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A modified split-radix FFT
with reduced arithmetic complexity

Steven G. Johnson* and Matteo Frigo

TABLE |
FLOP COUNTS(REAL ADDITIONS + MULTIPLICATIONS) OF STANDARD
COMPLEX-DATA SPLIT RADIX AND OUR NEW ALGORITHM

Abstract— Recent results by Van Buskirket al. have broken the
record set by Yavne in 1968 for the lowest arithmetic complexity
(exact count of real additions and multiplications) to compute
a power-of-two discrete Fourier transform. Here, we present a
simple recursive modification of the split-radix algorithm that

[ N [ Yavne split radix] New split radix |

computes the DFT with asymptotically about 6% fewer opera- 64 1160 1152
tions than Yavne, matching the count achieved by Van Buskirk’s 128 2824 2792
program-generation framework. We also discuss the application 256 6664 6552
of our algorithm to real-data and real-symmetric (discrete cosine) 1501224 éiggi égggg
transforms, where we are again able to achieve lower arithmetic 5048 =833 5558
complexity than previously published algorithms. 7096 179040 166856
Index Terms—FFT, DCT, split radix, arithmetic complexity 8192 376840 364680
16384 819208 791264

I. INTRODUCTION

AST Fourier transform (FFT) algorithms all compute
the discrete Fourier transform (DFT) of siz& in multiplication is implemented with the usual 4 multiplies and
O(Nlog N) operations, so any improvement in them relieg additions). See also Table I.
on reducing the exact number or cost of these operationsThe first demonstration of this improved count was in a
rather than their asymptotic functional form. For many yeargp04 Usenet post by Van Buskirk [8], who had managed to
the time to perform an FFT was dominated by real-numbgave 8 multiplications over Yavne (with the same number of
arithmetic, and so considerable effort was devoted to proviadditions) by hand optimization fa¥ = 64, using an unusual
and achieving lower bounds on the exact count of arithmetdgorithm based on decomposing the DFT into its real and
operations (real additions and multiplications), herein calléghaginary and even-symmetry and odd-symmetry components
“flops” (floating-point operations), required for a DFT of gessentially, type-I discrete cosine and sine transforms). These
given size [1]. Although the performance of FFTs on recefiitial gains came by rescaling the size-8 sub-transforms
computer hardware is determined by many factors besidgsd absorbing the scale factor elsewhere in the computation
pure arithmetic counts [2], there still remains an intriguingrelated savings occur in the type-Il discrete cosine transform
unsolved mathematical question: what is the smallest numlggrsize 8, where one can save six multiplications by rescaling
of flops required to compute a DFT of a given si2g in the outputs [9] as discussed in Sec. VIII). Van Buskirk later
particular for the important case & = 2™? In 1968, Yavne developed an automatic code-generation implementation of his
[3] presented what became known as the “split-radix” FFdpproach that achieves Eq. (1) given an arbitrary fi*éd=
algorithm [4]-[6] for N = 2™, and achieved a record flop2™ [10]. Meanwhile, following his initial posting, we devel-
count ofdN1g N — 6N + 8 for N > 1 (wherelg denotes oped a way to explicitly achieve the same savings recursively
log,), an improvement by 20% over the classic “radix-2in a more conventional split-radix algorithm. Our split-radix
algorithm presented by Cooley and Tukey (flopssNlg N) approach involves a recursive rescaling of the trigonometric
[7]. Here, we present a modified version of the split-radix FFdonstants (“twiddle factors” [11]) in sub-transforms of the
that (without sacrificing numerical accuracy) lowers the flopFT decomposition (while the final FFT result is still the
count by a further 5.6% (%) to: correct, unscaled value), relying on four mutually recursive
UNIgN — 2N —21gN - 2(-1)sNlgN (1) Stages. o ,
L16(_1)eN 4 A few rigorous b.ounds'on the DFT'’s arlt.hmetlc complexity
27 have been proven in the literature, but no tight lower bound on
for N > 1, where the savings (starting &t = 64) are purely the flop count is known (and we make no claim that Eq. (1) is
in the number of real multiplications (when general complethe lowest possible). A realizabt(N) lower bounds known
for the number of irrational real multiplications fdy = 2™,
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[15], in fact, so the overall arithmetic complexity must bé&FT.) These summations are DFTs of si¥¢2 and N/4, and
O(N log N). Furthermore, the number of complex additions ithew?; for k > N/4 are related td = 0... N/4—1 via trivial
Cooley-Tukey algorithms (such as split-radix) has been arguedlltiplications by: and —1. Thus, we obtain Algorithm 1.
to be optimal [1], [16], but only under the constraint that the
structure of the twiddle factors is unmodified. Our algorithmlgorithm 1 Standard conjugate-pair split-radix FFT of length
does modify the twiddle factors, but nevertheless does ndt (divisible by 4). (Special-case optimizations fér= 0 and
change the number of complex additions. k = N/8 are omitted from the loop.)

