Protecting communications against forgery

DANIEL J. BERNSTEIN

Abstract

This paper is an introduction to cryptography. It covers secretkey message-authentication codes, unpredictable random functions, publickey secret-sharing systems, and public-key signature systems.

1. Introduction

Cryptography protects communications against espionage: an eavesdropper who intercepts a message will be unable to decipher it. This is useful for many types of information: credit-card transactions, medical records, love letters.

Cryptography also protects communications against sabotage: a forger who fabricates or modifies a message will be unable to deceive the receiver. This is useful for all types of information. If the receiver does not care about the authenticity of a message, why is he listening to the message in the first place?

This paper explains how cryptography prevents forgery. Section 2 explains how to protect n messages if the sender and receiver share $128(n+1)$ secret bits. Section 3 explains how the sender and receiver can generate many shared secret bits from a short shared secret. Section 4 explains how the sender and receiver can generate a short shared secret from a public conversation. Section 5 explains how the sender can protect a message sent to many receivers, without sharing any secrets.

[^0]
2. Unbreakable secret-key authenticators

Here is a protocol for transmitting a message when the sender and receiver both know certain secrets:

The message is a polynomial $m \in F[x]$ with $m(0)=0$ and $\operatorname{deg} m \leq 1000000$. Here F is the field $(\mathbf{Z} / 2)[y] /\left(y^{128}+y^{9}+y^{7}+y^{2}+1\right)$ of size 2^{128}. The secrets are two independent uniform random elements p, k of F.

The sender transmits (m, a) where $a=m(p)+k$. The forger replaces (m, a) with some (m^{\prime}, a^{\prime}); if the forger is inactive then $\left(m^{\prime}, a^{\prime}\right)=(m, a)$. The receiver discards (m^{\prime}, a^{\prime}) unless $a^{\prime}=m^{\prime}(p)+k$.

The extra information a is called an authenticator.
Security. I claim that the forger has chance smaller than 2^{-108} of fooling the receiver, i.e., of finding $\left(m^{\prime}, a^{\prime}\right)$ with $m^{\prime} \neq m$ and $a^{\prime}=m^{\prime}(p)+k$. The proof is easy. Fix (m, a) and (m^{\prime}, a^{\prime}), and count pairs (p, k) :

- There are exactly 2^{128} pairs (p, k) satisfying $a=m(p)+k$. Indeed, there is exactly one possible k for each possible p.
- Fewer than 2^{20} of these pairs also satisfy $a^{\prime}=m^{\prime}(p)+k$, if m^{\prime} is different from m. Indeed, any qualifying p would have to be a root of the nonzero polynomial $m-m^{\prime}-a+a^{\prime}$; this polynomial has degree at most 1000000 , so it has at most $1000000<2^{20}$ roots.

Thus the conditional probability that $a^{\prime}=m^{\prime}(p)+k$, given that $a=m(p)+k$, is smaller than $2^{20} / 2^{128}=2^{-108}$.

In practice, the receiver will continue listening for messages after discarding a forgery, so the forger can try again and again. Consider a persistent, wealthy, long-lived forger who tries nearly 2^{75} forgeries by flooding the receiver with one billion messages per second for one million years. His chance of success - his chance of producing at least one (m^{\prime}, a^{\prime}) with $a^{\prime}=m^{\prime}(p)+k$ and with m^{\prime} not transmitted by the sender - is still smaller than $2^{-108} 2^{75}=2^{-33}$.

Handling many messages. One can use a single p with many k 's to protect a series of messages:

The sender and receiver share secrets $p, k_{1}, k_{2}, k_{3}, \ldots$; as in the single-message case, ($p, k_{1}, k_{2}, k_{3}, \ldots$) is a uniform random sequence of elements of F. The sender transmits the nth message m as (n, m, a) where $a=m(p)+k_{n}$. The receiver discards ($n^{\prime}, m^{\prime}, a^{\prime}$) unless $a^{\prime}=m^{\prime}(p)+k_{n^{\prime}}$.

In this context n is called a nonce and a is again called an authenticator. The random function $(n, m) \mapsto m(p)+k_{n}$ is called a message-authentication code (MAC).

The forger's chance of success - his chance of producing at least one forgery ($n^{\prime}, m^{\prime}, a^{\prime}$) with $a^{\prime}=m^{\prime}(p)+k_{n^{\prime}}$ and with m^{\prime} different from all of the messages transmitted by the sender - is smaller than $2^{-108} D$, where D is the number of forgery attempts. This is true even if the forger sees all the messages transmitted by the sender. It is true even if the forger can influence the choice of those messages, perhaps responding dynamically to previous authenticators. In fact, it is true even if the forger has complete control over each message!

