
To be incorporated into author’s High-speed cryptography book.

FLOATING-POINT ARITHMETIC

AND MESSAGE AUTHENTICATION

DANIEL J. BERNSTEIN

Abstract. There is a well-known class of message authentication systems
guaranteeing that attackers will have a negligible chance of successfully forging
a message. This paper shows how one of these systems can hash messages at
extremely high speed—much more quickly than previous systems at the same

security level—using IEEE floating-point arithmetic. This paper also presents
a survey of the literature in a unified mathematical framework.

1. Introduction

Let m = (m0,m1, . . . ,m`−1) be a sequence of integers in [−231, 231 −1]. For any
integer r define hr(m) = (r`+1 + m0r

` + m1r
`−1 + · · · + m`−1r) mod (2127 − 1).

The point of this paper is an extremely fast method to compute hr(m), given
m, after some precomputation depending only on r. The method is described in
a bottom-up fashion in Sections 2 through 6. A variant appears in Section 7. My
current implementation achieves the following speeds in cache:

` 16 32 64 128 256 512
Bytes in m 64 128 256 512 1024 2048

Pentium cycles 550 825 1340 2480 4667 9275
Pentium-II cycles 566 792 1303 2406 4527 8850

Alpha-21264 cycles 600 864 1375 2561 4814 9432
≈ UltraSPARC-I cycles 570 762 1148 2111 3818 7438

≈ HP-8200 cycles 5000

Message authentication. One can authenticate a single message m as follows.
The sender and receiver share secret integers r and k. The sender computes an
authenticator s = (k+hr(m)) mod (2127−1) and sends (m, s). The receiver verifies
(m, s) by recomputing s. An attacker, given (m, s), has a negligible probability of
successfully forging a different message. See Section 8 for further discussion.

One can authenticate many messages by combining hr with a block cipher such
as Rijndael: the authenticator of a message m is Rijndaelk(hr(m)). An attacker
who can break this system can break Rijndael with similar success and similar
speed. See Section 9 for further discussion.

There are many functions that can be used in place of hr. Section 10 presents a
survey of the literature in a unified mathematical framework. What distinguishes
hr is its speed: it is the first high-security system that offers better speed than the
MD5-based systems in common use today.

Date: 2004.09.18. Permanent ID of this document: dabadd3095644704c5cbe9690ea3738e.
2000 Mathematics Subject Classification. Primary 11Y16; Secondary 65G50, 94A60.
The author was supported by the National Science Foundation under grant DMS–9600083.

1

2 DANIEL J. BERNSTEIN

Other applications. Checking a public-key signature in the system described in
[21] means checking that a2 = bc+de, given integers a, b, c, d, e. One way to do this,
much faster than computing a2−bc−de, is to select a prime number p in [2120, 2128]
and see whether ((a mod p)2 − (b mod p)(c mod p)− (d mod p)(e mod p)) mod p is
zero; if p is kept secret then there is a negligible chance of anyone else being able
to find a, b, c, d, e with a2 − bc − de nonzero but divisible by p. The algorithm
described in this paper can easily be adapted to the problem of reducing large
integers to (reasonably) small integers modulo p. Similar comments apply to other
applications in which one must check the result of a series of ring operations.

The same techniques can be applied to other problems in multidigit arithmetic,
including high-precision multiplication and modular exponentiation.

Priority dates. I published hash127 0.50, the first software achieving speeds
better than MD5, in April 1999, and described it in [19].

Black, Halevi, Krawczyk, Krovetz, and Rogaway independently observed that
similar functions could be computed at high speed. They published this observation
in [24] in August 1999.

I published hash127 0.70, which achieved the speeds stated above, in March
2000. See http://cr.yp.to/hash127.html. I also published a complete version
of this paper at that time.

I announced a better function in http://cr.yp.to/talks.html#2002.06.15,
using 128-bit coefficients modulo 2130 − 5. The larger coefficient size allows fast
computation without precomputation. This paper will be revised accordingly.

Acknowledgments. Thanks to Theodorus J. Dekker for sending me copies of [1]
and [2]; Thomas Johansson for sending me a copy of [25]; David A. Molnar for
sending me a copy of [50]; and Donald E. Knuth for his comments.

2. Fixed-precision floating-point arithmetic

A b-bit floating-point number is a real number of the form 2ef where e and
f are integers with |f | < 2b.

Theorem 2.1. Let b be a nonnegative integer, and let k be an integer. Let x be a

b-bit floating-point number. If |x| > 2k−1(2b − 1) then x ∈ 2kZ.

Proof. By hypothesis x = 2ef for some integers e, f with |f | ≤ 2b − 1. If e ≥ k
then x ∈ 2kZ. If e ≤ k − 1 then |x| ≤ 2e(2b − 1) ≤ 2k−1(2b − 1). �

Addition and multiplication. Modern computers can quickly perform several
operations upon 53-bit floating-point numbers (under minor restrictions that are
not relevant to this paper):

• Given 53-bit floating-point numbers x, y, compute fp53(x + y).
• Given 53-bit floating-point numbers x, y, compute fp53(x − y).
• Given 53-bit floating-point numbers x, y, compute fp53(xy).

Here fpb z is, for each real number z, a b-bit floating-point number close to z.
Specifically, if |z| ≤ 2e+b then |z − fpb z| is guaranteed to be at most 2e−1.

Theorem 2.2. Let b be a positive integer. Let z be a b-bit floating-point number.

Then z = fpb z.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 3

Therefore, given 53-bit floating-point numbers x and y, modern computers can
quickly compute x + y if x + y is a 53-bit floating-point number, and x− y if x− y
is a 53-bit floating-point number, and xy if xy is a 53-bit floating-point number.

Proof. Suppose fpb z 6= z. Find an integer e such that 2e−1 < |z − fpb z| ≤ 2e.
Then |z| > 2e+b by the fpb guarantee, so |fpb z| > 2e(2b − 1). Both z and fpb z are
in 2e+1Z by Theorem 2.1, so |z − fpb z| is in 2e+1Z; contradiction. �

Theorem 2.3. Let b be a positive integer, and let k be an integer. Let z be a real

number in [2k+b−1, 2k+b]. Then fpb z ∈ 2kZ and fpb z ∈ [2k+b−1, 2k+b].

Proof. Write x = fpb z. Then |z − x| ≤ 2k−1 by the fpb guarantee; so L ≤ x ≤ R
where L = 2k−1(2b − 1) and R = 2k−1(2b+1 + 1).

Observe that x > L. (If not then z ≤ L + 2k−1 = 2k+b−1, so |z − x| ≤ 2k−2 by
the fpb guarantee, so z ≤ L + 2k−2 < 2k+b−1, contradiction.) Thus x ∈ 2kZ by
Theorem 2.1. The multiples of 2k between L and R are all between 2k+b−1 and
2k+b inclusive. �

Rounding. Define topk,b x = fpb(fpb(x+3 ·2k+b−2)−3 ·2k+b−2) and bottomk,b x =

fpb(x − topk,b x). Note that 3 · 2k+b−2 is a b-bit floating-point number for b ≥ 2.

Theorem 2.4. Let b be an integer with b ≥ 2, and let k be an integer. Let x be

a b-bit floating-point number with |x| ≤ 2k+b−2. Then x = topk,b x + bottomk,b x;

topk,b x ∈ 2kZ; and |bottomk,b x| ≤ 2k−1.

Proof. Write z = x + 3 · 2k+b−2 and y = fpb z − 3 · 2k+b−2, so that topk,b x = fpb y.
I will show that topk,b x = y and bottomk,b x = x − y.

First 2k+b−1 ≤ z ≤ 2k+b. Thus |x − y| = |z − fpb z| ≤ 2k−1. Furthermore, by
Theorem 2.3, fpb z ∈ 2kZ, and 2k+b−1 ≤ fpb z ≤ 2k+b. Thus y ∈ 2kZ, and |y| ≤
2b−22k; so y is a b-bit floating-point number. By Theorem 2.2, y = fpb y = topk,b x.

If y = 0 then x − y = x so x − y is a b-bit floating-point number. Otherwise
|y| ≥ 2k so |x| ≥ 2k−1. By Theorem 2.1, x ∈ 2k−bZ. Thus x − y ∈ 2k−bZ, and
|x − y| ≤ 2b−12k−b; so x − y is a b-bit floating-point number.

Finally bottomk,b x = fpb(x− topk,b x) = fpb(x−y) = x−y by Theorem 2.2. �

Rounding down. Now define topleftk,b z = topk,b fpb(z − (2k−1 − 2k−33)) and

bottomleftk,b z = fpb(z − topleftk,b z). Note that 2k−1 − 2k−33 is a b-bit floating-
point number for b ≥ 32.

Theorem 2.5. Let b be an integer with b ≥ 34, and let k be an integer. Let z be a

real number with z ∈ 2k−32Z and |z| ≤ 2k+b−34. Then topleftk,b z = 2k
⌊

z/2k
⌋

and

bottomleftk,b z = z mod 2k.

Proof. Write x = z−(2k−1−2k−33). Then x ∈ 2k−33Z, and |x| < 2k+b−34 +2k−1 <
2b2k−33, so x is a b-bit floating-point number. Thus fpb x = x by Theorem 2.2.

Write y = topleftk,b z. Then y = topk,b fpb x = topk,b x. By Theorem 2.4,

y ∈ 2kZ and |x − y| ≤ 2k−1. Now y ≤ x + 2k−1 = z + 2k−33, and both y and z are
in 2k−32Z, so y ≤ z; and z < x + 2k−1 ≤ y + 2k. Hence y = 2k

⌊

z/2k
⌋

.