In the. following, we first re\{iew the known varia'n.t of' thefunction yy,—o. v—_1 — splitfty (z,):
split-radix FFT that is the_ starting point for our n_10d|f|cat|on:_;, Uky—o...N/2—1 — SPLtEF /5 (T2,
then descnbg our modlflgd algorithm, _analyze its c_om_plexny Za—o..na—1 < SPLtFE g 1y (Tany11)
(both theoretically and with a sample implementation instru- Zh o a1 — SPLtFFEy 4 (Tan,-1)
mented to count the operations) as well as its numerical accusgy 1 = () to N/4—1do
racy, describe its application to real-input and real-symmetric
(discrete cosine) transforms where one also finds arithmetic
gains over the literature, and conclude with some remarks
about practical realizations and further directions.

Yp — Up + (wfﬁ,zk + w;,kz;)

Yriny2 — we — (whzp +wy'2p)
Uke/a  Uenya — 0 (Whan = wi'2)
Ykt3n/a — Unynya + 0 (Wh2e — w;,’“z,’c)
end for

Il. CONJUGATEPAIR SPLIT-RADIX FFT

The starting point for our improved algorithm is not the For clarity, Algorithm 1 omits special-case optimizations
standard split-radix algorithm, but rather a variant called thgr 1 — 0 in the loop (whereJ%; is unity andw z;, requires
“conjugate-pair” FFT that was itself initially proposed to reng flops) and fork = N/8 (wherew®, = (1 —i)/v/2 and
duce the number of flops [17], but its operation count was latgfquires only 2 real multiplications instead of 4 fof; z;).
proved identical to that of ordinary split radix [18]-[20]. This(n this paper, we assume the standard 4 mults + 2 adds form
variant was rediscovered in unpublished work by Bernsteg} complex multiplication, rather than the 3 mults + 3 adds

[21], who argued that it reduces the number of twiddle-fact@griant of [22].) It also omits the base cases of the recursion:
loads and thus the memory pressure. We use it for a relatgd— 1 s just a copyy, = zo, and N = 2 is an addition

reason: because the conjugate-pair FFT exposes redundangies. ;. 4 »; and a subtractiony, = z, — ;. With these

in the twiddle factors, it makes possible rescalings of twiddigptimizations and base cases, noting that multiplications by
pairs that otherwise seem more difficult to extract. To derivéhd ; are free and extracting common sub-expressions such

the algorithm, recall that the DFT is defined by: as wk 2z, + wyF2}, the flop count of Yavne is obtained, or
N-1 a number of real additions(/N) and multiplicationsu (V)
Y = Z W, (2) given by (for 4/2 mult/add complex multiplies):

" Ny = SNgnN-Bn_ZCieNio 4
wherek =0... N — 1 andwy is the primitive root of unity alN) = g s T g §(’ )ET + )
exp(—2mi/N). Then, for N divisible by 4, we perform a 4 38 2 g N
decimation-in-time decomposition of, into three smaller uN) = §N1gN_ §N+ §(_1) +6 ()

DFTSs, ofzay,, (the even elements},y,, +1, andzy,, —1 (Where Traditionally.
x_1 = xy-_1)—this last sub-sequence would bg,, 3 in

the recursion is “flattened” into an iterative
algorithm that performs all the FFTs of a given size at once

standard split radix, but here is shifted cyclically byt.> We - L N/A—k
obtain: [23], may work in place., can exploit = —iwy" to
: halve the number of twiddle factors (see Sec. \di¢, but
N/2-1 i none of this affects the flop count.
o= > Wi/oT2ms
n2=0 N/4—1 I1l. NEwW FFT: RESCALING THE TWIDDLES
+wh Z wjnval/lzunm The key to reducing the number of 0|/oerations is the obser-
n4=0 vation that, in Algorithm 1, both;, and z;, (the k-th outputs
N/4—1 of the sizeN/4 sub-transforms) are multiplied by a twiddle
: n k ~k i i
Fwyk Z WN7Z$4n4—lv (3) factorwy orwy” before they are used to fing. This means
naz0 that we can rescale the si2é/4 sub-transforms bgnyfactor