Define an attack as an algorithm that chooses a message m_{1}, sees the sender's authenticator $m_{1}(p)+k_{1}$, chooses a message m_{2}, sees the sender's authenticator $m_{2}(p)+k_{2}$, etc., and finally chooses ($n^{\prime}, m^{\prime}, a^{\prime}$). Define the attack as successful if $a^{\prime}=m^{\prime}(p)+k_{n^{\prime}}$ and $m^{\prime} \notin\left\{m_{1}, m_{2}, \ldots\right\}$. Then the attack is successful with probability smaller than 2^{-108}. The proof is, as in the single-message case, a simple matter of counting.

Of course, if the forger actually has the power to choose a message m_{1} for the sender to authenticate, then the forger does not need to modify messages in transit. Real senders restrict the messages m_{1}, m_{2}, \ldots that they authenticate, and thus restrict the possible set of attacks. But the security guarantee does not rely on any such restrictions.

History. Gilbert, MacWilliams, and Sloane [1974, Section 9] introduced the first easy-to-compute unbreakable authenticator, using a long shared secret for a long message. Wegman and Carter [1981, Section 3] proposed the form $h(m)+$ k_{n} for an authenticator and pointed out that a short secret could handle a long message.

There is now a huge literature on unbreakable MACs. For two surveys see [Nevelsteen and Preneel 1999] and [Bernstein 2004, Sections 8-10]. For three state-of-the-art systems see [Black et al. 1999], [Bernstein 2005], and [Bernstein 2007].

3. Conjecturally unpredictable random functions

Here is a protocol that is conjectured to protect a series of messages:

The sender and receiver share a secret uniform random 128 -bit string s. The sender and receiver both compute $p=\operatorname{SLASH}(0, s), k_{1}=\operatorname{SLASH}(1, s), k_{2}=$ $\operatorname{SLASH}(2, s)$, etc. The sender transmits the nth message m as (n, m, a) where $a=m(p)+k_{n}$. The receiver discards ($n^{\prime}, m^{\prime}, a^{\prime}$) unless $a^{\prime}=m^{\prime}(p)+k_{n^{\prime}}$.

The function SLASH - see below for the definition - takes 512 bits of input. Message numbers n are assumed to be at most $2^{128}-1$; a pair (n, s) is then encoded as a 512 -bit input $\left(n_{0}, n_{1}, \ldots, n_{127}, 0,0, \ldots, 0, s_{0}, s_{1}, \ldots, s_{127}\right)$ where $n=n_{0}+2 n_{1}+\cdots+2^{127} n_{127}$. SLASH produces 128 bits of output. The result has no apparent structure aside from its computability.

Note that the sender and receiver can compute $\operatorname{SLASH}(n, s)$ when they need it, rather than storing the long string (p, k_{1}, k_{2}, \ldots).

Security. A forger, given several authenticated messages, might try to solve for s. Presumably only one choice for s is consistent with all the authenticators. However, the fastest known method of solving for s is to search through all 2^{128} possibilities. This is far beyond the computer power available today.

Is there a faster attack? Perhaps. We believe that this protocol is unbreakable, but we have no proof. (The random string (p, k_{1}, k_{2}, \ldots) is not uniform, so the proof in Section 2 does not apply.) On the other hand, this protocol has the advantage of using only 128 shared secret bits to handle any number of messages.

Unpredictability. Let u be a uniform random function from $\{0,1,2, \ldots\}$ to F. Consider oracle algorithms A that print 0 or 1 . What is the difference between

- the probability that A prints 1 using $n \mapsto \operatorname{SLASH}(n, s)$ as an oracle and
- the probability that A prints 1 using u as an oracle?

The difference is conjectured to be smaller than 2^{-40} for every A that finishes in at most 2^{80} steps. In other words, $n \mapsto \operatorname{SLASH}(n, s)$ is conjectured to be unpredictable.

If $n \mapsto \operatorname{SLASH}(n, s)$ is, in fact, unpredictable, then this multiple-message short-secret authentication protocol is unbreakable: a fast algorithm that makes D forgery attempts cannot succeed with probability larger than $2^{-108} D+2^{-40}$.

The SLASH definition. Say $x_{0}, x_{1}, \ldots, x_{15}$ are 32 -bit strings. For $i \geq 16$ define $x_{i}=x_{i-16}+\left(\left(x_{i-1}+\delta_{i}\right) \oplus\left(x_{i-1} \lll 7\right)\right)$. Then $\operatorname{SLASH}\left(x_{0}, x_{1}, \ldots, x_{15}\right)$ is the 256-bit string $\left(x_{0} \oplus x_{520}, x_{1} \oplus x_{521}, \ldots, x_{7} \oplus x_{527}\right)$. In contexts where only 128 bits are required, the first 128 bits are used.