Finally, z − y is a multiple of 2k−32 between 0 and 2b−22k−32, so it is a b-bit
floating-point number. By Theorem 2.2, z − y = fpb(z − y) = bottomleftk,b z. �

4 DANIEL J. BERNSTEIN

Notes. IEEE in [4] encouraged computer manufacturers to provide hardware for
certain operations on 24-bit (“single-precision”) and 53-bit (“double-precision”)
floating-point numbers. It is now generally safe to assume that, for example, a
C compiler will interpret the addition of two double variables as the operation
x, y 7→ fp53(x + y). Exception: On x86 chips, such as the Pentium, addition of
double variables is sometimes interpreted as x, y 7→ fp64(x + y). Here’s the story:

• The Pentium handles 64-bit (“extended-precision”) addition at the same
speed as 53-bit addition. Unfortunately, it uses the same instruction for 24-
bit addition, 53-bit addition, and 64-bit addition; there is a global variable
(“precision control”) that selects the precision of subsequent additions.

• C compilers could set 24-bit precision before float additions, 53-bit pre-
cision before double additions, and 64-bit precision before long double

additions; but that would take time and effort. Many compilers, notably
gcc, leave the precision alone, under the incorrect theory that anyone asking
for 53-bit precision will be just as happy with 64-bit precision.

• Some operating systems, notably Linux, set 64-bit precision by default.

Programs that need fp53, and not fp64, must set 53-bit precision manually.
For each real number z, the number of choices of fpb z meeting the fpb guarantee

is either 1 or 2. IEEE specified a particular choice of fpb z, following the “round-
to-even” rule discussed in [44, page 221].

The idea of Theorem 2.4 is known in numerical analysis as “loss of precision
from cancellation”; see, e.g., [44, exercise 4.2.2–25]. The fact that precision loss
can be useful—that, in particular, one can extract the high bits from a floating-
point number by adding and then subtracting a larger number—was pointed out by
Kahan in [39]. The use of a constant for the larger number, for example to round
a floating-point number to an integer, appears in, e.g., [44, page 209].

Bit extraction is easy in hardware. Computers offer bit-extraction operations
that are faster than the addition and subtraction in topk,b. Unfortunately, these
bit-extraction operations work with numbers stored in one format, and floating-
point operations work with numbers stored in another format; it takes time to
convert numbers from one format to the other.

3. Carries modulo 2127 − 1

One can write an integer modulo 2127−1 in many ways as a sum t7 + t6 + · · ·+ t0
where tj is a 53-bit floating-point number with tj ∈ 216jZ. Theorem 3.2 starts from
a sum t7 + t6 + · · · + t0 with |tj | ≤ 0.98 · 253216j and constructs an equivalent sum
v7 + v6 + · · · + v0 with |vj | ≤ 1.01 · 215216j .

Define carryi(t0, . . . , t7) and carryboundi(T0, . . . , T7) for i ∈ {0, 1, 2, 3, 4, 5, 6}
as follows: carryi(t0, . . . , t7) = (u0, . . . , u7) where ui = bottom16+16i,53 ti, ui+1 =
fp53(ti+1 + top16+16i,53 ti), and uj = tj otherwise; and carryboundi(T0, . . . , T7) =

(U0, . . . , U7) where Ui = 215+16i, Ui+1 = Ti+1+Ti+215+16i, and Uj = Tj otherwise.
Also define carryi(t0, . . . , t7) and carryboundi(T0, . . . , T7) for i = 7 as follows:

carry7(t0, . . . , t7) = (u0, . . . , u7) where u0 = fp53(t0 + 2−127 top127,53 t7), u7 =
bottom127,53 t7, and uj = tj otherwise; carrybound7(T0, . . . , T7) = (U0, . . . , U7)
where U0 = T0 + 2−127T7 + 2−1, U7 = 2126, and Uj = Tj otherwise.

Finally define squeeze = carry1 carry0 carry7 carry6 . . . carry1 carry0.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 5

Theorem 3.1. Let T0, . . . , T7 be real numbers with Tj ≤ 0.99·253216j . Let t0, . . . , t7
be real numbers with tj ∈ 216jZ and |tj | ≤ Tj. Fix i ∈ {0, . . . , 7}. Define

(u0, . . . , u7) = carryi(t0, . . . , t7) and (U0, . . . , U7) = carryboundi(T0, . . . , T7). Then

u7 + · · · + u0 ≡ t7 + · · · + t0 (mod 2127 − 1); uj ∈ 216jZ; and |uj | ≤ Uj.

Proof. For i = 7: Write y = top127,53 t7. By Theorem 2.4, bottom127,53 t7 = t7 − y;

y ∈ 2127Z; and |t7 − y| ≤ 2126. Thus u7 = t7 − y ∈ 2112Z and |u7| ≤ 2126 = U7.
Furthermore, t0 + 2−127y ∈ Z, and

∣

∣t0 + 2−127y
∣

∣ ≤ T0 + 2−127T7 + 2−1 ≤ 0.99(1 + 2−15)253 + 2−1 < 253,

so u0 = fp53(t0 + 2−127y) = t0 + 2−127y by Theorem 2.2. Hence u0 ∈ Z and
|u0| ≤ T0+2−127T7+2−1 = U0. Also u7+· · ·+u0−t7−· · ·−t0 = (1−2127)2−127y ∈
(2127 − 1)Z.

For i < 7: Write y = top16+16i,53 ti. By Theorem 2.4, bottom16+16i,53 ti = ti−y;

y ∈ 216+16iZ; and |ti − y| ≤ 215+16i. Thus ui = ti − y ∈ 216iZ and |ui| ≤ 215+16i =
Ui. Furthermore, ti+1 + y ∈ 216+16iZ, and

|ti+1 + y| ≤ Ti+1 + Ti + 215+16i ≤ (0.99(1 + 2−16)253 + 2−1)216+16i < 253216+16i,

so ui+1 = fp53(ti+1 + y) = ti+1 + y by Theorem 2.2. Hence ui+1 ∈ 216+16iZ and
|ui+1| ≤ Ti+1 + Ti + 215+16i = Ui+1. Also u7 + · · · + u0 = t7 + · · · + t0. �

Theorem 3.2. Let t0, . . . , t7 be real numbers with tj ∈ 216jZ and |tj | ≤ 0.98 ·
253216j. Define (v0, . . . , v7) = squeeze(t0, . . . , t7). Then vj ∈ 216jZ; |vj | ≤ 1.01 ·
215216j; and v7 + · · · + v0 ≡ t7 + · · · + t0 (mod 2127 − 1).

Proof. Write Tj = 0.98 · 253216j . The reader may check that

carrybound1 carrybound0 carrybound7 . . . carrybound0(T0, T1, . . . , T7)

is (215, 231, (1.001 . . .)247, 263, 279, 295, 2111, 2126), and that each of the intermediate
carrybound results is at most (0.99 · 253, 0.99 · 253216, . . . , 0.99 · 2532112). Apply
Theorem 3.1 repeatedly. �

Notes. There are many variants of Theorem 3.2. One can replace squeeze with
carry6 carry5 carry4 carry3 carry2 carry1 carry0 carry7 carry6 carry5 to obtain a more
pleasant bound 1 · 215216j . Or one can replace squeeze with

carry5 carry1 carry4 carry0 carry7 carry3 carry6 carry2 carry5 carry1 carry4 carry0;

this involves more floating-point operations but allows much better parallelization
on typical computers.

Section 4 explains how to find a unique representative for each integer modulo
2127 − 1. In the computation of hr, however, I do not find unique representatives
until the end; instead I use Theorem 3.2 to find small representatives, sufficiently
small to carry out further operations. This idea was published by Robertson in [52]
as a way to speed up division circuitry, and expanded by Avizienis in [11] to other
arithmetic operations.

6 DANIEL J. BERNSTEIN

4. Complete reduction modulo 2127 − 1

Define freeze(t0, t1, t2, t3) = (x0, x1, x2, x3) where

q0 = topleft0,53 fp53(2
−127t3 + 2−1),

q1 = topleft32,53 fp53(t0 + q0),

q2 = topleft64,53 fp53(t1 + q1),

q3 = topleft96,53 fp53(t2 + q2),

q4 = topleft127,53 fp53(t3 + q3),

u0 = fp53(t0 + 2−127q4),

u1 = fp53(t1 + topleft32,53 u0),

u2 = fp53(t2 + topleft64,53 u1),

x0 = bottomleft32,53 u0,

x1 = bottomleft64,53 u1,

x2 = bottomleft96,53 u2, and

x3 = fp53(fp53(t3 − q4) + topleft96,53 u2).

Theorem 4.2 shows that if t = t3 + t2 + t1 + t0, with tj ∈ 232jZ and tj not too large,
then the base-232 representation of t mod (2127 − 1) is 2−96x3, 2

−64x2, 2
−64x1, x0.

Theorem 4.1. Let u and v be integers with |u| ≤ 2120 and |v| ≤ 2120. Define

t = 296v + u. Then
⌊

t/(2127 − 1)
⌋

=
⌊

2−127(t + 2−31v + 2−1)
⌋

.

Proof. Write p = 2127 − 1 and q = bt/pc. Then |q| ≤ 290 since |t| ≤ (296 + 1)2120 ≤
290p; so

∣

∣2−127q + 2−127u
∣

∣ ≤ 2−37 + 2−7; so 0 < 2−1 − 2−127q − 2−127u < 1.

Now write r = t− pq and x = r + 2−127r + 2−1 − 2−127q − 2−127u. Observe that
2−127(t+2−31v+2−1) = q+2−127x. But 0 ≤ r ≤ p−1 < 2127, so 0 ≤ r+2−127r < p,
so 0 < x < p + 1 = 2127, so

⌊

q + 2−127x
⌋

= q. �

Theorem 4.2. Let t0, t1, t2, t3 be real numbers with tj ∈ 232jZ and |tj | ≤ 249232j.

Define (x0, x1, x2, x3) = freeze(t0, t1, t2, t3). Then xj ∈ 232jZ; 0 ≤ xj < 232232j;

and (t3 + t2 + t1 + t0) mod (2127 − 1) = x3 + x2 + x1 + x0.

Proof. Write p = 2127 − 1, t = t3 + t2 + t1 + t0, and ε = 2−127t3 + 2−1. Then
bt/pc =

⌊

2−127(t + ε)
⌋

by Theorem 4.1.

Write q0 = topleft0,53 fp53 ε. Note that ε ∈ 2−32Z and |ε| ≤ 219; so q0 =
topleft0,53 ε by Theorem 2.2. Thus q0 = bεc by Theorem 2.5.