) ) ) 1/5n/a,1; desired, and absorb the scale factor infps /4, at
where thewy and wy" are the conjugate pair of twiddleng cost. So, we merely need to find a rescaling that will save
factors (whereas ordinary split radix would havg andwyf).  some operations in the sub-transforms. (As is conventional in
(In this paper, we will use the term “twiddle factor” to refer tacounting FFT operations, we assume that all data-independent
all data-independent trigonometric constants that appear in@hstants likew sn/4 are precomputed and are therefore

. _ _ , not included in the flops.) Moreover, we rely on the fact that
Past formulations of the conjugate-pair FFT seat— —n4 and used an

, ) . . .
inverse DFT for this sub-transform, but they are essentially equivalent to ot _and k. have conjugate twiddle fagtors in the conjugate-
expression; the difference is a matter of convenience only. pair algorithm, so that a single rescaling below will simplify

k
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IL , . subsequent sections). We can now generally define:
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u\}\'\.“" ﬂ" hU\ “ l )I‘I) W ‘ M il “}lmlj \‘H because it means that we obtain,zx =t} 2, in all of the
}' ' "H' Hi“ M'W“ M 4 flops as above
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‘ scaled transforms and multiplication by; ; requires at most
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Algorithm 2 New FFT algorithm of lengthN (divisible

by 4). The sub-transformsiewfftSy 4 (z) are rescaled by
sn/4,, 10 Save multiplications. The sub-sub-transforms of size
% s 256 a4 512 e s se w04 IN/8,in turn, use two additional recursive subroutines from
k Algorithm 3 (four recursive functions in all, which differ in

Fig. 1. Scale factosy , from Eq. (7), vs. one period df for N = 212 = their Irescallngs).
4096. function yr—o. n—1 < newflty (z,):

{computes DFF

Up,—0...N/2—1 < newftt y /o (12n,)
both twiddle factors to save operations. Below, we begin with 0. N/a—1 — NeWIFtSn /4 (Tan,11)
an outline of the general ideas, and then analyze the premsg/ 0..Nja—1 newfftS v /4 (T4n,-1)
algorithm in Sec. IV. for k=0to N/4—1 do

Consider a sub-transform of a given siXethat we wish to Yi — U + (wfi/SN/z;,ka + w&ksN/41kz;§)

rescale by someé/sy , for each outputy,. Suppose we take
SNk = SN,k+N/4 = cos(2mk/N) for k < N/8. In this case,
yr from Algorithm 1 becomesy, «— ui/sn ik + (tnpze +
ty x2r), where

0.2

0.1

Yern/2 — Uk — (W Snjapzk + W;/kSN/4,kZ;C>
Yk+N/a < Uk N/4
— i (WA SN/ak2E — wg,ksN/47kz;€)
Yk+3N/4 < Uk4+N/4
(6) +1 (w%SN/AL’ka —w&kSN/zl’kZ;c)

tne =1 —itan(2rk/N) = wh/ cos(2mk/N). end for

Multiplying w%; z;. requires 4 real multiplications and 2 reafunction yi—o. n-1 < newfftSy (z,):

additions (6 flops) for generak, but multiplying ¢ 2 {computes DFT by ;}

requires only 2 real multiplications and 2 real additions (4 ug,—o...n/2—1 < newfftS2y/5 (x2n,)
flops). (A related rescaling was proposed in [24] to increasezy,—o..n/a—1 « NewfftSy 4 (Tan,11)
the number of fused multiply-add operations.) Thus, we haveZ;A:O_”1\,/4,1 — newfftSy 4 (v4n,-1)
saved 4 real multiplications in computing .z, + ty ;.2 for k=0 to N(4 —1do

but spent 2 real multiplications imy /sy and another 2 Yp — Up + ﬁN,kzk+t}*V7kz;€)
for w4 n/4/sn k. for what may seem to be no net change. .,
However, instead of computing;,/sy directly, we can YrtN/j2 = Uk — (tNa’“Zk +tN~,kzk)

instead push thé/sy i scale factor “down” into the recursive Ykt N/a — Ukynya — 1 (tN,ka — t}"v’kz};)

computation ofuy. In this way, it turns out that we can save . .