Notation: $\left(a_{0}, a_{1}, \ldots, a_{31}\right)+\left(b_{0}, b_{1}, \ldots, b_{31}\right)=\left(c_{0}, c_{1}, \ldots, c_{31}\right)$ means that $a_{0}+2 a_{1}+\cdots+2^{31} a_{31}+b_{0}+2 b_{1}+\cdots+2^{31} b_{31} \equiv c_{0}+2 c_{1}+\cdots+2^{31} c_{31}\left(\bmod 2^{32}\right)$; $\left(a_{0}, a_{1}, \ldots, a_{31}\right) \oplus\left(b_{0}, b_{1}, \ldots, b_{31}\right)=\left(c_{0}, c_{1}, \ldots, c_{31}\right)$ means that $a_{i}+b_{i} \equiv$ $c_{i}(\bmod 2)$ for each $i ;\left(a_{0}, a_{1}, \ldots, a_{31}\right) \ll 7=\left(c_{0}, c_{1}, \ldots, c_{31}\right)$ means that $c_{7}=a_{0}, c_{8}=a_{1}, \ldots, c_{31}=a_{24}, c_{0}=a_{25}, \ldots, c_{6}=a_{31}$; and δ_{i} means the string $\left(c_{0}, c_{1}, \ldots, c_{31}\right)$ such that $c_{0}+2 c_{1}+\cdots+2^{31} c_{31} \equiv 2654435769\lfloor i / 16\rfloor\left(\bmod 2^{32}\right)$.

History. Turing [1950] introduced the concept of unpredictability: "Suppose we could be sure of finding [laws of behaviour] if they existed. Then given a discrete-state machine it should certainly be possible to discover by observation sufficient about it to predict its future behaviour, and this within a reasonable time, say a thousand years. But this does not seem to be the case. I have set up on the Manchester computer a small programme using only 1000 units of storage, whereby the machine supplied with one sixteen figure number replies with another within two seconds. I would defy anyone to learn from these replies sufficient about the programme to be able to predict any replies to untried values."

The literature is full of very quickly computable short random functions that seem difficult to predict. Short means that the random function is determined by a short uniform random string. See the surveys [Schneier 1996], [Menezes et al. 1996], [Nechvatal et al. 1999], and [Nechvatal et al. 2001] for many examples. A typical example is more complicated than SLASH but somewhat faster.

Beware that the literature is also full of definitions that distract attention from unpredictability. For example, a block cipher is a short random inverse pair of functions $\left(f, f^{-1}\right)$. One hopes that $\left(f, f^{-1}\right)$ is indistinguishable from a uniform random inverse pair of functions. This indistinguishability implies unpredictability of f if the input size of f is large enough, say 256 bits; but the extra constraint of invertibility is unnecessary for applications and excludes many good designs.

Blum, Blum, and Shub [1986] constructed a fast short random function with a small input, and proved that any fast algorithm to predict that function could be turned into a surprisingly fast algorithm to factor integers. Naor and Reingold [1997] constructed fast random functions with large inputs and with similar guarantees of unpredictability. These "provable" functions are never used in practice, because they are not nearly as fast as state-of-the-art block ciphers; but they show that unpredictability is not a silly concept.

Unpredictability has an interesting application to complexity theory: one can use it to convert fast probabilistic algorithms into reasonably fast deterministic algorithms. This was pointed out by Yao [1982]. It is now widely believed that the complexity classes BPP and P are identical, i.e., that everything decidable in polynomial time with the help of randomness is also decidable in polynomial time deterministically. One exposition of the topic is [Goldreich 1999, Section 3.4].

The name "unpredictable" has several aliases in the literature. See [Bernstein 1999, Section 2] for further discussion.

4. Public-key secret sharing

Here is a protocol for the sender and receiver to generate a 128-bit shared secret from a public conversation:

The sender starts from a secret uniform random $b \in 16 \mathbf{Z}$ with $0<b \leq 2^{225}$. The sender computes and announces a public key $G(b)$, namely the x-coordinate of the b th multiples of the points $\left(53\left(2^{224}-1\right) /\left(2^{8}-1\right), \pm \ldots\right)$ on the elliptic curve $y^{2}=x^{3}+7530 x^{2}+x$ over the field $\mathbf{Z} /\left(2^{226}-5\right)$. It is not difficult to compute $G(b)$ from b; see, e.g., [Blake et al. 2000], [Hankerson et al. 2004], [Doche and Lange 2005], and the chapter [Poonen 2008] in this volume.

Similarly, the receiver starts from a secret uniform random $c \in 16 \mathbf{Z}$ with $0<c \leq 2^{225}$. The receiver computes and announces a public key $G(c)$.

The sender and receiver are assumed to receive correct copies of $G(b)$ and $G(c)$ from each other. Subsequent messages are protected against forgery, but the public keys themselves must be protected by something outside this protocol.