Similarly write q1 = topleft32,53 fp53(t0 + q0), q2 = topleft64,53 fp53(t1 + q1),
q3 = topleft96,53 fp53(t2 + q2), and q4 = topleft127,53 fp53(t3 + q3). Then q1 =

232
⌊

2−32(t0 + ε)
⌋

; q2 = 264
⌊

2−64(t1 + t0 + ε)
⌋

; q3 = 296
⌊

2−96(t2 + t1 + t0 + ε)
⌋

;

and q4 = 2127
⌊

2−127(t3 + t2 + t1 + t0 + ε)
⌋

= 2127 bt/pc.

Hence t mod p = t − q4 + 2−127q4. Also
∣

∣2−127q4

∣

∣ ≤ 219 since |t| ≤ 219p.

Write w = fp53(t3 − q4) and u0 = fp53(t0 + 2−127q4). Note that t3 − q4 ∈ 296Z

and |t3 − q4| ≤ 251296. Thus w = t3 − q4 by Theorem 2.2. Similarly, note that
t0 +2−127q4 ∈ Z and

∣

∣t0 + 2−127q4

∣

∣ ≤ 250. Thus u0 = t0 +2−127q4 by Theorem 2.2.
Hence t mod p = w + t2 + t1 + u0.

Now write y0 = topleft32,53 u0, u1 = fp53(t1 + y0), y1 = topleft64,53 u1, u2 =

fp53(t2 + y1), and y2 = topleft96,53 u2. Then x0 = bottomleft32,53 u0 = u0 mod 232

and y0 = 232
⌊

2−32u0

⌋

by Theorem 2.5. Apply Theorem 2.2 to see that u1 =

t1 + y0 ∈ 232Z. Hence t mod p = w + t2 + u1 + x0.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 7

Similarly x1 = bottomleft64,53 u1 = u1 mod 264; y1 = 264
⌊

2−64u1

⌋

; u2 = t2 +

y1 ∈ 264Z; t mod p = w + u2 +x1 +x0; x2 = bottomleft96,53 u2 = u2 mod 296; y2 =
296

⌊

2−96u2

⌋

; x3 = fp53(w+y2) = w+y2 ∈ 296Z; and t mod p = x3+x2+x1+x0. �

Notes. Theorem 4.1 is a special case of the well-known fact that approximate 2b-
bit division suffices for correctly rounded b-bit division. This is often used in the
design of hardware for the operation x, y 7→ fpb(x/y) required by [4].

5. Multiplication modulo 2127 − 1

This section explains how to find a representative for the product of two integers
modulo 2127 − 1.

Define prod(r0, r1, r2, r3, u0, u1, . . . , u7) = (t0, t1, . . . , t7) where

t0 t1
t2 t3
t4 t5
t6 t7

=

r0 2−127r3 2−127r2 2−127r1

r1 r0 2−127r3 2−127r2

r2 r1 r0 2−127r3

r3 r2 r1 r0

u0 u1

u2 u3

u4 u5

u6 u7

.

Define power1(r0, r1, r2, r3) = (c1,0, . . . , c1,7) where c1,2j = bottom16+32j,53 rj and
c1,2j+1 = top16+32j,53 rj . For i ≥ 1 define recursively poweri+1(r0, r1, r2, r3) =
squeeze(prod(r0, r1, r2, r3,poweri(r0, r1, r2, r3))).

Theorem 5.1. Let r0, r1, r2, r3 and u0, u1, u2, u3, u4, u5, u6, u7 be real numbers with

ri ∈ 232iZ, |ri| ≤ 1.1 · 232232i, uj ∈ 216jZ, and |uj | ≤ 1.01 · 215216j . Define

(t0, t1, . . . , t7) = prod(r0, r1, r2, r3, u0, u1, . . . , u7). Then tj ∈ 216jZ; |tj | ≤ 250216j;

and t7 + · · · + t0 ≡ (r3 + r2 + r1 + r0)(u7 + · · · + u0) (mod 2127 − 1).

Proof. Observe that

t0 2−16t1
2−32t2 2−48t3
2−64t4 2−80t5
2−96t6 2−112t7

=

r0 2−95r3 2−63r2 2−31r1

2−32r1 r0 2−95r3 2−63r2

2−64r2 2−32r1 r0 2−95r3

2−96r3 2−64r2 2−32r1 r0

u0 2−16u1

2−32u2 2−48u3

2−64u4 2−80u5

2−96u6 2−112u7

.

A column in the u matrix consists of four integers bounded in absolute value by
1.01 · 215. A row in the r matrix consists of four integers bounded in absolute value
by 1.1 · 232, 2.2 · 232, 2.2 · 232, 2.2 · 232. Thus each entry in the t matrix is an integer
bounded in absolute value by 1.01(1.1 + 2.2 + 2.2 + 2.2)232215 < 250.

The difference between (
∑

ri)(
∑

uj) and
∑

tj is 2128 − 2 times the integer
2−96r32

−32(u2+u3)+2−64(r2+r3)2
−64(u4+u5)+2−32(r1+r2+r3)2

−96(u6+u7). �

Theorem 5.2. Let r0, r1, r2, r3 and u0, u1, u2, u3, u4, u5, u6, u7 be real numbers with

ri ∈ 232iZ, |ri| ≤ 1.1 · 232232i, uj ∈ 216jZ, and |uj | ≤ 1.01 · 215216j . Define

(t0, t1, . . . , t7) = prod(r0, r1, r2, r3, u0, u1, . . . , u7). Then

t0 = fp(fp(fp(fp(r0u0) + fp(2−127r3u2)) + fp(2−127r2u4)) + fp(2−127r1u6)),

t1 = fp(fp(fp(fp(r0u1) + fp(2−127r3u3)) + fp(2−127r2u5)) + fp(2−127r1u7)),

t2 = fp(fp(fp(fp(r1u0) + fp(r0u2)) + fp(2−127r3u4)) + fp(2−127r2u6)),

t3 = fp(fp(fp(fp(r1u1) + fp(r0u3)) + fp(2−127r3u5)) + fp(2−127r2u7)),

t4 = fp(fp(fp(fp(r2u0) + fp(r1u2)) + fp(r0u4)) + fp(2−127r3u6)),

t5 = fp(fp(fp(fp(r2u1) + fp(r1u3)) + fp(r0u5)) + fp(2−127r3u7)),

t6 = fp(fp(fp(fp(r3u0) + fp(r2u2)) + fp(r1u4)) + fp(r0u6)), and

t7 = fp(fp(fp(fp(r3u1) + fp(r2u3)) + fp(r1u5)) + fp(r0u7))

8 DANIEL J. BERNSTEIN

where fp = fp53.

Thus, in the situation of Theorem 5.1, prod can be computed with a series of
floating-point operations. Note that the order of summation here is not relevant:
for example, t7 = fp(fp(fp(fp(r0u7) + fp(r1u5)) + fp(r2u3)) + fp(r3u1)).

Proof. Apply Theorem 2.2 repeatedly. All the products such as r0u0 and partial
sums such as r0u0 + 2−127r3u2 are 53-bit floating-point numbers; the reader may
check this directly, or apply Theorem 5.1 after strategically replacing various u’s
with 0. �

Theorem 5.3. Let r0, r1, r2, r3 be real numbers with rj ∈ 232jZ and |rj | ≤ 231232j.

Define (ci,0, ci,1, . . . , ci,7) = poweri(r0, r1, r2, r3). Then ci,j ∈ 216jZ; |ci,j | ≤ 1.01 ·
215216j; and (r3 + r2 + r1 + r0)

i ≡ ci,7 + · · · + ci,0 (mod 2127 − 1).

Proof. By Theorem 2.4, rj = c1,2j + c1,2j+1; c1,2j+1 ∈ 216+32jZ; and |c1,2j | ≤
215+32jZ. Thus c1,2j = rj − c1,2j+1 ∈ 232jZ; and |c1,2j+1| ≤ 215216+32j since
|rj | ≤ 231232j . Also r3 + r2 + r1 + r0 = c1,7 + · · · + c1,0.

For i ≥ 1, assume inductively that ci,j ∈ 216jZ; |ci,j | ≤ 1.01 · 215216j ; and
(r3 + r2 + r1 + r0)

i ≡ ci,7 + · · · + ci,0 (mod 2127 − 1).
Write (d0, . . . , d7) = prod(r0, r1, r2, r3, ci,0, . . . , ci,7). By Theorem 5.1, dj ∈

216jZ; |dj | ≤ 250216j ; and d7 + · · · + d0 ≡ (r3 + r2 + r1 + r0)(ci,7 + · · · + ci,0).
Now (ci+1,0, . . . , ci+1,7) = squeeze(d0, . . . , d7). By Theorem 3.2, ci+1,j ∈ 216jZ;

ci+1,7 + · · · + ci+1,0 ≡ d7 + · · · + d0 ≡ (r3 + r2 + r1 + r0)
i+1; and |ci+1,j | ≤ 1.01 ·

215216j . �

Notes. In the language of [20], Theorem 5.1 maps the ring Z/(2127 − 1) to the
isomorphic ring Z[x]/(x − 216, 2127 − 1), then lifts to Z[x]/(x8 − 2), then carries
out arithmetic in Z[x]/(x8 − 2). Observe that

∑

j 2−16jtjx
j in Theorem 5.1 is the

product of
∑

j 2−16jujx
j and

∑

i 2−32irix
2i in Z[x]/(x8 − 2). Meanwhile, Theorem

3.2 reduces elements of Z[x]/(x8 − 2) modulo x − 216 and 215x7 − 1.
The fact that one can build fast high-precision arithmetic from floating-point

arithmetic, using floating-point additions and subtractions to split each floating-
point number into two small pieces so that subsequent floating-point multiplications
are exact, was pointed out by Gerhard W. Veltkamp in 1968—see [1], [2], and [44,
exercise 4.2.2–21]—and independently by Dekker in [32]. The main improvement
in this paper is that each floating-point number is in a range specified in advance;
this eliminates all floating-point comparisons, many additions and subtractions,
and some multiplications.

