Using fast power-series arithmetic in the Kedlaya-Denef-Vercauteren algorithm

Daniel J. Bernstein *
djb@cr.yp.to

The problem. Let K be a field of characteristic 0 . Fix a positive integer g. We're given $f, h, Q \in K[x]$ where f is monic, $\operatorname{deg} f=2 g+1$, and $\operatorname{deg} h \leq g$. How do we compute $P, R \in K[x]$ with $\operatorname{deg} R<2 g$ and $Q-R=\left(2 f^{\prime}+h h^{\prime}\right) P+$ $(1 / 3)\left(4 f+h^{2}\right) P^{\prime}$? One can take $(P, R)=(0, Q)$ if $\operatorname{deg} Q<2 g$, so assume that $\operatorname{deg} Q \geq 2 g$.

Tiny example: Define $K=\mathbf{C}, g=2, f=x^{5}+x^{4}+1, h=x$, and $Q=$ $x^{7}+11 x^{5}+x+1$. How do we compute $P, R \in \mathbf{C}[x]$ with

$$
x^{7}+11 x^{5}+x+1-R=\left(10 x^{4}+8 x^{3}+x\right) P+(1 / 3)\left(4 x^{5}+4 x^{4}+x^{2}+4\right) P^{\prime}
$$

and $\operatorname{deg} R<4$?
Application. Kedlaya introduced an algorithm for computing the zeta function of a genus- g hyperelliptic curve over a finite field of size p^{n} when p is odd. Kedlaya's algorithm uses roughly $g^{4} n^{3}$ bit operations for fixed p.

Denef and Vercauteren adapted Kedlaya's algorithm to the case $p=2$. The Kedlaya-Denef-Vercauteren algorithm uses roughly $g^{4} n^{3}$ bit operations for a "typical" curve but roughly $g^{5} n^{3}$ bit operations for some other curves.

At a meeting in Oberwolfach I asked Kedlaya about the discrepancy between $g^{4} n^{3}$ and $g^{5} n^{3}$. He explained the problem of computing P, R from f, h, Q and told me that this was one of the bottlenecks in the $p=2$ case.

A slow solution. Apparently Denef and Vercauteren use the equation $Q-R=$ $\left(2 f^{\prime}+h h^{\prime}\right) P+(1 / 3)\left(4 f+h^{2}\right) P^{\prime}$ to determine the coefficients of P one at a time. The algebraic complexity of this computation over K-the number of additions, subtractions, multiplications, and divisions of coefficients in K-grows quadratically with g in the typical case $\operatorname{deg} Q=4 g$.

Tiny example: Consider again the problem of finding $P, R \in \mathbf{C}[x]$ with $x^{7}+$ $11 x^{5}+x+1-R=\left(10 x^{4}+8 x^{3}+x\right) P+(1 / 3)\left(4 x^{5}+4 x^{4}+x^{2}+4\right) P^{\prime}$ and $\operatorname{deg} R<4$. Assume that P will have degree at most 3 ; write P as $P_{3} x^{3}+P_{2} x^{2}+$ $P_{1} x+P_{0}$; write R as $R_{3} x^{3}+R_{2} x^{2}+R_{1} x+R_{0}$. The problem is now to find $P_{3}, P_{2}, P_{1}, P_{0}, R_{3}, R_{2}, R_{1}, R_{0}$ such that

$$
\begin{aligned}
& x^{7}+ 11 x^{5}+x+1-\left(R_{3} x^{3}+R_{2} x^{2}+R_{1} x+R_{0}\right) \\
&=\left(10 x^{4}+8 x^{3}+x\right)\left(P_{3} x^{3}+P_{2} x^{2}+P_{1} x+P_{0}\right) \\
& \quad+(1 / 3)\left(4 x^{5}+4 x^{4}+x^{2}+4\right)\left(3 P_{3} x^{2}+2 P_{2} x+P_{1}\right) .
\end{aligned}
$$