The sender now computes $G(b c)$; it is not difficult to compute $G(b c)$ from b and $G(c)$, both of which are known to the sender. The receiver computes $G(b c)$ from c and $G(b)$ in the same way. Finally, the sender and receiver both compute $s=\operatorname{SLASH}(-1, G(b), G(b c))$. Here $(-1, G(b), G(b c))$ is encoded as the 512bit string $\left(g_{0}, g_{1}, \ldots, g_{225}, 1,1,1, \ldots, 1, h_{0}, h_{1}, \ldots, h_{225}\right)$ where $G(b)=g_{0}+$ $2 g_{1}+\cdots+2^{225} g_{225}$ and $G(b c)=h_{0}+2 h_{1}+\cdots+2^{225} h_{225}$.

As in Section 3, the sender and receiver can use this shared secret s to protect the authenticity of a series of messages:

The sender can also reuse his secret b with other receivers: given the public key $G(d)$ of another receiver, the sender computes the corresponding shared secret $\operatorname{SLASH}(-1, G(b), G(b d))$ and continues exactly as above. Furthermore, the sender and receiver can reverse roles, using $\operatorname{SLASH}(-1, G(c), G(b c))$ and $\operatorname{SLASH}(-1, G(d), G(b d))$ for messages sent in the opposite direction.

Security. The complete definition of security here is more complicated than it was in Sections 2 and 3, because the forger has more power. In particular, the forger is given the public keys. The forger can also feed a number $G(c)$ to the sender (without necessarily knowing what c is) and receive authenticators computed using $\operatorname{SLASH}(-1, G(b), G(b c))$.

The fastest known attack is to start from the public key $G(b)$, perform about 2^{112} elliptic-curve operations, and deduce the secret b, after which the forger can compute $s=\operatorname{SLASH}(-1, G(b), G(b c))$ in the same way as the sender. As in Section 3, this is beyond the computer power available today, but there may be faster attacks.

This attack does not depend on the details of SLASH. To formalize this notion, consider a generic protocol in which the sender and receiver use an oracle for any 128 -bit function in place of SLASH; then there is a generic attack in which the forger, having access to the same oracle, succeeds in forgeries after about 2^{112} elliptic-curve operations.

A generic attack that succeeds for all 128 -bit functions can be converted into an algorithm at comparable speed that, given $G(b)$ and $G(c)$, computes $G(b c)$. A generic attack that succeeds with probability p on average over all 128-bit functions can be converted into an algorithm at comparable speed that, given $G(b)$ and $G(c)$, computes $G(b c)$ with probability comparable to p. The idea of the proof is that if the algorithm never feeds $G(b c)$ to the oracle then it has no information about the shared secret. Of course, the value of this proof is limited, for two reasons: first, there might be faster non-generic attacks that exploit the structure of SLASH; second, we have no proof that computing $G(b c)$ from $G(b)$ and $G(c)$ is difficult.

History. Diffie and Hellman [1976] introduced the general idea of sharing a secret through a public channel. They also introduced the specific approach of exchanging public keys $2^{b} \bmod \ell$ and $2^{c} \bmod \ell$ to share a secret $2^{b c} \bmod \ell$; here ℓ is a fixed prime. The problem of computing $2^{b c} \bmod \ell$ from $\left(2^{b} \bmod \ell\right.$, $\left.2^{c} \bmod \ell\right)$ is called the Diffie-Hellman problem.

There are surprisingly fast techniques to compute b from $2^{b} \bmod \ell$. See [Schirokauer 2008] in this volume. Consequently one must choose a rather large prime ℓ in the Diffie-Hellman system.

Miller [1986], and independently Koblitz [1987], suggested replacing the unit group $(\mathbf{Z} / \ell)^{*}$ with an elliptic curve over \mathbf{Z} / ℓ. No surprisingly fast techniques are known for the "elliptic-curve Diffie-Hellman problem" for most curves with near-prime order, so we believe that a relatively small value of ℓ, such as $\ell=$ $2^{226}-5$, is safe. My elliptic curve $y^{2}=x^{3}+7530 x^{2}+x$ over the field $\mathbf{Z} /\left(2^{226}-5\right)$ has order $\left(2^{226}-5\right)+1-12000403261375786655687951397247436$, which is 16 times a prime. See [Bernstein 2006] for discussion of a similar curve.

Elliptic-curve computations involve more effort than unit-group operations, but this increase is outweighed by the reduction in the size of ℓ, so the MillerKoblitz elliptic-curve variant is faster than the original Diffie-Hellman system. It also has shorter keys. The variant is becoming increasingly popular.

Fiat and Shamir [1987] proved that a generic attack on one protocol could be converted into an algorithm to solve an easy-to-state mathematical problem. Bellare and Rogaway [1993] expanded the idea to more protocols. Many such proofs have now been published. For an exposition see [Koblitz and Menezes 2007].