6. Computation of hr

Let m0,m1, . . . ,m`−1 be integers with |mj | ≤ 231. Let r0, r1, r2, r3, k0, k1, k2, k3

be real numbers with rj ∈ 232jZ, |rj | ≤ 231232j , kj ∈ 232jZ, and |kj | ≤ 248232j .
Write r = r3 + r2 + r1 + r0, k = k3 + k2 + k1 + k0, and p = 2127 − 1. This section

explains how to compute (r`+1 + m0r
` + m1r

`−1 + · · · + m`−1r + k) mod p using
floating-point operations.

Precompute (ci,0, . . . , ci,7) = poweri(r0, r1, r2, r3) for 1 ≤ i ≤ 97. Then ci,j ∈
216jZ, |ci,j | ≤ 1.01 · 215216j , and ri ≡ ci,7 + · · · + ci,0 (mod p) by Theorem 5.3.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 9

Short inputs. For ` ≤ 96: Define uj = c`+1,j + m0c`,j + · · · + m`−1c1,j . Then
uj ∈ 216jZ; |uj | ≤ 0.98 · 253216j ; and r`+1 + m0r

` + · · · + m`−1r ≡ u7 + · · · + u0.
Note that uj = fp53(. . . fp53(c`+1,j + fp53(m0c`,j)) + · · · + fp53(m`−1c1,j)).

Define (v0, . . . , v7) = squeeze(u0, . . . , u7). By Theorem 3.2, |vj | ≤ 1.01 · 215216j ;
vj ∈ 216jZ; and r`+1 + m0r

` + · · · + m`−1r ≡ v7 + · · · + v0.
Next define wj = v2j + v2j+1. Then wj ∈ 232jZ; |wj | ≤ 1.02 · 231232j ; and

r`+1 + m0r
` + · · ·+ m`−1r ≡ w3 + w2 + w1 + w0. Note that wj = fp53(v2j + v2j+1).

Next define tj = kj +wj . Then r`+1 +m0r
` + · · ·+m`−1r +k ≡ t3 + t2 + t1 + t0;

tj ∈ 232jZ; and |tj | ≤ 249232j . Note that tj = fp53(kj + wj).
Finally define (x0, x1, x2, x3) = freeze(t0, t1, t2, t3). The result is the base-232

representation of (r`+1 + m0r
` + · · · + m`−1r + k) mod p by Theorem 4.2.

Long inputs. For ` ≥ 97: Apply the same method recursively to m0, . . . ,m`−98

to construct real numbers w′
0, w

′
1, w

′
2, w

′
3 such that w′

j ∈ 232jZ; |w′
j | ≤ 1.02 ·231232j ;

and r`−96 + m0r
`−97 + · · · + m`−98r ≡ w′

3 + w′
2 + w′

1 + w′
0.

Define a0 = w′
0 + m`−97, a1 = w′

1, a2 = w′
2, and a3 = w′

3. Then aj ∈ 232jZ;
|aj | ≤ 1.01 ·232232j ; and r`−96 +m0r

`−97 + · · ·+m`−98r+m`−97 ≡ a3 +a2 +a1 +a0.
Note that a0 = fp53(w

′
0 + m`−97).

Define (b0, . . . , b7) = prod(a0, a1, a2, a3, c97,0, . . . , c97,7). By Theorem 5.1, bj ∈
216jZ; |bj | ≤ 250216j ; and r`+1 + m0r

` + · · ·+ m`−98r
98 + m`−97r

97 ≡ b7 + · · ·+ b0.
Define uj = bj + m`−96c96,j + · · · + m`−1c1,j . Then uj ∈ 216jZ; |uj | ≤ 250216j +

96 · 1.01 · 231215216j ≤ 0.98 · 253216j ; and r`+1 +m0r
` + · · ·+m`−1r ≡ u7 + · · ·+u0.

Note that uj = fp53(. . . fp53(bj + fp53(m`−96c96,j)) + · · · + fp53(m`−1c1,j)).
Now construct (v0, . . . , v7) = squeeze(u0, . . . , u7), wj = v2j +v2j+1, tj = kj +wj ,

and (x0, x1, x2, x3) = freeze(t0, t1, t2, t3) as above.

Efficiency. The time spent on this computation has four major pieces:

• Time to multiply input vectors by the precomputed ci,j matrix. This is the
heart of the computation.

• Time to multiply by r97 after every 97 input components. One can save
time here, at the expense of a larger matrix, by instead multiplying by
(e.g.) r970 after every 970 input components.

• Time to squeeze the intermediate results after every 97 input components.
One can save some time here by more carefully analyzing the actual size
of

∑

i m`−ici,j . For example,
∑

1≤i≤150
|ci,j | is below 100 · 215216j for most

choices of r0, r1, r2, r3.
• Time to squeeze and freeze the final result. This is negligible for long inputs.

In practice, for long inputs, the matrix-vector products account for most of the
total time.

Beware that there are several easy ways to drastically slow down floating-point
operations. The most obvious is failure to keep necessary data in registers. Less
obvious is failure to parallelize independent operations. Implementors must not
assume that the “optimizers” in typical compilers will avoid these hazards. For
example, straightforward C code to compute hr (with the improvement described
in the next section), compiled for a Pentium by a widespread C compiler, is five

times slower than the speed reported in Section 1.

10 DANIEL J. BERNSTEIN

7. The 64-bit variant

This section outlines a 64-bit variant of the algorithm described in Section 6. In
this variant, one represents an integer modulo 2127−1 as a sum t4 + t3 + t2 + t1 + t0
where tj is a 64-bit floating-point number with tj ∈ 226jZ. This variant is useful
on computers such as the Pentium and Pentium II, where five 64-bit floating-point
operations are faster than eight 53-bit floating-point operations.

The analogue of Theorem 3.2 starts from a sum t4 + t3 + t2 + t1 + t0 with
|tj | ≤ 0.98 · 264226j . It uses six carries to produce a sum v4 + v3 + v2 + v1 + v0 with
|vj | ≤ 1.01 · 225226j .

The analogue of Theorem 5.1 starts from one sum r4 + r3 + r2 + r1 + r0 with
|ri| ≤ 1.1 · 232226i and another sum u4 +u3 +u2 +u1 +u0 with |uj | ≤ 1.01 · 225226j .
It produces a sum t4 + t3 + t2 + t1 + t0 with |tj | ≤ 29 · 256226j .

The result of the precomputation is a matrix of real numbers ci,j with |ci,j | ≤
1.01 · 225226j and ri ≡ ci,4 + · · · + ci,0 (mod 2127 − 1). In the main computation,
29 ·256226j +96 ·1.01 ·231225226j fits comfortably below 264226j . (In fact, it is below
263226j , so 63-bit floating-point arithmetic suffices.) The final reduction converts
from radix 226 to radix 232 and then applies Theorem 4.2 with 53 changed to 64.

Notes. On many computers one can conveniently simulate 63-bit floating-point
arithmetic using “64-bit integer arithmetic” or “32-bit integer arithmetic.” Some
tinkertoy computers do not have any built-in hardware for fast multiplication; on
these computers it helps to create small multiplication tables. Implementors should
be careful to avoid variable-time multiplication hardware and software (including,
as an extreme, out-of-cache table lookups indexed by secret data) in cryptographic
applications where timing information may be available to an attacker.

8. Guaranteeing the integrity of one message

In this section, p is the prime number 2127 − 1; I is the set of integers in the
interval [−2127 − 295 − 263 − 231, 2127 − 295 − 263 − 231 − 1]; L is a fixed nonnegative
integer; and a message is a sequence of length between 0 and L inclusive, consisting
of integers in [−231, 231 − 1].

Here is a protocol for authenticated transmission of a single message m through
an untrusted channel. The sender and the receiver share a secret uniform random
pair (r, k) in I × I. The sender computes an authenticator s = (k + hr(m)) mod p
and sends (m, s). At this point an attacker can feed arbitrary pairs (m′, s′) to the
receiver. The receiver accepts (m′, s′) if s′ = (k + hr(m

′)) mod p.

Generating r and k. Let ρ0, ρ1, ρ2, ρ3 be independent uniform random integers in
[−231, 231 − 1]. Write r = r3 + r2 + r1 + r0 where rj = 232jρj . Then r is a uniform
random element of I. Note that r0, r1, r2, r3 meet the hypotheses of Section 6.
Similar comments apply to k.

Encoding byte strings. There are several standard ways to encode a sequence of
4` integers b0, b1, . . . , b4`−1 in [0, 255] as a sequence of ` integers m0,m1, . . . ,m`−1

in [−231, 231 − 1]. For example, little-endian twos-complement defines

mj = ((b4j + 28b4j+1 + 216b4j+2 + 224b4j+3 + 231) mod 232) − 231.

One can encode an arbitrary-length sequence of integers in [0, 255] as a sequence of
length 4` for some ` by appending either 1 or 1, 0 or 1, 0, 0 or 1, 0, 0, 0.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 11

Security. The rest of this section analyzes the attacker’s chance of deceiving the
receiver. Theorem 8.2 shows that any possible forgery (m′, s′) with m′ 6= m has
negligible chance of being accepted by the receiver.

Theorem 8.1. Let m and m′ be distinct messages. Let δ be an integer. Then at

most 2L + 4 integers r in I satisfy hr(m) ≡ hr(m
′) + δ (mod p).

Proof. Say m = (m0,m1, . . . ,m`−1) and m′ = (m′
0,m

′
1, . . . ,m

′
`′−1).

Define polynomials g, g′ ∈ Z[t] by g = t`+1 + m0t
` + m1t

`−1 + · · · + m`−1t and

g′ = t`
′
+1 + m′

0t
`′

+ m′
1t

`′
−1 + · · · + m′

`′−1t + δ. Note that the polynomial g − g′ is
not divisible by p. Otherwise ` = `′, and each mi −m′

i is divisible by p, so mi = m′
i

since |mi − m′
i| < 232 < p, so m = m′, contradiction.