[^0]Extract the coefficients of $x^{7}, x^{6}, x^{5}, x^{4}, x^{3}, x^{2}, x^{1}, x^{0}$ from this equation to form a lower-triangular system of linear equations:

$$
\left(\begin{array}{c}
1 \\
0 \\
11 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{cccccccc}
14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
12 & 38 / 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 32 / 3 & 34 / 3 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 28 / 3 & 10 & 0 & 0 & 0 & 0 \\
2 & 2 / 3 & 0 & 8 & 1 & 0 & 0 & 0 \\
4 & 2 & 1 / 3 & 0 & 0 & 1 & 0 & 0 \\
0 & 8 / 3 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 4 / 3 & 2 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
P_{3} \\
P_{2} \\
P_{1} \\
P_{0} \\
R_{3} \\
R_{2} \\
R_{1} \\
R_{0}
\end{array}\right) .
$$

Use substitution to solve this system one variable at a time: use the first equation $1=14 P_{3}$ to determine $P_{3}=1 / 14$, then use the second equation $0=12 P_{3}+$ $(38 / 3) P_{2}$ to determine $P_{2}=-9 / 133$, etc.

A faster solution. The following solution produces the same output but is much more efficient than the one-at-a-time solution when g and $\operatorname{deg} Q-2 g$ are large. This solution relies on standard FFT-based subroutines for fast powerseries multiplication, division, and square root. The higher-level aspects of the solution are also standard, so I'd be embarrassed to receive any credit for the solution; my interests here are purely expository, advertising yet another reason that novices should learn how to use fast multiplication. Anyway, here's the solution:

- Compute $\left(4 f+h^{2}\right)^{1 / 2}=(2) x^{g+1 / 2}+(\cdots) x^{g-1 / 2}+(\cdots) x^{g-3 / 2}+\cdots$ to high precision in the field $K((1 / \sqrt{x}))$.
- Multiply by $3 Q$, producing $3 Q\left(4 f+h^{2}\right)^{1 / 2}$ to high precision in $K((1 / \sqrt{x}))$.
- Integrate with respect to x, producing $\int 3 Q\left(4 f+h^{2}\right)^{1 / 2} d x$ to high precision in $K((1 / \sqrt{x}))$.
- Divide by $\left(4 f+h^{2}\right)^{3 / 2}=(8) x^{3 g+3 / 2}+(\cdots) x^{3 g+1 / 2}+(\cdots) x^{3 g-1 / 2}+\cdots$, producing $\left(4 f+h^{2}\right)^{-3 / 2} \int 3 Q\left(4 f+h^{2}\right)^{1 / 2} d x$ to high precision in $K((1 / \sqrt{x}))$.
- Round to a polynomial $P \in K[x]$.
- Compute $R=Q-\left(2 f^{\prime}+h h^{\prime}\right) P-(1 / 3)\left(4 f+h^{2}\right) P^{\prime}$ in $K[x]$.

Why does this work? Answer: Write $\epsilon=P-\left(4 f+h^{2}\right)^{-3 / 2} \int 3 Q\left(4 f+h^{2}\right)^{1 / 2} d x$. Multiply by $\left(4 f+h^{2}\right)^{3 / 2}$, differentiate, and divide by $3\left(4 f+h^{2}\right)^{1 / 2}$ to see that $R=\left(2 f^{\prime}+h h^{\prime}\right) \epsilon+(1 / 3)\left(4 f+h^{2}\right) \epsilon^{\prime}$. By construction $\epsilon=(\cdots) x^{-1}+(\cdots) x^{-2}+\cdots$ so $R=\left(2(2 g+1) x^{2 g}+\cdots\right)\left((\cdots) x^{-1}+\cdots\right)+(1 / 3)\left(4 x^{2 g+1}+\cdots\right)\left((\cdots) x^{-2}+\cdots\right)=$ $(\cdots) x^{2 g-1}+\cdots$; i.e., $\operatorname{deg} R<2 g$ as desired.