5. Public-key signatures

Here is a protocol - with no shared secrets - for the sender to protect many messages sent to many receivers:

Message $m \longrightarrow$	Sender's secret p, q, z Signed message e, f, h, r, s	Possibly forged message $m^{\prime}, e^{\prime}, f^{\prime}, h^{\prime}, r^{\prime}, s^{\prime}, t^{\prime}$	

The sender starts from a secret uniform random 256 -bit string z, and secret uniform random primes p, q in the interval $\left[2^{768}, 2^{768}+2^{766}\right]$ with $p \bmod 8=3$ and $q \bmod 8=7$; primality can be tested quickly, as explained in [Schoof 2008] in this volume. The sender computes and announces the product $p q$, which is assumed to be transmitted correctly to all receivers. Subsequent messages are protected against forgery as follows.

Given a message m, the sender computes

- $r=\operatorname{SLASH}(-2, z, m) \bmod 16$;
- $h=H(r, m)$ where $H(r, m)=\operatorname{SLASH}(-12, r, m)+2^{128} \operatorname{SLASH}(-13, r, m)$ $+\cdots+2^{1408} \operatorname{SLASH}(-23, r, m)+1$;
- $u=h^{(q+1) / 4} \bmod q$;
- $e=1$ if $u^{2} \equiv h(\bmod q)$, else $e=-1$;
- $v=(e h)^{(p+1) / 4} \bmod p$;
- $f=1$ if $v^{2} \equiv e h(\bmod p)$, else $f=2$;
- $w=f^{(3 q-5) / 4} u \bmod q$;
- $x=f^{(3 p-5) / 4} v \bmod p$;
- $y=w+q\left(q^{p-2}(x-w) \bmod p\right)$;
- $s=\min \{y, p q-y\}$; and
- $t=\left(f s^{2}-e h\right) / p q$.

The sender then transmits (m, e, f, h, r, s, t).

At this point (e, f, h, r, s, t) is a signature of m under the public key $p q$. This means, by definition, that $e \in\{1,-1\} ; f \in\{1,2\} ; r \in\{0,1, \ldots, 15\} ; s$ and t are in $\left\{0,1, \ldots, 2^{1536}-1\right\} ; h=H(r, m)$; and $f s^{2}=t p q+e h$.

The receiver discards ($m^{\prime}, e^{\prime}, f^{\prime}, h^{\prime}, r^{\prime}, s^{\prime}, t^{\prime}$) if ($e^{\prime}, f^{\prime}, h^{\prime}, r^{\prime}, s^{\prime}, t^{\prime}$) is not a signature of m^{\prime}. The receiver can save time here by checking the equation $f^{\prime}\left(s^{\prime}\right)^{2}=t^{\prime} p q+e^{\prime} h^{\prime}$ modulo a secret 128 -bit prime.

Observe that signatures are different from authenticators: a signature can be verified by anyone, while an authenticator can be verified only by people who could have created the authenticator. The receiver can convince third parties that the sender signed a message; the receiver cannot convince third parties that the sender authenticated a message. Signatures are appropriate for public communications; authenticators are appropriate for private communications.

Security. Like the protocols in Sections 3 and 4, this protocol appears to make forgeries difficult, even if the forger can inspect signatures on messages under his control. There are surprisingly fast techniques to factor $p q$ into p, q-see [Pomerance 2008] and [Stevenhagen 2008] in this volume - but for large $p q$ these computations are beyond the computer power available today.

One can prove that any generic attack against this protocol can be converted into an algorithm at comparable speed to factor $p q$ with comparable success probability. However, as in Section 4, the value of this proof is limited: there might be faster non-generic attacks, and we have no proof that factorization is difficult.

Message length. The above description of signatures presumes that ($-2, z, m$) and $(-12, r, m)$ and so on are encoded as 512 -bit strings to be fed to SLASH. Thus messages m must be very short.

One can handle longer messages by modifying SLASH to allow larger inputs. One can, for example, define $\operatorname{SLASH}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$, where each x_{i} is a 256 -bit string, as $\operatorname{SLASH}\left(\operatorname{SLASH}\left(\operatorname{SLASH}\left(\operatorname{SLASH}\left(0,0, x_{0}\right), 1, x_{1}\right), 2, x_{2}\right), 3, x_{3}\right)$.

History. The concept of public-key signatures was introduced by Diffie and Hellman [1976]. Rivest, Shamir, and Adleman [1978] are often credited with the first useful example; but the original RSA system is obviously breakable.
(In the original RSA system, s is a signature of m under a public key (n, e) if $s^{e} \equiv m(\bmod n)$. First obvious attack: the forger immediately computes the message $2^{e} \bmod n$ with signature 2 . Second obvious attack: starting from m, the forger obtains from the sender a signature on the message $2^{e} m \bmod n$, and then divides the result by 2 modulo n.)

Rabin [1979] introduced the first useful signature system. Rabin's signature system, with various improvements by Williams [1980], Barwood, Wigley, and me, is the system described in this section. Recent results of Bleichenbacher,

Coppersmith, and Gentry show that signatures and public keys in this system can be compressed to a surprising extent. See [Bernstein 2008] for a survey and comparison of Rabin-type systems.