If hr(m)−hr(m
′)−δ is divisible by p then g(r)−g′(r) is divisible by p. Now p is

prime, and g−g′ has degree at most L+1, so g−g′ has at most L+1 roots modulo
p. Hence there are at most L + 1 choices for r in {V, . . . , V + p − 1}, and L + 1
choices for r in {V + p, . . . , V + 2p − 1}, and 2 choices for r in {V + 2p, V + 2p + 1},
where V = −2127 − 295 − 263 − 231; in short, at most 2L + 4 choices for r in
{V, . . . , V + 2p + 1} = I. �

Theorem 8.2. Let m and m′ be distinct messages. Let s and s′ be integers in

[0, p − 1]. Let r and k be independent uniform random elements of I. Then

Pr[s = (k + hr(m)) mod p and s′ = (k + hr(m
′)) mod p] ≤ 3(L + 2)/2255

and Pr[s = (k + hr(m)) mod p] ≥ 1/2127.

Thus the conditional probability that s′ = (k + hr(m
′)) mod p, given that s =

(k + hr(m)) mod p, is at most 3(L + 2)/2128. It doesn’t matter how much time the
attacker spends staring at (m, s); any choice of (m′, s′) with m′ 6= m has chance
at most 3(L + 2)/2128 of being accepted by the receiver. (See Theorem 9.1 for a
slightly better bound that takes account of the distribution of s.)

Proof. For each of the 2128 choices of r, there are at least two choices of k satisfying
s = (k + hr(m)) mod p. Thus Pr[s = (k + hr(m)) mod p] ≥ 2129/2256.

If s ≡ k +hr(m) (mod p) and s′ ≡ k +hr(m
′) then hr(m) ≡ hr(m

′)+ s− s′. By
Theorem 8.1, this happens for at most 2L + 4 choices of r; and, for each of those
choices of r, there are at most three choices of k satisfying s ≡ k + hr(m). Thus
Pr[s ≡ k + hr(m) and s′ ≡ k + hr(m

′)] ≤ 3(2L + 4)/2256. �

Notes. When L is around (say) 230, the forgery probability in Theorem 8.2 is
around 1/296. Carter and Wegman in [28, page 149] observed that one can compress
the authenticator from 127 bits down to 96 bits with only a small increase in the
forgery probability. For example, one can use π((k + hr(m)u) mod (2127 − 1))
as an authenticator, where u is another uniform random element of I, and π is
some public function from 127-bit strings to 96-bit strings. This may be useful in
applications where every bit of storage is sacred. Beware that the simpler formula
π((k + hr(m)) mod (2127 − 1)) is not safe; it increases the forgery probability by
another factor of 231, at least for some choices of π.

Some writers claim that forgery probabilities around 1/232 are adequate for most
applications. The attacker’s cost of 232 forgery attempts, they say, is much larger
than the attacker’s benefit from forging a single message. Unfortunately, even if
all attackers acted on the basis of rational economic analyses, this argument would
be wrong, because it wildly underestimates the attacker’s benefit. In a typical

12 DANIEL J. BERNSTEIN

authentication system, as soon as the attacker is lucky enough to succeed at a few
forgeries, he can immediately figure out enough secret information to let him forge
messages of his choice. (This does not contradict the information-theoretic security
expressed by Theorem 8.2; the attacker is gaining information from the receiver,
not from the sender.) It is crucial for the forgery probability to be so small that
attackers have no hope.

9. Guaranteeing the integrity of many messages

This section explains several protocols for authenticated transmission of at most
N messages through an untrusted channel. Here N can be arbitrarily large. Each
protocol uses the same hash function hr; the protocols differ in how they hide hr(m)
from the attacker.

Notation and terminology. As in Section 8, p is the prime number 2127−1; I is
the set of integers in the interval [−2127 −295 −263 −231, 2127 −295 −263 −231 −1];
L is a fixed nonnegative integer; and a message is a sequence of length between
0 and L inclusive, consisting of integers in [−231, 231 − 1]. Also C,D,N are fixed
positive integers with C ≤ N .

A chosen-message attack is a (probabilistic) algorithm that makes C message
queries to an oracle, and that then prints D triples (n′,m′, s′), where each m′ is
a message different from any of the oracle queries. For any function g, the attack
succeeds for g if, given an oracle that responds to the nth query m with g(n,m),
the attack prints at least one (n′,m′, s′) such that s′ = g(n′,m′).

The reader is assumed to be comfortable with the concept of a random function,
i.e., a random variable whose values are functions. For the definition of “random”
see, e.g., [18, Appendix]. Note that random variables are not necessarily uniformly
distributed.

Protocol 1: one-time pad. In this protocol, the sender and receiver share two
independent secrets: a uniform random integer r in I, and a uniform random
function f from {1, 2, . . . , N} to I. Given the nth message m, the sender computes
an authenticator s = (f(n) + hr(m)) mod p, and sends (n,m, s). The receiver
accepts (n′,m′, s′) if s′ = (f(n′) + hr(m

′)) mod p.

Theorem 9.1. Let A be a chosen-message attack. Let f be a uniform random

function from {1, 2, . . . , N} to I. Let r be a uniform random element of I. If r
and f are independent then A succeeds for (n,m) 7→ (f(n) + hr(m)) mod p with

probability at most (C + D(L + 2))/2127.

Proof. Let m1, . . . ,mC be messages, and let s1, . . . , sC be integers in [0, p− 1]. Let
X be the event that A’s oracle queries are m1, . . . ,mC in that order; the oracle’s
responses are s1, . . . , sC respectively; and f(1), . . . , f(C) ∈ [V, V + 2p − 1] where
V = −2127 − 295 − 263 − 231.

Observe that the conditional distribution of r, given X, is uniform. Indeed, for
each possible r, there are exactly two choices of f(n) in [V, V + 2p − 1] satisfying
sn = (f(n) + hr(mn)) mod p.

For any (n′,m′, s′) with m′ /∈ {m1,m2, . . . ,mC}, the conditional probability
that s′ = (f(n′) + hr(m

′)) mod p, given X, is at most (L + 2)/2127. Indeed, if n′ ∈
{1, 2, . . . , C} then hr(mn′)−sn′ ≡ hr(m

′)−s′ (mod p) with conditional probability
at most (L + 2)/2127 by Theorem 8.1, since the conditional distribution of r is

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 13

uniform. If n′ /∈ {1, 2, . . . , C} then s′ = (f(n′) + hr(m
′)) mod p with conditional

probability at most 3/2128 < (L + 2)/2127, since the conditional distribution of
f(n′) is uniform.

Thus A succeeds with conditional probability at most D(L + 2)/2127 given X.
Now sum over all m1, . . . ,mC , s1, . . . , sC : A succeeds with conditional probability
at most D(L + 2)/2127 given that all of f(1), f(2), . . . , f(C) are in [V, V + 2p − 1].
Finally, there is probability at most 2C/2128 that at least one of f(1), f(2), . . . , f(C)
is in {V + 2p, V + 2p + 1}. �

Protocol 2: scrambling. In this protocol, the sender and receiver share two
independent secrets: a uniform random integer r in I, and a uniform random
function f from {0, 1, . . . , p − 1} to

{

0, 1, . . . , 2128 − 1
}

. Given a message m, the
sender computes an authenticator s = f(hr(m)), and sends (m, s). The receiver
accepts (m′, s′) if s′ = f(hr(m

′)).

Theorem 9.2. Let A be a chosen-message attack. Let f be a uniform random

function from {0, 1, . . . , p − 1} to
{

0, 1, . . . , 2128 − 1
}

. Let r be a uniform random

element of I. If r and f are independent then A succeeds for (n,m) 7→ f(hr(m))

with probability at most (
(

C
2

)

+ CD)(L + 2)/2127 + D/2128.

Proof. Let Q = (m1,m2, . . . ,mn,m′
1,m

′
2, . . . ,m

′
D) be a sequence of messages with

n ≤ C, with m1,m2, . . . ,mn all different from each other, and with m1,m2, . . . ,mn

different from m′
1,m

′
2, . . . ,m

′
D. Let R = (s1, s2, . . . , sn, s′1, s

′
2, . . . , s

′
D) be a sequence

of integers in [0, 2128 − 1].
Let XQ,R be the event that si = f(hr(mi)) for all i and s′j 6= f(hr(m

′
j)) for all j.

By Theorem 8.1, the chance that hr(m1), . . . , hr(mn) are different from each other
and different from hr(m

′
1), . . . , hr(m

′
D) is at least 1−(

(

n
2

)

+nD)(L+2)/2127 ≥ 1−ε

where ε = (
(

C
2

)

+ CD)(L + 2)/2127. In that case f(hr(m1)), . . . , f(hr(mn)) are
independent of each other and independent of f(hr(m

′
1)), . . . , f(hr(m

′
D)). Hence

Pr[XQ,R] ≥ (1 − ε)(1 − D/2128)/2128n.
Let YQ,R be the event that

• A’s distinct oracle queries are m1,m2, . . . ,mn in that order: the first oracle
query is m1, the first oracle query different from m1 is m2, etc., and there
are no oracle queries other than m1,m2, . . . ,mn;

• the oracle responses to m1,m2, . . . ,mn are s1, s2, . . . , sn respectively;
• the messages printed by A are m′

1,m
′
2, . . . ,m

′
D in that order, with forged

authenticators s′1, s
′
2, . . . , s

′
D respectively; and

• A does not succeed: s′1 6= f(hr(m
′
1)), s′2 6= f(hr(m

′
2)), etc.

Observe that the conditional probability of YQ,R given XQ,R is some quantity αQ,R

predetermined by A: it is the chance that A decides to use query m1, to use
query m2 after query m1 and response s1, to use query m3 after queries m1,m2

and responses s1, s2, etc., and finally to stop after m1, s1, . . . ,mn, sn and print
m′

1, s
′
1, Hence Pr[YQ,R] ≥ (1 − ε)(1 − D/2128)αQ,R/2128n.