I omitted one important detail above: What does "high precision" mean? Answer: We compute the first $\operatorname{deg} Q-2 g+1$ coefficients of each series; this is enough information to determine $P \in K[x]$. This means that we compute

- the coefficients of $x^{g+1 / 2}, x^{g-1 / 2}, \ldots, x^{3 g-\operatorname{deg} Q+1 / 2}$ in $\left(4 f+h^{2}\right)^{1 / 2}$;
- the coefficients of $x^{\operatorname{deg} Q+g+1 / 2}, x^{\operatorname{deg} Q+g-1 / 2}, \ldots, x^{3 g+1 / 2}$ in $3 Q\left(4 f+h^{2}\right)^{1 / 2}$;
- the coefficients of $x^{\operatorname{deg} Q+g+3 / 2}, \ldots, x^{3 g+3 / 2}$ in $\int 3 Q\left(4 f+h^{2}\right)^{1 / 2} d x$; and
- the coefficients of $x^{\operatorname{deg} Q-2 g}, \ldots, x^{0}$ in $\left(4 f+h^{2}\right)^{-3 / 2} \int 3 Q\left(4 f+h^{2}\right)^{1 / 2} d x$.

Rounding to $P \in K[x]$ means simply copying the coefficients of $x^{\operatorname{deg} Q-2 g}, \ldots, x^{0}$.
This computation has algebraic complexity essentially linear in g, rather than quadratic in g, in the typical case $\operatorname{deg} Q=4 g$. More precisely, this computation has algebraic complexity $O(g \lg g \lg \lg g)$, with the $\lg \lg g$ disappearing for some choices of K. The complexity here is within a constant factor of the complexity of multiplication, division, and square root; I haven't analyzed or optimized the constant factor. Similar comments apply to other ranges of $\operatorname{deg} Q$.

Tiny example: Consider once again the problem of finding $P, R \in \mathbf{C}[x]$ with $x^{7}+11 x^{5}+x+1-R=\left(10 x^{4}+8 x^{3}+x\right) P+(1 / 3)\left(4 x^{5}+4 x^{4}+x^{2}+4\right) P^{\prime}$ and $\operatorname{deg} R<4$. Compute the first 4 coefficients of each of the following series:

$$
\begin{aligned}
&\left(4 x^{5}\right.\left.+4 x^{4}+x^{2}+4\right)^{1 / 2} \\
&=2 x^{5 / 2}+1 x^{3 / 2}-(1 / 4) x^{1 / 2}+(3 / 8) x^{-1 / 2}+\cdots ; \\
& 3\left(x^{7}\right.\left.+11 x^{5}+x+1\right)\left(4 x^{5}+4 x^{4}+x^{2}+4\right)^{1 / 2} \\
&=6 x^{19 / 2}+3 x^{17 / 2}+(261 / 4) x^{15 / 2}+(273 / 8) x^{13 / 2}+\cdots ; \\
& \int 3\left(x^{7}+11 x^{5}+x+1\right)\left(4 x^{5}+4 x^{4}+x^{2}+4\right)^{1 / 2} d x \\
&=(12 / 21) x^{21 / 2}+(6 / 19) x^{19 / 2}+(261 / 34) x^{17 / 2}+(273 / 60) x^{15 / 2}+\cdots ; \\
&\left(4 x^{5}\right.\left.+4 x^{4}+x^{2}+4\right)^{-3 / 2} \int 3\left(x^{7}+11 x^{5}+x+1\right)\left(4 x^{5}+4 x^{4}+x^{2}+4\right)^{1 / 2} d x \\
&=(1 / 14) x^{3}-(9 / 133) x^{2}+(4677 / 4522) x^{1}-(22149 / 22610) x^{0}+\cdots
\end{aligned}
$$

