can’t guess whether such a large modulus is really
necessary.

Bottom line: I speculate that fast power-series arithmetic expands the set of
“g4n3 curves” to allow small h degrees. I have no idea whether the set can be
further expanded to allow large powers in h.