If A were used with a uniform random oracle then the query-response-print
sequence would be m1, s1,m2, s2, . . . ,mn, sn,m′

1, s
′
1, . . . with probability exactly

αQ,R/2128n. Thus
∑

n,Q,R αQ,R/2128n = 1. Hence the chance that A does not

succeed is
∑

Pr[YQ,R] ≥ (1−ε)(1−D/2128)
∑

αQ,R/2128n = (1−ε)(1−D/2128). �

Protocol 3: one-time scrambling. In this protocol, the sender and receiver
share two independent secrets: a uniform random integer r in I, and a uniform

14 DANIEL J. BERNSTEIN

random function f from {1, 2, . . . , N} × {0, . . . , p − 1} to
{

0, . . . , 2128 − 1
}

. Given
the nth message m, the sender computes an authenticator s = f(n, hr(m)), and
sends (n,m, s). The receiver accepts (n′,m′, s′) if s′ = f(n′, hr(m

′)).

Theorem 9.3. Let A be a chosen-message attack. Let f be a uniform random

function from {1, 2, . . . , N} × {0, 1, . . . , p − 1} to
{

0, 1, . . . , 2128 − 1
}

. Let r be a

uniform random element of I. If r and f are independent then A succeeds for

(n,m) 7→ f(n, hr(m)) with probability at most D(2L + 5)/2128.

Proof. Say the oracle queries are m1,m2, . . . ,mC . For each possible r, the pairs
(1, hr(m1)), (2, hr(m2)), . . . , (C, hr(mC)) are all different, so the oracle responses
f(1, hr(m1)), f(2, hr(m2)), . . . , f(C, hr(mC)) are independent and uniform. Thus
the conditional distribution of r, given the oracle responses, is uniform.

Now consider any (n′,m′, s′) with m′ /∈ {m1, . . . ,mC}. If n′ ∈ {1, 2, . . . , C}
then, by Theorem 8.1, hr(m

′) = hr(mn′) with conditional probability at most
(2L + 4)/2128. If that does not happen then f(n′, hr(m

′)) is independent of the
oracle responses, and thus has chance 1/2128 of equalling s′. The overall chance of
success for (n′,m′, s′) is at most (2L + 4)/2128 + 1/2128. �

Random numbers instead of counters. In Theorem 9.1 it is crucial that the
sender never reuse a message number. In some applications it is more convenient to
use a uniform random element of {1, 2, . . . , N} than to use a counter; then N must
be chosen large enough that the chance of message-number repetition is negligible.

Similar comments apply to Theorem 9.3. On the other hand, f(n, hr(m)) is much
more tolerant of message-number repetition than (f(n) + hr(m)) mod p. Even if
the same number n is used again and again, the security of f(n, hr(m)) is no worse
than the security of f(hr(m)) shown in Theorem 9.2.

Unpredictable random functions. The construction (f(n)+hr(m)) mod p uses
a shared secret containing 128 + 128N bits of entropy; the construction f(hr(m))
uses 128+128p = 2134 bits; the construction f(n, hr(m)) uses 128+128pN ≈ 2134N
bits. None of these protocols can be used in practice, except (f(n)+hr(m)) mod p
for small N . Fortunately, it seems that uniform random functions can be safely
simulated by random functions of much lower entropy.

Consider, for example, the block cipher Rijndael. If k is a 128-bit string then
Rijndaelk is a function from S to S, where S =

{

0, 1, . . . , 2128 − 1
}

. If k is a uniform
random 128-bit string then Rijndaelk is a good simulation of a uniform random
function from S to S; it seems very difficult for an attacker to tell the difference.
More precisely: It seems that, for every practical algorithm A that uses an oracle
and prints either 0 or 1, there is negligible difference between the average output of
A using Rijndaelk as an oracle and the average output of A using a uniform random
function as an oracle. In short, Rijndaelk seems to be unpredictable.

Consequently it seems safe to use, e.g., Rijndaelk(hr(m)) as an authenticator of
m, where k is a uniform random 128-bit string, r is a uniform random element of
I, and r and k are independent. If Rijndaelk is, in fact, unpredictable, then there
is no practical attack on this system that achieves significantly better success than
the bound in Theorem 9.2.

Similar comments apply to (f(n) + hr(m)) mod p and f(n, hr(m)), where n is a
unique message number as above. One variant of f(n, hr(m)) is the authenticator
Rijndaelk(Rijndaelk(n) xor hr(m)); note that if f is unpredictable then (x, y) 7→
f(f(x) xor y) is unpredictable.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 15

There are many other published examples of random functions that can be used
instead of Rijndaelk. For example, it is convenient to use MD5(k, n, hr(m)) as an
authenticator, where k is a uniform random 256-bit string, and both n and hr(m)
are encoded as 128-bit strings. If the random function x 7→ MD5(k, x) on 256-bit
inputs is unpredictable then there is no practical attack on this system achieving
significantly better success than the bound in Theorem 9.3. Similar comments
apply to the first 128 bits of the output of SHA-1.

Notes. Wegman and Carter in [66, Section 4] proposed the form f(n) + h(m) for
an authenticator and observed that the forgery probability is proportional to the
number of forgery attempts. The bound in Theorem 9.1 has an extra C/2127 term
to account for the slight nonuniformity of f(n) mod p.

The idea of simulating a uniform random function with an unpredictable random
function is now considered obvious. In the context of f(n) + h(m) it is usually
credited to Brassard in [27]. See [18, Section 2] for further historical notes on the
concept of unpredictability.

Bellare, Canetti, and Krawczyk in [13, Section 1.5] proposed the form f(h(m))
for an authenticator. They pointed out that, in fact, m 7→ f(h(m)) is unpredictable.
For precise bounds on the level of predictability, see, e.g., [18]; my proof of Theorem
9.2 is based on my proof of [18, Theorem 3.1]. For precise bounds on the forgery
probability given unpredictability, see, e.g., [17, Section 6]. This detour through

unpredictability leads to a bound similar to Theorem 9.2 but involving
(

C+D
2

)

instead of
(

C
2

)

+ CD.
For systems of the form f(n, h(m)), see, e.g., [13, Section 5] and [37, Section

2.3]. Shoup in [58, Section 2] analyzed the exact security of several other variants
of the Wegman-Carter construction.

The unpredictability of (x, y) 7→ f(f(x) xor y) if f is uniform (and hence if f is
unpredictable) was proven by Bellare, Kilian, and Rogaway in [17, Section 3]. For
a simpler proof see [18, Theorem 3.1].

Rijndael was published by Daemen and Rijmen in [31]. MD5 was published
by Rivest in [51]. SHA-1 was published in [3]. The apparent unpredictability of
random functions such as x 7→ MD5(k, x), for fixed-length x, was pointed out in
[15] but had already been used in other cryptographic constructions based on MD5.

There are many other examples in the literature of easily computable, low-
entropy random functions that seem to be difficult to predict. Unfortunately, most
of the examples were designed under constraints such as invertibility or collision
resistance; these constraints distract attention from, and often interfere with, the
crucial property of unpredictability. One exception is the Naor-Reingold system
in [48], based directly on a difficult number-theoretic problem; unfortunately, this
system is too slow for many applications. Another exception is SEAL 3.0, published
by Coppersmith and Rogaway in [56]; unfortunately, SEAL’s 32-bit input size is
too small for most applications.

10. Random hash functions with low collision probability

The crucial property of hr, for random r, is that it has low collision probability:
if m 6= m′ then Pr[hr(m) = hr(m

′)] is small. See Theorem 8.1.
The construction of hr can be generalized as follows. Select a ring. Select a

“large” subset of the ring as the set of messages, and a “small” subset of the ring

16 DANIEL J. BERNSTEIN

as the set of hash outputs. Each hash function is determined by an ideal (typically
a maximal ideal) of the ring; the hash function takes a message m to an output
congruent to m modulo the ideal. Examples:

• Messages are elements of Z. The hash of a message m is m mod p where p
is a uniform (or nearly uniform) random prime number in [2120, 2128].

• Messages are elements of the polynomial ring (Z/2)[t]. The hash of a mes-
sage m is m mod p where p is a uniform random irreducible degree-128
polynomial.

• Messages are elements of F [t] where F is a field of size around 232. The hash
of a message m is m mod p where p is a uniform random monic irreducible
degree-4 polynomial.

• Messages are elements of F [t] where F is a field of size around 2128. The
hash of a message m is m mod (t−r) where r is a uniform random element of
F ; in short, m(r). For example, the hash of t`+m0t

`−1+m1t
`−2+· · ·+m`−1

is r` + m0r
`−1 + m1r

`−2 + · · · + m`−1.
• Messages are elements of the multivariate polynomial ring F [t0, t1, . . .] over

a field F of size around 2128. The hash of m is m mod (t0 − r0, t1 − r1, . . .)
where r0, r1, . . . are independent uniform random elements of F . For ex-
ample, the hash of the homogeneous linear polynomial m0t0 +m1t1 + · · ·+
m`−1t`−1 + t` is m0r0 + m1r1 + · · · + m`−1r`−1 + r`. As another example,
the hash of the multilinear polynomial m0 + m1t0 + m2t1 + m3t0t1 + · · · +
m2`−1t0t1 . . . t`−1 is m0 +m1r0 +m2r1 +m3r0r1 + · · ·+m2`−1r0r1 . . . r`−1.

Each of these random functions can be used in place of hr in the constructions
f(hr(m)) and f(n, hr(m)) discussed in the previous section. Each function, under a
small restriction on the set of messages, can also be used in a construction analogous
to (f(n) + hr(m)) mod (2127 − 1).

How to choose a ring. The hash hr featured in this paper computes a polynomial
modulo t − r in the ring (Z/(2127 − 1))[t]. I selected this ring for two reasons:

• Today’s computers support much faster multiplication in rings of large (or
zero) characteristic, such as Z or (Z/(231−1))[t] or (Z/(2127−1))[t], than in
rings of characteristic 2, such as (Z/2)[t] or F232 [t] or F2128 [t]. It is just as
easy to build hardware for (Z/2)[t] as for Z, but there is much less market
demand.

• It is easy to generate a degree-1 monic polynomial over a large field. It takes
much more code (and a noticeable amount of time) to generate a higher-
degree monic irreducible polynomial over a smaller field, or to generate a
prime in Z. Karp and Rabin in [41] suggested allowing non-primes to save
time, but that hurts the collision probability.