There are many "cryptographic hash functions" that can be used in place of H; see, e.g., the survey [Menezes et al. 1996, Sections 9.3-9.4]. On the other hand, some hash functions have been broken; for example, Wang et al. [2004] found collisions in the widely used "MD5" function. I offer \$1000 to the first person to publish a SLASH input whose output is 128 all-zero bits, or two different 512 -bit SLASH inputs with the same 256 -bit output.

There are other signature systems. One interesting example is the ElGamal system [1985b], which uses Diffie-Hellman public keys. Keys and signatures in elliptic-curve variants of ElGamal's system are smaller than keys and signatures in Rabin-type systems; on the other hand, signature verification is slower. Rabintype systems and ElGamal-type systems are both widely used.

References

[Ashby 1993] Victoria Ashby (editor), First ACM conference on computer and commиnications security, Association for Computing Machinery, New York. See [Bellare and Rogaway 1993].
[Bellare and Rogaway 1993] Mihir Bellare and Phillip Rogaway, "Random oracles are practical: a paradigm for designing efficient protocols", pp. 62-73 in [Ashby 1993]. Citations in this document: $\S 4$.
[Bernstein 1999] Daniel J. Bernstein, "How to stretch random functions: the security of protected counter sums", Journal of Cryptology 12, 185-192. ISSN 0933-2790. URL: http://cr.yp.to/papers.html\#stretch. Citations in this document: §3.
[Bernstein 2004] Daniel J. Bernstein, "Floating-point arithmetic and message authentication". URL: http://cr.yp.to/papers.html\#hash127. ID dabadd3095644704 c5cbe9690ea3738e. Citations in this document: §2.
[Bernstein 2005] Daniel J. Bernstein, "The Poly1305-AES message-authentication code", pp. 32-49 in [Gilbert and Handschuh 2005]. URL: http://cr.yp.to/ papers.html\#poly1305. ID 0018d9551b5546d97c340e0dd8cb5750. Citations in this document: §2.
[Bernstein 2006] Daniel J. Bernstein, "Curve25519: new Diffie-Hellman speed records", pp. 207-228 in [Yung et al. 2006]. URL: http://cr.yp.to/papers. html\#curve25519. ID 4230efdfa673480fc079449d90f322c0. Citations in this document: §4.
[Bernstein 2007] Daniel J. Bernstein, "Polynomial evaluation and message authentication". URL: http://cr.yp.to/papers.html\#pema. ID b1ef3f2d385a926123e $1517392 \mathrm{e} 20 f 8 \mathrm{c}$. Citations in this document: §2.
[Bernstein 2008] Daniel J. Bernstein, "RSA signatures and Rabin-Williams signatures: the state of the art". URL: http://cr.yp.to/papers.html\#rwsota. ID 5e92b45abdf8abc4 e55ea02607400599. Citations in this document: §5.
[Black et al. 1999] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway, "UMAC: fast and secure message authentication", pp. 216-233 in [Wiener 1999]. URL: http://www.cs.ucdavis.edu//rogaway/umac/. Citations in this document: §2.
[Blake et al. 2000] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, Elliptic curves in cryptography, Cambridge University Press, Cambridge. ISBN 0-521-65374-6. MR 1771 549. Citations in this document: §4.
[Blakley and Chaum 1985] G. R. Blakley and David Chaum (editors), Advances in cryptology: CRYPTO '84, Lecture Notes in Computer Science 196, Springer-Verlag, Berlin. ISBN 3-540-15658-5. MR 86j:94003. See [ElGamal 1985a].
[Blum et al. 1986] Lenore Blum, Manuel Blum, and Michael Shub, "A simple unpredictable pseudo-random number generator", SIAM Journal on Computing 15, 364-383. ISSN 0097-5397. MR 87k:65007. URL: http://cr.yp.to/bib/entries. html\#1986/blum. Citations in this document: §3.
[Buhler and Stevenhagen 2008] Joe P. Buhler and Peter Stevenhagen (editors), Surveys in algorithmic number theory, Mathematical Sciences Research Institute Publications 44, Cambridge University Press, New York; this book. See [Pomerance 2008], [Poonen 2008], [Schirokauer 2008], [Schoof 2008], [Stevenhagen 2008].
[Cohen and Frey 2005] Henri Cohen and Gerhard Frey (editors), Handbook of elliptic and hyperelliptic curve cryptography, CRC Press. ISBN 1-58488-518-1. See [Doche and Lange 2005].
[Diffie and Hellman 1976] Whitfield Diffie and Martin Hellman, "New directions in cryptography", IEEE Transactions on Information Theory 22, 644-654. ISSN 0018-9448. MR 55:10141. Citations in this document: §4, §5.
[Doche and Lange 2005] Christophe Doche and Tanja Lange, "Arithmetic of elliptic curves", pp. 267-302 in [Cohen and Frey 2005]. MR 2162729. Citations in this document: §4.