Now round to $P=(1 / 14) x^{3}-(9 / 133) x^{2}+(4677 / 4522) x^{1}-(22149 / 22610) x^{0}$ and compute $R=x^{7}+11 x^{5}+x+1-\left(10 x^{4}+8 x^{3}+x\right) P-(1 / 3)\left(4 x^{5}+4 x^{4}+x^{2}+4\right) P^{\prime}=$ $(89871 / 11305) x^{3}-(3764 / 2261) x^{2}+(6977 / 3230) x-(857 / 2261)$.
Impact on the application. Consider the cost of computing the zeta function of a genus- g hyperelliptic curve $y^{2}+h(x) y=f(x)$ over a field of size 2^{n}. "Cost" here refers to bit operations.

The Denef-Vercauteren "Theorem 1" reports cost " $O\left(\left(g^{\lambda}+g^{\nu}\right) g^{4+\epsilon} n^{3+\epsilon}\right)$." As a mathematician I feel compelled to point out that the order of quantifiers here is horribly unclear. Do the authors mean "for each $\epsilon>0$ there exists n_{0} such that for each $n \geq n_{0}$ there exist g_{0}, c such that for each $g \geq g_{0}$ the cost is at most $c\left(g^{\lambda}+g^{\nu}\right) g^{4+\epsilon} n^{3+\epsilon}$ "? Do they mean "for each $\epsilon>0$ there exist c, d_{0} such that for each n, g with $n g \geq d_{0}$ the cost is at most $c\left(g^{\lambda}+g^{\nu}\right) g^{4+\epsilon} n^{3+\epsilon "}$? There are many other possibilities. How is a reader supposed to apply this "theorem" without redoing the analysis?

Anyway, the Denef-Vercauteren parameters λ and ν refer to the size and ramification of the polynomial h in the curve $y^{2}+h(x) y=f(x)$. Specifically, g^{λ} is (modulo further O confusion) shorthand for $\operatorname{deg} f-2 \operatorname{deg} h$, and g^{ν} is shorthand for the maximum exponent in the factorization of h.

For a uniform random curve, usually $\operatorname{deg} h=g$, and usually h has very few repeated factors, so $g^{\lambda}+g^{\nu}$ is close to 1 . On the other hand, I can imagine users selecting curves where g^{λ} is much larger. Consider, for example, the LangeStevens hyperelliptic-curve addition formulas; one reason that these formulas are
so fast is that they force h to have small degree. Perhaps users are also interested in curves where g^{ν} is large.

Evidently there are two different ways that the Denef-Vercauteren cost can grow more quickly than $g^{4+o(1)} n^{3+o(1)}$:

- $g^{\lambda}=\operatorname{deg} f-2 \operatorname{deg} h$ can grow more quickly than $g^{o(1)}$; e.g., deg h could be around $g-\sqrt{g}$, or around $g / 2$. My impression is that the problem here is exactly the problem I've addressed, and that the one-at-a-time solution is the Denef-Vercauteren bottleneck; I speculate that the fast-arithmetic solution eliminates this bottleneck.
- g^{ν}, the maximum exponent in the factorization of h, can grow more quickly than $g^{o(1)}$; for example, $h(x)$ could be $x^{g / 2}(x-1)(x-2) \cdots(x-g / 2)$. My impression is that this is a completely different problem, caused by Denef and Vercauteren working modulo, e.g., $(x(x-1) \cdots(x-g / 2))^{g / 2}$. Without looking more closely at the computation-which I'm certainly not planning to do any time soon-I can't guess whether such a large modulus is really necessary.

Bottom line: I speculate that fast power-series arithmetic expands the set of " $g^{4} n^{3}$ curves" to allow small h degrees. I have no idea whether the set can be further expanded to allow large powers in h.

[^0]: * Permanent ID of this document: 4e30a3e7f413533744a20c9c48e7025f. Date of this document: 2006.10.19.