Higher-dimensional rings such as (Z/(2127−1))[t0, t1] are as fast as (Z/(2127−1))[t]
but need more bits to specify a hash function. (They also offer a sublinear collision
probability for long messages. However, this is generally not helpful for message
authentication; sensible attackers will generate many short messages instead.)

Historical notes. Gilbert, MacWilliams, and Sloane in [36, Section 9] observed
that a uniform random F -linear function (m0, . . . ,m`−1) 7→ m0r0 + · · ·+m`−1r`−1

from F ` to F has collision probability 1/#F . Some implementation results for
F = Z/(232 + 15), with a few changes in the function for the sake of simpler code,
were published by Halevi and Krawczyk in [37]. Black, Halevi, Krawczyk, Krovetz,

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 17

and Rogaway in [24] reported further implementation results, using Winograd’s
dot-product algorithm in [68] to trade half the multiplications for additions.

Wegman and Carter in [66, Section 3] pointed out that a random hash function
of entropy much smaller than L suffices for authentication of messages of length
L. The hash m0 + m1r0 + m2r1 + m3r0r1 + · · · + m2`−1r0r1 . . . r`−1 is Stinson’s
improvement in [61, Section 6] of the Wegman-Carter construction.

Karp and Rabin in [41, Section 3], independently of Wegman and Carter, pointed
out the low collision probability of large primes in Z. Rabin in [50] (which was
written after [41]) made the analogous observation for (Z/2)[t]. Krawczyk in [47]
later popularized (Z/2)[t] as “cryptographic CRCs” and “LFSR-based hashing”;
implementation results for this “division hash” were published by Shoup in [58]
and by Nevelsteen and Preneel in [49]. Krawczyk also proposed an “LFSR-based
Toeplitz matrix” construction, which amounts to m 7→

⌊

(mv mod p)t128/p
⌋

; here v
is a nonzero polynomial of degree below 128.

The low collision probability of degree-1 irreducible polynomials in F [t], when
F is a large field, was pointed out by den Boer in [25], independently by Taylor
in [63, Section 3], and independently by Bierbrauer, Johansson, Kabatianskii, and
Smeets in [22, Section 4]. (Taylor considered only prime fields F , and suggested
several good possibilities, including Z/(2127 − 1). Beware that the distribution of
polynomials in [63] was extremely far from uniform.) Some implementation results
for this “evaluation hash,” with F of characteristic 2, were published by Shoup in
[58]; by Afanassiev, Gehrmann, and Smeets in [9], reinventing a division algorithm
published by Kaminski in [40]; and by Nevelsteen and Preneel in [49]. I published
fast code for hr in April 1999.

Shoup in [58] suggested the “generalized division hash”—irreducible polynomials
of any degree over fields of any size—as a common generalization of the “division
hash” and the “evaluation hash.” Shoup published some implementation results
for a field of size 28.

Many of these articles follow the terminology of [28] and [66]: a random function
f from A to B is “universal” if Pr[f(m) = f(m′)] ≤ 1/#B for all pairs of distinct
inputs (m,m′). This is not a useful concept; one wants Pr[f(m) = f(m′)] to be
small, and one wants #B to be small, but there is no reason to demand that the
product be bounded by 1. Some authors say “f is ε-almost universal” to mean that
the collision probability of f is at most ε.

Generalizations and variants. Let g be a random function on length-` inputs
with collision probability at most ε. Then (m1, . . . ,mk) 7→ (g(m1), . . . , g(mk)) is
a random function on length-k` inputs with collision probability at most ε. If the
output g(m1), . . . , g(mk) is too long then one can apply another hash function to
it. This is the general idea of the Wegman-Carter construction in [66, Section 3].
If g is (Z/2)-linear then one can apply it to 32 inputs in parallel using the 32-bit
exclusive-or operation in today’s computers; see, e.g., [54], [38], and [49].

Let g1, g2, . . . , gk be independent random functions from length-` inputs to some
commutative group. If Pr[gj(m) − gj(m

′) = δ] ≤ ε for all δ, j,m,m′ with m 6= m′,
then (m1,m2, . . . ,mk) 7→ g1(m1)+g2(m2)+· · ·+gk(mk) has collision probability at
most ε. This was pointed out by Zobrist in [69] for the special case of (j,m) 7→ gj(m)
being uniform; by Gilbert, MacWilliams, and Sloane in [36], as noted above, for
the special case of each gi being a uniform random linear function over a field;
and finally by Carter and Wegman in [28, Proposition 8] for the general case. The

18 DANIEL J. BERNSTEIN

“XOR hash” published many years later in [15] is the same as Zobrist’s hash, but
with “unpredictable” in place of “uniform.”

Let g1, g2, . . . , gk be independent random functions, each with collision proba-
bility at most ε. Then m 7→ (g1(m), g2(m), . . . , gk(m)) has collision probability at
most εk. For example, consider messages in F ` where F = Z/2. A uniform random
F -linear function from F ` to F has collision probability 1/2 as noted above, so a
uniform random F -linear function from F ` to F k—i.e., multiplication by a uniform
random matrix—has collision probability (1/2)k. This was pointed out by Carter
and Wegman in [28, page 151]. Rogaway in [54] pointed out that multiplication
by a random sparse matrix still has low collision probability if the output is large
enough.

Alternate input encodings. Carter and Wegman in [28, page 151] suggested
encoding a string of k` bits as a string of 2k` bits, exactly ` of which are 1’s.

Karp and Rabin in [41, Section 6] suggested encoding a string of bits b1, . . . , b`

as the matrix product M(b1) . . . M(b`) in the ring of 2 × 2 matrices over Z, where
M(0) = (1 0

1 1) and M(1) = (1 1
0 1); and then reducing the product modulo a big prime

p. An improvement is the product (1 1)M(b1) . . . M(b`) in Z2; the simplest method
of computing the image of this product in (Z/p)2 takes one addition modulo p for
each bit of input.

Conjectural constructions and current practice. If p is a uniform random
512-bit string then m 7→ MD5(p,m) appears to have very low collision probability,
as pointed out by Bellare et al. in [15] and in [13]. But there is no proof. Wang in
[64] recently found collisions in m 7→ MD5(m); perhaps the techniques of [64] can
be extended to find high-probability collisions in m 7→ MD5(p,m).

Authenticators based on MD5 are popular because they are very fast. The
implementations of MD5 in [8] (including the careful Pentium implementation by
Bosselaers in [26]) take about 5.3 Pentium cycles per byte, or about 5.9 Pentium-II
cycles per byte, or about 9.4 UltraSPARC-I cycles per byte, for long messages. But
hr is even faster!

References

[1] —, Algolprocedures voor het berekenen van een inwendig product in dubbele precisie, RC-
Informatie nr. 22, Technische Hogeschool Eindhoven (1968).

[2] —, ALGOL procedures voor het rekenen in dubbele lengte, RC-Informatie nr. 21, Technische
Hogeschool Eindhoven (1969).

[3] —, Secure hash standard, Federal Information Processing Standard 180-1, National Institute
of Standards and Technology, Washington, 1995.

[4] —, IEEE standard for binary floating-point arithmetic, Standard 754–1985, Institute of Elec-
trical and Electronics Engineers, New York, 1985.

[5] —, 20th annual symposium on foundations of computer science, IEEE Computer Society,
New York, 1979. MR 82a:68004.

[6] —, 37th annual symposium on foundations of computer science, Institute of Electrical and
Electronics Engineers, New York, 1996. ISBN 0–8186–7594–2.

[7] —, 38th annual symposium on foundations of computer science, IEEE Computer Society
Press, Los Alamitos, 1997. ISBN 0–8186–8197–7.

[8] —, OpenSSL 0.9.3, available from http://www.openssl.org (1999).
[9] Valentine Afanassiev, Christian Gehrmann, Ben Smeets, Fast message authentication us-

ing efficient polynomial evaluation, in [23] (1997), 190–204. URL: http://cr.yp.to/bib/

entries.html#1997/afanassiev.

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 19

[10] Ross Anderson (editor), Fast software encryption, Lecture Notes in Computer Science, 809,

Springer-Verlag, Berlin, 1994. ISBN 3–540–58108–1. MR 97b:94004.
[11] Algirdas A. Avizienis, Signed-digit number representations for fast parallel arithmetic, IRE

Transactions on Electronic Computers 10 (1961), 389–400. ISSN 0367–9950. MR 24:B1263.
URL: http://cr.yp.to/bib/entries.html#1961/avizienis.

[12] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom functions revisited: the cascade
construction and its concrete security, in [6] (1996), 514–523; see also newer version [13].

[13] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Pseudorandom functions revisited: the cas-
cade construction and its concrete security (1996); see also older version [12]. URL: http://

www-cse.ucsd.edu/~mihir/papers/cascade.html.
[14] Mihir Bellare, Roch Guérin, Phillip Rogaway, XOR MACs: new methods for message au-

thentication using finite pseudorandom functions, in [30] (1995), 15–28; see also newer version
[15].

[15] Mihir Bellare, Roch Guérin, Phillip Rogaway, XOR MACs: new methods for message au-
thentication using finite pseudorandom functions (1995); see also older version [14]. URL:
http://www-cse.ucsd.edu/~mihir/papers/xormacs.html.

[16] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of cipher block chaining, in [33]

(1994), 341–358; see also newer version [17].
[17] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of the cipher block chaining message

authentication code, Journal of Computer and System Sciences 61 (2000), 362–399; see also
older version [16]. ISSN 0022–0000. URL: http://www-cse.ucsd.edu/~mihir/papers/cbc.

html.
[18] Daniel J. Bernstein, How to stretch random functions: the security of protected counter

sums, Journal of Cryptology 12 (1999), 185–192. ISSN 0933–2790. URL: http://cr.yp.to/
papers.html.

[19] Daniel J. Bernstein, Guaranteed message authentication faster than MD5 (abstract) (1999).
URL: http://cr.yp.to/papers.html#hash127-abs.