most of these “lost” multiplications by combining them with Yr43N/4 < UgyN/a T U ENKZE — tN,ka)

twiddle factors inside theV/2 transform. Indeed, we shall__end for

see that we need to pudhisy , down throughtwo levels of

recursion in order to gain all of the possible savings. Rather than elaborate further at this point, we now sim-
Moreover, we perform the rescaling recursively, so that thily present the algorithm, which consists of four mutually-

sub-transformsz;, are themselves rescaled Hy'sy,4 . for recursive split-radix—like functions listed in Algorithms 2-3,

the same savings, and the product of the sub-transform scailél analyze it in the next section. As in the previous sect|on,

factors is combined witlos(2k/N) and pushed up to the we omit for clarity the special-case optimizations for=

top-level transform. The resulting scale factog ;. is given andk = N/8 in the loops, as well as the trivial base cases for

by the following recurrence, where we lef = k¥ mod N/4: N =1andN =2.

IV. OPERATION COUNTS
1 for N <4

SN/, c08(2mka/N) for ky < N/S | (7 Algorithms 2 and 3 m_anifestly have the same number of
real additions as Algorithm 1 (for 4/2 mult/add complex
multiplies), since they only differ by real multiplicative scale
which has an interesting fractal pattern plotted in Fig. 1. Thfactors. So, all that remains is to count the numBé(N)
definition has the propertiesy o = 1, sy x4+n/4 = SNk, @and of real multiplicationssavedcompared to Algorithm 1, and
sn,N/a—k = SN,k (@ symmetry whose importance appears ithis will give the number of flops saved over Yavne. We must

SN=2m k =
SN/a,k, SIn(2Tkg/N)  Otherwise
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Algorithm 3 Rescaled FFT subroutines called recursivelyt first glance, thenewfftS2y (x) routine may seem to
from Algorithm 2. The loops in these routines hamre have the same number of multiplications sslitfft  (z),
multiplications than in Algorithm 1, but this is offset bysince the 2 multiplications saved in eath;, (as above) are

savings fromnewfftSy,4 (z) in Algorithm 2. exactly offset by thesy ;/sonx multiplications. (Note that
function yr—o. nv_1 «— newfftS2y (z,): we do not fold thesy 1 /san k INto thety , because we also
{computes DFT kay 1} have to scale by x/s2n k+n/4 @nd would thus destroy the
Upy—0...N/2—1 — NeWiTtS4y 5 (22n,) tn k2, common sub-expression.) However, we spend 2 extra
Zhy=0...Nja—1 — newfftSy /4 (T4n,41) multiplications in thek = 0 special case, which ordinarily
21’64:(]_”1\,/471 — newfttS /s (24n,-1) requires no multiplies, s_mceNyO/ngNM = 1/son,Nja #
for k=0to N/4—1do +1 (for N > 2) appears inyy/, andysy/4. Thus,
Y — uk + (tw,m + t}‘v,kzzﬁ) - (sn.k/52N k) Mso(N) = Msa(N/2) + 2Mg(N/4) — 2. (11)
YrNy2 Uk = (tN”fZ’“ +t7\ﬂk2;<> “(snk/s2nk) Finally, the routine newfftS4y (z) involves O(N) more
Yk+N/4 S Uk+N/4 multiplications than ordinary split-radix, although we have
—i tN,ka—t?v,k.ZL)-(SN,k/Szzv,k+N/4) endeavored to minimize this by proper groupings of the
Yk+3N/4 < Uk4N/4 operands. We save 4 real multiplications per loop iteration
+i(tnpzn — t}k\/ﬂkzllc) (SN /SN Kt N/4) k because of theéy ;. replacingw’ . However, because each
end for ’ output has a distinct scale factor,fx # sank+n/2 7

