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Abstract. Let u be a uniform random function from b-bit strings to
b-bit strings. Fix m ≥ 1. Define

u+
m(g1, g2, . . . , gm) = u(u(· · ·u(u(g1) + g2) + · · ·) + gm).

This paper presents a short proof that u+
m is unpredictable: specifically,

if A is an algorithm that performs at most q oracle queries, and v is a
uniform random function from mb-bit strings to b-bit strings, then the
A-distance from u+

m to v is at most mq(mq − 1)/2b+1. It was already
known that u+

m was unpredictable, but previous proofs were much more
complicated.
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1 Introduction

Let u be a uniform random function from b-bit strings to b-bit strings; in other
words, let u(0), u(1), u(2), . . . , u(2b − 1) be independent uniform random b-bit
strings. Define

u+(g1, g2, . . . , gm) = u+
m(g1, g2, . . . , gm) = u(u(· · · u(u(g1) + g2) + · · ·) + gm)

for each integer m ≥ 0 and each mb-bit string (g1, g2, . . . , gm). For example,
u+() = u+

0 () = 0, and u+(g1, g2) = u+
2 (g1, g2) = u(u(g1) + g2).

This paper presents a short proof that u+
m is unpredictable for m ≥ 1—i.e.,

u+
m is indistinguishable from a uniform random function from mb-bit strings to
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b-bit strings. More precisely, if A is an algorithm that performs at most q oracle
queries, and v is a uniform random function from mb-bit strings to b-bit strings,
then the A-distance from u+

m to v is at most mq(mq − 1)/2b+1. Here the A-

distance from u+
m to v is |Pr[A(u+

m) = 1] − Pr[A(v) = 1]|, where A(f) means
the output of A using an oracle for f .

The heart of the proof—see Section 2—is that u+
m has large interpolation

probabilities: if x1, x2, . . . , xk are distinct mb-bit strings, and y1, y2, . . . , yk are b-
bit strings, then (u+

m(x1), u
+
m(x2), . . . , u

+
m(xk)) = (y1, y2, . . . , yk) with probability

at least (1 − ε)/2bk where ε = mk(mk − 1)/2b+1. The rest of the proof—see
Section 3—is a broad principle having nothing to do with the details of u+

m: any
random function with large interpolation probabilities is unpredictable. Section
4 discusses a few standard consequences of the unpredictability of u+

m.

History

The construction of u+
m is called “cipher block chaining.” The unpredictability

of CBC is not a new result: Bellare, Kilian, and Rogaway proved in [2, Theorem
3.1] that the q-query distance from u+

m to v is at most 3m2q2/2b+1. Their proof
is vastly more complicated than the proof here.

In reaction to a draft of [2], I wrote [3], explaining a much simpler way
to prove unpredictability. [3, Theorem 3.1] is the same as Theorem 3.1 in this
paper. I illustrated the theorem with a construction different from CBC, but
commented at the end of [3, Section 5] that the theorem would also allow an
easy proof of unpredictability for CBC. This paper presents that proof.

A subsequent Bellare-Rogaway preprint “The Game-Playing Technique,”
now at Draft 0.4 after the correction of some serious errors, presents (among
other things) another proof of unpredictability for CBC. The authors describe
their proof as “elementary”; I agree that it is an improvement over the proof in
[2], but it is still much more complicated than necessary.

Bellare and Rogaway say that their approach “can lead to more easily verified,
less error-prone proofs than those grounded in more conventional probabilistic
language.” I see no justification for that claim. I see many cryptographic proofs
that are unnecessarily complicated because the authors simply don’t know the
standard language of probability theory,1 let alone how to competently use it;2

but the obvious solution is to educate people, not to reinvent the wheel.

1 There’s much more to the language than the simplified concepts of “event” (subset
of a finite universe) and “probability” (subset size divided by universe size) that we
teach to undergraduates. Most importantly, the concept of a “random variable” has
had a standard mathematical definition for seventy years and is a tremendous time-
saver in probabilistic definitions, theorems, and proofs. Warning to undergraduates:
“random” does not imply “uniform” or “discrete” or “independent of everything
else.” For definitions see, e.g., [3].

2 For example, many cryptographers appear to believe that figuring out the success
probability of a protocol requires separately analyzing the success probability of the
first step, the conditional success probability of the second step, etc. See, e.g., the
CBC proofs in [2] and [7].



2 CBC has large interpolation probabilities

Theorem 2.1. Let G be a finite commutative group. Let u be a uniform random

function from G to G. Define u+(g1, . . . , gi) = u(u(· · · u(g1) + · · ·) + gi) for all

(g1, . . . , gi) ∈ G0 ∪G1 ∪G2 ∪ · · ·. Let m and k be integers with m ≥ 1 and k ≥ 0.
Let x1, x2, . . . , xk be distinct elements of Gm. Let y1, y2, . . . , yk be elements of

G. Then (u+(x1), u
+(x2), . . . , u

+(xk)) = (y1, y2, . . . , yk) with probability at least

(1 − ε)/#Gk where ε = mk(mk − 1)/2#G.