[ElGamal 1985a] Taher ElGamal, "A public key cryptosystem and a signature scheme based on discrete logarithms", pp. 10-18 in [Blakley and Chaum 1985]; see also newer version [ElGamal 1985b]. MR 87b:94037.
[ElGamal 1985b] Taher ElGamal, "A public key cryptosystem and a signature scheme based on discrete logarithms", IEEE Transactions on Information Theory 31, 469-472; see also older version [ElGamal 1985a]. ISSN 0018-9448. MR 86j:94045. Citations in this document: $\S 5$.
[Fiat and Shamir 1987] Amos Fiat and Adi Shamir, "How to prove yourself: practical solutions to identification and signature problems", pp. 186-194 in [Odlyzko 1987]. MR 88m:94023. Citations in this document: $\S 4$.
[FOCS 1979] - (no editor), 20th annual symposium on foundations of computer science, IEEE Computer Society, New York. MR 82a:68004. See [Wegman and Carter 1979].
[FOCS 1982] - (no editor), 23rd annual symposium on foundations of computer science, IEEE Computer Society, New York. MR 85k:68007. See [Yao 1982].
[FOCS 1997] - (no editor), 38th annual symposium on foundations of computer science, IEEE Computer Society Press, Los Alamitos. ISBN 0-8186-8197-7. See [Naor and Reingold 1997].
[Gilbert and Handschuh 2005] Henri Gilbert and Helena Handschuh (editors), Fast software encryption: 12th international workshop, FSE 2005, Paris, France, February 21-23, 2005, revised selected papers, Lecture Notes in Computer Science 3557, Springer, Berlin. ISBN 3-540-26541-4. See [Bernstein 2005].
[Gilbert et al. 1974] Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane, "Codes which detect deception", Bell System Technical Journal 53, 405-424. ISSN 0005-8580. MR 55:5306. Citations in this document: §2.
[Goldreich 1999] Oded Goldreich, Modern cryptography, probabilistic proofs and pseudorandomness, Springer-Verlag, Berlin. ISBN 3-540-64766-X. MR 2000f:94029. Citations in this document: §3.
[Hankerson et al. 2004] Darrel Hankerson, Alfred Menezes, and Scott Vanstone, Guide to elliptic curve cryptography, Springer, New York. ISBN 0-387-95273-X. MR 2054891. Citations in this document: $\S 4$.
[Koblitz 1987] Neal Koblitz, "Elliptic curve cryptosystems", Mathematics of Computation 48, 203-209. ISSN 0025-5718. MR 88b:94017. Citations in this document: §4.
[Koblitz and Menezes 2005] Neal Koblitz and Alfred J. Menezes, "Another look at 'provable security'", revised 4 May 2005; see also newer version [Koblitz and Menezes 2007]. URL: http://eprint.iacr.org/2004/152/.
[Koblitz and Menezes 2007] Neal Koblitz and Alfred J. Menezes, "Another look at 'provable security' ", Journal of Cryptology 20, 3-37; see also older version [Koblitz and Menezes 2005]. ISSN 0933-2790. Citations in this document: §4.
[Menezes et al. 1996] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of applied cryptography, CRC Press, Boca Raton, Florida. ISBN 0-8493-8523-7. MR 99g:94015. URL: http://cacr.math.uwaterloo.ca/hac. Citations in this document: §3, §5.
[Miller 1986] Victor S. Miller, "Use of elliptic curves in cryptography", pp. 417-426 in [Williams 1986]. MR 88b:68040. Citations in this document: §4.
[Naor and Reingold 1997] Moni Naor and Omer Reingold, "Number-theoretic constructions of efficient pseudo-random functions", pp. 458-467 in [FOCS 1997]. URL: http://www.wisdom.weizmann.ac.il/ naor/onpub.html. Citations in this document: §3.
[Nechvatal et al. 1999] James Nechvatal, Elaine Barker, Donna Dodson, Morris Dworkin, James Foti, and Edward Roback, "Status report on the first round of the development of the Advanced Encryption Standard", Journal of Research of the National Institute of Standards and Technology 104. URL: http://nvl.nist.gov/pub/ nistpubs/jres/104/5/cnt104-5.htm. Citations in this document: §3.
[Nechvatal et al. 2001] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin, James Foti, and Edward Roback, "Report on the development of the Advanced Encryption Standard (AES)", Journal of Research of the National Institute of Standards and Technology 106. URL: http://nvl.nist.gov/pub/nistpubs/ jres/106/3/cnt106-3.htm. Citations in this document: §3.
[Nevelsteen and Preneel 1999] Wim Nevelsteen and Bart Preneel, "Software performance of universal hash functions", pp. 24-41 in [Stern 1999]. Citations in this document: §2.