[20] Daniel J. Bernstein, Multidigit multiplication for mathematicians. URL: http://cr.yp.to/
papers.html.

[21] Daniel J. Bernstein, A secure public-key signature system with extremely fast verification,
accepted by Journal of Cryptology, but withdrawn to be incorporated into author’s High-
speed cryptography book. URL: http://cr.yp.to/papers.html#sigs.

[22] Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, Ben Smeets, On families of

hash functions via geometric codes and concatenation, in [62] (1994), 331–342. URL: http://
cr.yp.to/bib/entries.html#1994/bierbrauer.

[23] Eli Biham (editor), Fast Software Encryption ’97, Lecture Notes in Computer Science, 1267,
Springer-Verlag, Berlin, 1997. ISBN 3–540–63247–6.

[24] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, Phillip Rogaway, UMAC: fast and
secure message authentication, in [67] (1999), 216–233. URL: http://www.cs.ucdavis.edu/
~rogaway/umac/.

[25] Bert den Boer, A simple and key-economical unconditional authentication scheme, Journal of

Computer Security 2 (1993), 65–71. ISSN 0926–227X. URL: http://cr.yp.to/bib/entries.
html#1993/denboer.

[26] Antoon Bosselaers, Even faster hashing on the Pentium (1997). URL: http://www.esat.

kuleuven.ac.be/~bosselae/publications.html.

[27] Gilles Brassard, On computationally secure authentication tags requiring short secret shared
keys, in [29] (1983), 79–86. URL: http://cr.yp.to/bib/entries.html#1983/brassard.

[28] J. Lawrence Carter, Mark N. Wegman, Universal classes of hash functions, Journal of Com-
puter and System Sciences 18 (1979), 143–154. ISSN 0022–0000. URL: http://cr.yp.to/

bib/entries.html#1979/carter.
[29] David Chaum, Ronald L. Rivest, Alan T. Sherman (editors), Advances in cryptology: pro-

ceedings of Crypto 82, Plenum Press, New York, 1983. ISBN 0–306–41366–3. MR 84j:94004.
[30] Don Coppersmith (editor), Advances in cryptology—CRYPTO ’95, Lecture Notes in Com-

puter Science, 963, Springer-Verlag, Berlin, 1995. ISBN 3–540–60221–6.
[31] Joan Daemen, Vincent Rijmen, The design of Rijndael: AES—the advanced encryption

standard, Springer-Verlag, 2002. ISBN 3–540–42580–2. MR 1986943.

20 DANIEL J. BERNSTEIN

[32] Theodorus J. Dekker, A floating-point technique for extending the available precision, Nu-

merische Mathematik 18 (1971), 224–242. ISSN 0029–599X. MR 45:8056. URL: http://

cr.yp.to/bib/entries.html#1971/dekker.
[33] Yvo Desmedt (editor), Advances in cryptology—CRYPTO ’94, Lecture Notes in Computer

Science, 839, Springer-Verlag, Berlin, 1994.

[34] Joan Feigenbaum (editor), Advances in cryptology—CRYPTO ’91, Lecture Notes in Com-
puter Science, 576, Springer-Verlag, Berlin, 1992. ISBN 3–540–55188–3.

[35] Walter Fumy (editor), Advances in cryptology: EUROCRYPT ’97, Lecture Notes in Com-
puter Science, 1233, Springer-Verlag, Berlin, 1997. ISBN 3–540–62975–0.

[36] Edgar N. Gilbert, F. Jessie MacWilliams, Neil J. A. Sloane, Codes which detect deception, Bell
System Technical Journal 53 (1974), 405–424. ISSN 0005–8580. MR 55:5306. URL: http://
cr.yp.to/bib/entries.html#1974/gilbert.

[37] Shai Halevi, Hugo Krawczyk, MMH: software message authentication in the Gbit/second

rates, in [23] (1997), 172–189. URL: http://www.research.ibm.com/people/s/shaih/pubs/
mmh.html.

[38] Thomas Johansson, Bucket hashing with a small key size, in [35] (1997), 149–162. URL:
http://cr.yp.to/bib/entries.html#1997/johansson.

[39] William M. Kahan, Further remarks on reducing truncation errors, Communications of the
ACM 8 (1965), 40. ISSN 0001–0782.

[40] Michael Kaminski, A linear time algorithm for residue computation and a fast algorithm for
division with a sparse divisor, Journal of the ACM 34 (1987), 968–984. ISSN 0004–5411. MR

89f:68033.
[41] Richard M. Karp, Michael O. Rabin, Efficient randomized pattern-matching algorithms, IBM

Journal of Research and Development 31 (1987), 249–260. ISSN 0018–8646. URL: http://
cr.yp.to/bib/entries.html#1987/karp.

[42] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
1st edition, 1st printing, Addison-Wesley, Reading, 1969; see also newer version [43]. MR
44:3531.

[43] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,

1st edition, 2nd printing, Addison-Wesley, Reading, 1971; see also older version [42]; see also
newer version [44]. MR 44:3531.

[44] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
2nd edition, Addison-Wesley, Reading, 1981; see also older version [43]; see also newer version

[45]. ISBN 0–201–03822–6. MR 83i:68003.
[45] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,

3rd edition, Addison-Wesley, Reading, 1997; see also older version [44]. ISBN 0–201–89684–2.
[46] Neal Koblitz (editor), Advances in cryptology—CRYPTO ’96, Lecture Notes in Computer

Science, 1109, Springer-Verlag, Berlin, 1996.
[47] Hugo Krawczyk, LFSR-based hashing and authentication, in [33] (1994), 129–139. URL:

http://cr.yp.to/bib/entries.html#1994/krawczyk.
[48] Moni Naor, Omer Reingold, Number-theoretic constructions of efficient pseudo-random func-

tions, in [7] (1997), 458–467. URL: http://www.wisdom.weizmann.ac.il/~naor/onpub.html.
[49] Wim Nevelsteen, Bart Preneel, Software performance of universal hash functions, in [59]

(1999), 24–41.
[50] Michael O. Rabin, Fingerprinting by random polynomials, Harvard Aiken Computational

Laboratory TR-15-81 (1981). URL: http://cr.yp.to/bib/entries.html#1981/rabin.
[51] Ronald L. Rivest, The MD5 message-digest algorithm, Request For Comments 1321 (1992).

URL: http://theory.lcs.mit.edu/~rivest/rfc1321.txt.
[52] James E. Robertson, A new class of digital division methods, IRE Transactions on Electronic

Computers 7 (1958), 218–222. ISSN 0367–9950. URL: http://cr.yp.to/bib/entries.html#
1958/robertson.

[53] Phillip Rogaway, Bucket hashing and its application to fast message authentication, in [30]
(1995), 29–42; see also newer version [54].

[54] Phillip Rogaway, Bucket hashing and its application to fast message authentication, Journal
of Cryptology 12 (1999), 91–115; see also older version [53]. ISSN 0933–2790. URL: http://
www.cs.ucdavis.edu/~rogaway/papers/.

[55] Phillip Rogaway, Don Coppersmith, A software-optimized encryption algorithm, in [10]

(1994), 56–63; see also newer version [56].

FLOATING-POINT ARITHMETIC AND MESSAGE AUTHENTICATION 21

[56] Phillip Rogaway, Don Coppersmith, A software-optimized encryption algorithm, Journal of

Cryptology 11 (1998), 273–287; see also older version [55]. ISSN 0933–2790. URL: http://
www.cs.ucdavis.edu/~rogaway/papers/.

[57] Victor Shoup, On fast and provably secure message authentication based on universal hash-
ing, in [46] (1996), 313–328; see also newer version [58].

[58] Victor Shoup, On fast and provably secure message authentication based on universal hashing
(1996); see also older version [57]. URL: http://www.shoup.net/papers.

[59] Jacques Stern (editor), Advances in cryptology: EUROCRYPT ’99, Lecture Notes in Com-
puter Science, 1592, Springer-Verlag, Berlin, 1999. ISBN 3–540–65889–0. MR 2000i:94001.

[60] Douglas R. Stinson, Universal hashing and authentication codes, in [34] (1992), 74–85; see
also newer version [61].

[61] Douglas R. Stinson, Universal hashing and authentication codes, Designs, Codes and Cryp-
tography 4 (1994), 369–380; see also older version [60]. ISSN 0925–1022. URL: http://

cr.yp.to/bib/entries.html#1994/stinson-mac.
[62] Douglas R. Stinson (editor), Advances in cryptology—CRYPTO ’93: 13th annual interna-

tional cryptology conference, Santa Barbara, California, USA, August 22–26, 1993, proceed-
ings, Lecture Notes in Computer Science, 773, Springer-Verlag, Berlin, 1994. ISBN 3–540–

57766–1, 0–387–57766–1. MR 95b:94002.
[63] Richard Taylor, An integrity check value algorithm for stream ciphers, in [62] (1994), 40–48.

URL: http://cr.yp.to/bib/entries.html#1994/taylor.
[64] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu, Collisions for hash functions MD4,

MD5, HAVAL-128 and RIPEMD (2004). URL: http://eprint.iacr.org/2004/199/.
[65] Mark N. Wegman, J. Lawrence Carter, New classes and applications of hash functions, in

[5] (1979), 175–182; see also newer version [66]. URL: http://cr.yp.to/bib/entries.html#
1979/wegman.

[66] Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in authentication
and set equality, Journal of Computer and System Sciences 22 (1981), 265–279; see also
older version [65]. ISSN 0022–0000. MR 82i:68017. URL: http://cr.yp.to/bib/entries.

html#1981/wegman.

[67] Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, Lecture Notes in Computer
Science, 1666, Springer-Verlag, Berlin, 1999. ISBN 3–5540–66347–9. MR 2000h:94003.

[68] Shmuel Winograd, A new algorithm for inner product, IEEE Transactions on Computers 17

(1968), 693–694. ISSN 0018–9340.

[69] Albert L. Zobrist, A hashing method with applications for game playing, Technical Report
88, Computer Sciences Department, University of Wisconsin (1970). URL: http://cr.yp.to/
bib/entries.html#1970/zobrist.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@cr.yp.to

