
This is roughly what I said in class on 10 January 2005.

My computer is too slow

I have a problem: my computer is too slow. Maybe you can help me with this
problem. You’ve probably had similar problems: your computers are too slow.
Do you have any suggestions for what I should do?

[Suggestion from class: “Stop using the computer.”] Okay, that’s fix number
one. Stop using the computer.

Unfortunately, no matter how hard I try, I can’t really stay away from the
computer. So I still have this problem: my computer is too slow. Any other
suggestions?

[Suggestion from class: “Buy a faster computer.”] Okay, that’s fix number
two. Buy a faster computer. One possibility is to buy a parallel computer, i.e.,
buy more computers, which will help if we want the computer to do something
parallelizable. Of course, this costs money, but it’s better to spend money on
computers than to waste it on food, for example, or on graduate students.

Well, okay, I have a faster computer. Now I’ve run out of money and my
computer is still too slow.

What do I mean by “too slow”? My standards for exactly how long I’m
willing to wait depend on what I’m doing. I’m always happy if the computer
responds instantly, by which I mean within 1/60 of a second. Sometimes I’m
willing to wait longer. For example, users seem to be happy to have a web page
appear within one second. Or maybe not. Wouldn’t it be cool to have web
pages appearing the instant you click on them? Maybe users are unhappy but
have simply given up complaining.

If I’m doing a computation to announce at a conference in six months then
I probably don’t need the answer today, or this week, or even this month. I’m
happy to let the computer chug along in the background while I do something
else. On the other hand, sometimes I do a computation and I need the answer
right now—and the computer doesn’t give it to me that quickly.

The bottom line is that I tell the computer to do something, let’s call it X,
and I’m forced to wait for the response. I tell the computer to do something
else, let’s call it Y , and I’m forced to wait for the response. Et cetera. For these
operations X and Y , my computer is too slow. Any other suggestions?

[Suggestion from class: “Make X faster.”] Okay, that’s fix number three.
Let me be careful to distinguish between changing what I want the computer to
do—that was fix number one—and changing how the computer does it—that’s
the new idea. We’re still going to perform the same operation X, but we’re
going to do it in a better way.

The first step is to figure out why the current code for X takes as long as
it does. This is called “algorithm analysis.” The operation X is some function:
it has an output, namely the information that I want the computer to provide,
and an input, namely the information that the computer already has. The
“algorithm” is the sequence of instructions that the computer follows to compute

1



the output starting from the input. “Analysis” means understanding, or at least
trying to understand, the time taken by the algorithm.

The second step is to write better code for X. This is called “algorithm
improvement.” Sometimes people say “algorithm design,” which doesn’t really
capture what we’re trying to do. It’s easy to design an algorithm for this
function; all of the functions that we look at in algorithms courses are obviously
computable. The problem is to design a fast algorithm. Sometimes people say
“optimization,” which is going too far: “optimization” means finding the best

algorithm, whereas people almost always find an algorithm that’s merely better ,
not the best. We’ll see many examples of that in this course.

Then do the same for Y and for any other operations that are too slow.

Goal of this course

This course will focus on some specific operations X, Y , etc.: namely, a few
fundamental cryptographic operations.

What does cryptography do? It protects messages sent through the network.
Anyone with access to the network can intercept mail messages and web pages
and “packets” (little messages sent between computers) to see what the messages
say; he can also send fake messages that look like real messages. Cryptography
scrambles and unscrambles communications (messages; packets; whatever) to
protect against forgery and against espionage. An attacker who forges a message
won’t be able to scramble it in the right way, so when we unscramble it we’ll
see that it’s a forgery and that we should throw it away. Similarly, an attacker
who intercepts a scrambled credit-card number, for example, won’t be able to
figure out what the credit-card number is.

High-speed cryptography is important for busy network servers. Consider,
for example, the following quote (from 2003, I admit, but computers weren’t
that much slower back then): “Verifying signed resource records [i.e., performing
cryptographic operations] is computationally intensive [i.e., is painfully slow].
This has slowed deployment of DNS security.” In other words, the computer
was so slow at cryptographic operations that users felt compelled to resort to
the first fix: not doing the computation at all; not deploying the cryptographic
tools necessary to protect their communications.

Of course, there are many speed problems, speed bottlenecks, other than
cryptography. Probably the most important example is video games. That’s
something where it’s really important to get a response within 1/60 of a second.
Anyway, some of the techniques in this course are applicable to problems other
than cryptography. Other techniques are dedicated to cryptography, and often
to the particular functions that I’m computing. Usually it will be obvious, when
I describe a technique, how broadly applicable the technique is; sometimes I’ll
say it explicitly. But the goal of this course isn’t to survey techniques with
a particular scope. The goal is to compute certain cryptographic functions as
quickly as possible. I’ll pull together every technique that helps the bottom line.

2



Other courses

The things I’ve said shouldn’t sound completely new to you. In particular,
you’re required to have some experience with algorithm analysis and algorithm
improvement. The prerequisite for this course is a baby algorithms course, such
as MCS 401 or CS 401. (I’ll say in a moment what “baby” means here.) I
realize that some of you are new graduate students not familiar with our course
numbers, so here’s a typical quote from 401: “Heapsort takes time n lg n times,
um, some constant? Uh. . . ” You might have used a book by Cormen, Leiserson,
Rivest, and Stein, where the authors say that working out constants is “like,
totally tedious, dude.” If you’ve seen these quotes before then you’ve probably
taken a baby algorithms course.