[Odlyzko 1987] Andrew M. Odlyzko (editor), Advances in cryptology - CRYPTO '86: proceedings of the conference on the theory and applications of cryptographic techniques held at the University of California, Santa Barbara, Calif., August 1115, 1986, Lecture Notes in Computer Science 263, Springer-Verlag, Berlin. ISBN 3-540-18047-8. MR 88h:94004. See [Fiat and Shamir 1987].
[Pomerance 2008] Carl Pomerance, "Smooth numbers and the quadratic sieve", pp. 69-81 in [Buhler and Stevenhagen 2008]. Citations in this document: §5.
[Poonen 2008] Bjorn Poonen, "Elliptic curves", pp. 183-207 in [Buhler and Stevenhagen 2008]. Citations in this document: §4.
[Rabin 1979] Michael O. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Technical Report 212, MIT Laboratory for Computer Science. URL: http://ncstrl.mit.edu/Dienst/UI/2.0/Describe/ncstrl.mit_lcs/MIT/LCS/ TR-212. Citations in this document: §5.
[Rivest et al. 1978] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, "A method for obtaining digital signatures and public-key cryptosystems", Communications of the ACM 21, 120-126. ISSN 0001-0782. URL: http://cr.yp.to/bib/entries.html\# 1978/rivest. Citations in this document: $\S 5$.
[Schirokauer 2008] Oliver Schirokauer, "The impact of the number field sieve on the discrete logarithm problem in finite fields", pp. 397-420 in [Buhler and Stevenhagen 2008]. Citations in this document: $\S 4$.
[Schneier 1996] Bruce Schneier, Applied cryptography: protocols, algorithms, and source code in C, 2nd edition, Wiley, New York. ISBN 0-471-12845-7. Citations in this document: §3.
[Schoof 2008] René Schoof, "Four primality testing algorithms", pp. 101-125 in [Buhler and Stevenhagen 2008]. Citations in this document: §5.
[Stern 1999] Jacques Stern (editor), Advances in cryptology: EUROCRYPT '99, Lecture Notes in Computer Science 1592, Springer-Verlag, Berlin. ISBN 3-540-65889-0. MR 2000i:94001. See [Nevelsteen and Preneel 1999].
[Stevenhagen 2008] Peter Stevenhagen, "The number field sieve", pp. 83-100 in [Buhler and Stevenhagen 2008]. Citations in this document: §5.
[Turing 1950] Alan M. Turing, "Computing machinery and intelligence", MIND 59, 433-460. ISSN 0026-4423. MR 12,208c. Citations in this document: §3.
[Wang et al. 2004] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu, "Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD". URL: http://eprint.iacr.org/2004/199/. Citations in this document: §5.
[Wegman and Carter 1979] Mark N. Wegman and J. Lawrence Carter, "New classes and applications of hash functions", pp. 175-182 in [FOCS 1979]; see also newer version [Wegman and Carter 1981]. URL: http://cr.yp.to/bib/entries.html\#1979/wegman.
[Wegman and Carter 1981] Mark N. Wegman and J. Lawrence Carter, "New hash functions and their use in authentication and set equality", Journal of Computer and System Sciences 22, 265-279; see also older version [Wegman and Carter 1979]. ISSN 0022-0000. MR 82i:68017. URL: http://cr.yp.to/bib/entries.html\#1981/ wegman. Citations in this document: §2.
[Wiener 1999] Michael Wiener (editor), Advances in cryptology-CRYPTO '99, Lecture Notes in Computer Science 1666, Springer-Verlag, Berlin. ISBN 3-5540-66347-9. MR 2000h:94003. See [Black et al. 1999].
[Williams 1980] Hugh C. Williams, "A modification of the RSA public-key encryption procedure", IEEE Transactions on Information Theory 26, 726-729. ISSN 0018-9448. URL: http://cr.yp.to/bib/entries.html\#1980/williams. Citations in this document: §5.
[Williams 1986] Hugh C. Williams (editor), Advances in cryptology: CRYPTO '85, Lecture Notes in Computer Science 218, Springer, Berlin. ISBN 3-540-16463-4. See [Miller 1986].
[Yao 1982] Andrew C. Yao, "Theory and applications of trapdoor functions", pp. 80-91 in [FOCS 1982]. Citations in this document: §3.
[Yung et al. 2006] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin (editors), 9th international conference on theory and practice in public-key cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, Lecture Notes in Computer Science 3958, Springer, Berlin. ISBN 978-3-540-33851-2. See [Bernstein 2006].

```
DANIEL J. BERNSTEIN
Department of Mathematics, Statistics, and Computer Science
M/C 249
The University of Illinois at ChicaGo
CHICAGO, IL 60607-7045
United States
    djb@cr.yp.to
```


[^0]: Mathematics Subject Classification: 94A62.
 Permanent ID of this document: 9774ae5a1749a7b256cc923a7ef9d4dc. Date: 2008.05.01.