In other words, every k-interpolation probability of u+
m is at least (1−ε)/#Gk.

Proof. Define S = {x1, x2, . . . , xk}. Define P ⊆ G1 ∪ · · · ∪ Gm as the set of
nonempty prefixes of x1, x2, . . . , xk. Note that #P ≤ mk.

Each element of P can be written uniquely as (q, g) with g ∈ G and q ∈
G0 ∪ P . Define chop(q, g) = q and last(q, g) = g.

Define a function f : G0 ∪ P → G as admissible if f() = 0, f(xi) = yi for
all i, and the function p 7→ f(chop p) + last p from P to G is injective. Define f
as being compatible with u if u(f(chop p) + last p) = f(p) for every p ∈ P .

Observe that each admissible function f has probability 1/#G#P of being
compatible with u. (Proof: p 7→ u(f(chop p)+last p) is a uniform random function
from P to G, so it has probability 1/#G#P of matching f .) Furthermore, if an
admissible function f is compatible with u, then (u+(x1), u

+(x2), . . . , u
+(xk)) =

(y1, y2, . . . , yk); in fact, u+(p) = f(p) for every p ∈ G0 ∪ P . (Proof: u+() =
0 = f(). For p ∈ P , assume inductively that u+(chop p) = f(chop p). Then
u+(p) = u(u+(chop p) + last p) = u(f(chop p) + last p) = f(p).)

If two different admissible functions f, f ′ are compatible with u then f(p) =
u+(p) = f ′(p) for every p ∈ G0 ∪ P , contradiction. I will show in a moment
that there are at least (1 − ε)#G#P−k admissible functions f . Therefore, with
probability at least (1− ε)#G−k, some admissible function f is compatible with
u, and in particular (u+(x1), u

+(x2), . . . , u
+(xk)) = (y1, y2, . . . , yk) as claimed.

To count admissible functions, consider a uniform random function f : G0 ∪
P → G. Each of the conditions f() = 0, f(x1) = y1, . . . , f(xk) = yk is satisfied
with probability 1/#G. These conditions are independent, since x1, . . . , xk are
distinct and m ≥ 1; thus f satisfies all the conditions with probability #G−1−k.

If p, p′ are distinct elements of P then f(chop p)+ last p = f(chop p′)+ last p′

with conditional probability at most 1/#G. (If chop p = chop p′ and last p =
last p′ then p = p′, contradiction. If chop p = chop p′ and last p 6= last p′ then
f(chop p) + last p cannot equal f(chop p′) + last p′. If chop p 6= chop p′ then at
least one of chop p, chop p′, let’s say chop p, is distinct from (); thus f(chop p) is
conditionally uniform, so it equals f(chop p′) + last p′ − last p with probability
1/#G. Note that requiring G to be a commutative group is overkill here.)

Hence the conditional probability of any collisions in p 7→ f(chop p) + last p
is at most #P (#P − 1)/2#G ≤ ε; i.e., f is admissible with probability at least
(1−ε)#G−1−k; i.e., there are at least (1−ε)#G−1−k#G#P+1 = (1−ε)#G#P−k

admissible functions f . ut



Example

Say G = Z/106, m = 3, k = 3, x1 = (1, 2, 3), x2 = (1, 2, 4), and x3 = (3, 1, 4).
Then S = {(1, 2, 3), (1, 2, 4), (3, 1, 4)} and

P = {(1), (3), (1, 2), (3, 1), (1, 2, 3), (1, 2, 4), (3, 1, 4)}.

There are at most mk = 9 elements of P : in fact, only 7, since (1, 2, 3) and
(1, 2, 4) share some prefixes.

A function f : G0∪P → G is admissible if and only if f() = 0, f(1, 2, 3) = y1,
f(1, 2, 4) = y2, f(3, 1, 4) = y3, and the seven quantities

f() + 1, f() + 3, f(1) + 2, f(3) + 1, f(1, 2) + 3, f(1, 2) + 4, f(3, 1) + 4

are distinct. There are #G4 functions satisfying the equations (i.e., #G4 choices
of f(1), f(3), f(1, 2), f(3, 1)), and there are 7(7 − 1)/2 = 21 inequalities each
eliminating at most #G3 functions, so there are at least #G4−21#G3 admissible
functions.

An admissible function f is compatible with u if and only if u(f()+1) = f(1),
u(f() + 3) = f(3), u(f(1) + 2) = f(1, 2), u(f(3) + 1) = f(3, 1), u(f(1, 2) + 3) =
f(1, 2, 3), u(f(1, 2) + 4) = f(1, 2, 4), and u(f(3, 1) + 4) = f(3, 1, 4), This occurs
with probability exactly 1/#G7 for each f , and if it does occur then u+(1, 2, 3) =
y1, u+(1, 2, 4) = y2, u+(3, 1, 4) = y3. It cannot occur for two f ’s simultaneously,
so it occurs with probability at least (#G4−21#G3)/#G7 = (1−21/#G)/#G3.