The most obvious difference in flavor between 401 and this course is that
we will pay attention to constant factors. We’ll say things like “This takes
3.625(n + 170) clock cycles on an Athlon XP” and “Cormen, Leiserson, Rivest,
and Stein are ignorant, lazy bums.” Clock cycles are a unit of time; for example,
a 2000MHz Athlon XP has 2 billion clock cycles per second. You divide one
microsecond by the number of megahertz to get a clock cycle.

Notice that these constant factors depend on the computer. Sometimes one
computer takes 10 clock cycles for a simple operation while another computer
takes just 1 clock cycle; this affects the time for any algorithm built on top that
operation.

You might have seen some computer-dependent analysis and optimization
in courses on architecture, assembly language, “optimizing” compilers (which I
should call “improving” compilers, but then nobody would understand what I’m
talking about), supercomputing, etc. [Class feedback at this point: some people
have seen architecture and assembly language; some people have had compiler
courses; a few people have had supercomputing courses.] None of these are
prerequisites. I’ll be developing all the material I need as part of this course.

I’ll be starting with the UltraSPARC, an overpriced chip with the virtue
that its performance is easy to understand. I’ll then move on to the PowerPC
(the CPU in Macs), the Pentium III, et al. We’ll learn how all of these chips
work, and we’ll see speedups that depend on the chip details.

Another reason to pay attention to constant factors is that many higher-
level speedups—in fact, most of the speedups in the algorithms literature—are
“only” constant-factor speedups. (When I talk about “level,” I’m talking about
building more complicated functions on top of simpler functions. A high-level
function uses lower-level functions. A machine instruction is the lowest-level
function.)

For example, later on we’ll spend time looking at the problem of modular
exponentiation: “Compute xe mod n.” This shows up in cryptography in a few
important ways that I’ll talk about later.

The input is an integer x ≥ 0, an integer e ≥ 0, and an integer n ≥ 1.
(Allowing negative exponents creates a quite different problem.) This isn’t
actually a complete specification of the input, as you’ll see if you give this
problem to a beginning programmer—he’ll say int x, which allows only a 32-

3



bit integer, whereas I want to allow much larger integers. To completely specify
the problem, I’ll have to tell you how these integers are represented inside the
computer, which later on we’ll see is an important issue. For the moment, let’s
imagine integers as being represented as strings of digits, the same way you
write them on paper.

Anyway, the output is the remainder when you divide xe by n; in other
words, xe − nbxe/nc, where, as you know, bxe/nc is the greatest integer less
than or equal to xe/n; in other words, the unique integer in {0, 1, . . . , n − 1}
that is congruent to xe modulo n, i.e., that is xe minus some multiple of n. This
last characterization is useful for proofs.

This problem can be solved in polynomial time. You might have seen a
“fast” algorithm for this problem that takes “like, um, lg e multiplications,
dude.” That algorithm actually takes about 1.5 lg e multiplications, and the
same number of divisions by n with remainder.

We’ll see a better exponentiation algorithm that takes about (1+1/lg lg e) lg e
multiplications. A medium-size input might have x, e, n with hundreds of digits,
let’s say a thousand bits each; then lg e is about 1000, so 1 + 1/lg lg e is about
1.1, rather than the previous 1.5. That’s a quite noticeable speedup. It’s like
turning your 2.2GHz Pentium into a 3GHz Pentium, or turning your 3GHz
Pentium into a 4GHz Pentium, which is faster than anything Intel makes today.

We’ll also see lower-level speedups, such as saving division time compared to
multiplication time, and saving time in multiplication. These speedups combine
to produce huge improvements. But, even by itself, this improvement from 1.5
to 1.1 is important. You can’t see this improvement in the Cormen-Leiserson-
Rivest-Stein world: 1.5 lg e and (1 + 1/lg lg e) lg e are both oversimplified into
Θ(lg e).

The other obvious difference in flavor between 401 and this course is that
I’m looking at different functions. 401 focuses on sorting, for example, and
various graph operations such as shortest paths. This course focuses on a few
cryptographic operations: for example, I’ll start with a particular authentication
function, a function that scrambles messages to prevent forgery.

You might have seen some of the underlying mathematics in previous courses
on algebra, number theory, or cryptography. [Class feedback at this point: most
people have had a first cryptography course; some people have had algebra and
number theory.] None of these are prerequisites. The bad news, for those
of you who’ve seen some cryptography before, is that a typical introductory
cryptography course is probably the least relevant of all the related courses that
I’ve mentioned. I’ll be explaining modern cryptography from scratch.

By the way, it’s possible for an advanced algorithms course to focus on the
same functions as in 401—or just one of those functions! Knuth’s famous Art

of computer programming spends hundreds of pages on sorting algorithms.

A homework problem

I’ll sometimes label a homework assignment as being required. Other homework
assignments, such as this one, are optional and have nothing to do with your

4



grade, but they’re worth exploring if you’d like to devote extra time to the
course material.

On an UltraSPARC—more precisely, a 900MHz UltraSPARC III (specifically
icarus.cc.uic.edu, which I believe all UIC students have accounts on)—the
following program (compiled with gcc -o uvw uvw.c -O3; the gcc version, as
reported by gcc --version, was 3.3.1) took almost exactly 4 · 109 clock cycles:

main()

{

double u = 0;

double v = 0;

double w = 0;

int i;

for (i = 0;i < 1000000000;++i) {

v *= w;

u += v;

}

printf("%lf\n",u);

}

When I changed v *= w to v *= u, the program slowed down to 8 · 109 clock
cycles. Why did it slow down? Can you explain the numbers 4 and 8? Can you
explain the performance of the program on another CPU, such as a Pentium
III? If that’s too easy, try explaining the performance of a more complicated
program, such as a heapsort program.

5