3 Large interpolation probabilities imply unpredictability

Theorem 3.1. Let ϕ be a random function from a set S to a finite set T . Let q
be an integer with q ≥ 0. Let A be an algorithm that performs at most q distinct

oracle queries. Assume, for all k ∈ {0, 1, 2, . . . , q}, all y1, y2, . . . , yk ∈ T , and all

distinct x1, x2, . . . , xk ∈ S, that (ϕ(x1), ϕ(x2), . . . , ϕ(xk)) = (y1, y2, . . . , yk) with

probability at least (1 − ε)/#T k. Then the A-distance between ϕ and uniform is

at most ε.

In other words, if every k-interpolation probability of ϕ is at least (1−ε)/#T k

for all k ∈ {0, 1, 2, . . . , q}, then ϕ cannot be predicted with probability larger
than ε by an algorithm that performs at most q oracle queries. Note that this is
an information-theoretic statement: the run time of the algorithm is irrelevant.

Theorem 3.1 appears in my paper [3]. I have included a (slightly shorter)
proof here for completeness.

Proof. For each k ∈ {0, 1, 2, . . . , q}, each y = (y1, y2, . . . , yk) ∈ T k, and each
x = (x1, x2, . . . , xk) ∈ Sk with x1, x2, . . . , xk distinct, first define α(x, y) as the
conditional probability that A’s distinct oracle queries are exactly x1, x2, . . . , xk

and A’s output is 1, given that the oracle responses are y1, y2, . . . , yk.
In other words, α(x, y) is the chance that A decides to issue oracle query x1,

then—given response y1—to issue oracle query x2, and so on.



Next define βf (x, y) as the probability that (f(x1), . . . , f(xk)) = (y1, . . . , yk).
Then α(x, y)βf (x, y) is the probability that, when A uses f as an oracle, its
distinct oracle queries are x1, x2, . . . , xk, the oracle responses are y1, y2, . . . , yk,
and A’s output is 1. Sum over all x, y to obtain the overall probability that A
prints 1: namely, Pr[A(f) = 1] =

∑
x,y α(x, y)βf (x, y).

By hypothesis βϕ(x, y) ≥ (1− ε)/#T k = (1− ε)βv(x, y) where v is a uniform
random function from S to T . Hence Pr[A(ϕ) = 1] =

∑
x,y α(x, y)βϕ(x, y) ≥

(1 − ε)
∑

x,y α(x, y)βv(x, y) = (1 − ε) Pr[A(v) = 1] ≥ Pr[A(v) = 1] − ε. Similarly
Pr[A(ϕ) 6= 1] ≥ Pr[A(v) 6= 1] − ε. Thus the A-distance between ϕ and v is at
most ε. ut

Theorem 3.2. Let m and q be integers with m ≥ 1 and q ≥ 0. Let G be a finite

commutative group. Let u be a uniform random function from G to G. Define

u+
m(g1, g2, . . . , gm) = u(u(· · · u(u(g1) + g2) + · · ·) + gm)

for all (g1, g2, . . . , gm) ∈ Gm. Let A be an algorithm that performs at most q
distinct oracle queries. Then the A-distance between u+

m and uniform is at most

mq(mq − 1)/2#G.

Proof. If k ∈ {0, 1, . . . , q} then (u+
m(x1), u

+
m(x2), . . . , u

+
m(xk)) = (y1, y2, . . . , yk)

with probability at least (1 − mq(mq − 1)/2#G)/#Gk by Theorem 2.1. Apply
Theorem 3.1. ut

4 Standard consequences

From uniform to unpredictable

Say f is a uniform random permutation of the set of b-bit strings. It is difficult to
distinguish f from u, so it is difficult to distinguish f+

m from u+
m. More precisely,

the q-query distance from f+
m to u+

m is at most the mq-query distance from f to
u, which is at most mq(mq − 1)/2b+1. Hence f+

m is unpredictable: the q-query
distance from f+

m to uniform is at most mq(mq − 1)/2b.
More generally, if f is a random function from b-bit strings to b-bit strings,

and if f is unpredictable to all fast algorithms, then f+
m is unpredictable to

all fast algorithms. For example, if k is a uniform random 128-bit string, then
the random function AESk from 128-bit strings to 128-bit strings is conjectured
to be unpredictable, so the random function (AESk)+20 from 2560-bit strings to
128-bit strings is also conjectured to be unpredictable.

Message authentication

One way to securely authenticate a message t is to transmit it as (t, v(t)),
where v is a secret uniform random function shared by the sender and receiver.
This protocol remains secure when v is replaced with any unpredictable random
function—in particular, u+

m, or more generally f+
m when f is unpredictable.

Beware that it is not a good idea to use CBC to authenticate messages in
practice:



• Old reason: f+
m takes inputs of a fixed positive length, namely mb bits,

whereas most applications send variable-length messages. Switching from
f+

m to f+ is not safe: observe that f+() = 0, for example, and f+(0) =
f+(0,−f+(0)). On the other hand, minor variants of f+ are unpredictable.

• New reason: Other message-authentication codes are much faster and provide
much stronger security guarantees. See, e.g., [4].

CBC nevertheless remains—thanks to its simplicity—an interesting test case for
security-proof methodologies.
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