S4Nk+N/4 7 San,k+3N/4), We spend 8 real multiplications
per iteration, for a net increase of 4 multiplies per iteration
k. For thek = 0 iteration, however, théy, = 1 gains us
nothing, whilessn o = 1 does not cost us, so we spend 6 net
multiplies instead of 4, and therefore:

function yr—o. n_1 < newfftS4y (z,):
{computes DFT b4y 1}
uk?z:O...N/271 — newfftS2N/2 (Jfgnz)
Zhy=0...N/4—1 < NeWITtS /4 (Tan, 1)
224:0...N/4—1 — newfftSy,4 (T4n,—1)
for k=0to N/4—1do Mgy(N) = Mga(N/2) +2Mg(N/4) — N — 2. (12)

* / .
Yk {uk + (tN’ka +tN7’“Z’f>} (5N .k /548 k) Above, we omitted the base cases of the recurrerices,

Yk+N/2 < [uk — (tN,kzk + t*N,kz,’C)} the N =1 or 2 that we handle directly as in Sec. Il (without
recursion). There, we find/(N < 2) = Mg(N < 2) =

: (SN,k/34N,k+N/2)
Mgo(N < 2) = Mgy(1) = 0 (where the scale factors are

- /!
YrtN/4 | UktN/a — L EN K2R — t}k\f,kzk)}

unity), and Ms4(2) = —2. Finally, solving these recurrences
(SN.k/SaN N /4) by standard generating-function methods [25] (fr> 1):
Yk+3N/4 < [“k+N/4 +iltNgzr — t}k\”czfc } 9 38
* (8N.k/84N k+3N/4) M(N) = §N1gN - 2*7N +2IgN (13)

end for 6

2 LN 1
Z(=1)eN g N — =
tg(=1* g o7
Subtracting Eqg. (13) from the flop count of Yavne, we obtain
also count the numbers/s(N), Ms2(N), and Msa(N) of gq (1) and Table I. Separate counts of real adds/mults are
real multiplications saved (or spent, if negative) in our threggiained by subtracting (13) from (5).
rescaled sub-transforms. mewffty (z) itself, t.he number |, the above discussion, one immediate question that arises
of multiplications is clearly the same as Bplitffty (), is: why stop at four routines? Why not take the scale factors
since all scale factors are absorbed into the twiddle factors;;- newfftS4y (z) and push them down into yet another

(_1)lgN'

note thatsy/,, = 1 so thei = 0 special case is not oo rsive routine? The reason is, unlike riewftS2 y (z),
worsened either—and thus the savings come purely in the SyRs |50k sufficient symmetry: because the scale factors are
transforms: different fory, andy; x/2, no single scale factor far will

save us that multiplication, nor can we apply the same scale
factor to thety 2, & t}y , 2, common sub-expressions.

In newfftS v (), as discussed above, the substitutior of, In some FFT applications, such as convolution wif[h a fixed
for wk, means that 2 real multiplications are saved from ead§"el, it is acceptable to compute a scaled DFT instead of
twiddle factor, or 4 multiplications per iteratidnof the loop. the DFT, since any output scaling can be absorbed elsewhere
This savesV multiplications, except that we have to take int@t N0 cost. In this case, one would cadwiftSy (z) directly
account thek = 0 andk = N/8 special cases. Fdr = N/8, and saveMs(N) multiplications over Yavne, where:

M(N) = M(N/2) + 2Mg(N/4). 9)

tn. = 1 —1i, again saving two multiplications (by/+/2) per 2 20 2 e N 7 e N
twiddle factor. Sincety o = 1, however, thek = 0 special Ms(N) = §N1gN*§N+§(*1)g lngﬁ(*l) s,
case is unchanged (no multiplies), so we only save- 4 . . _ (14)
multiplies overall. Thus, with savings starting ab/s(16)= 4.

To verify these counts, as well as the correctness, accu-
Ms(N) = Mg2(N/2) +2Mg(N/4) + N — 4. (10) racy, and other properties of our algorithm, we created “toy”
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3e-16 . . . .
raise guestions about the numerical accuracy of our algorithm.
@@ new FFT

©-O original split radix Although we have not performed a detailed numerical analysis,
the reason for the similarity to standard split radix seems
clear upon closer inspection: weever addscaled values
with unscaled values, so that whenever standard split radix
computesa + b our new FFT merely computes: (a + b) for
some constant scale factarAn alternative explanation might
simply be that our scale factors are not very big, as described
below, but we have checked this: changing Eq. (7)sfgy; to

2.5e-16

2e-16

1.5e-16

rmsrelative error

le-16

e a less-symmetric form that always uses (and thus grows
very small forsy y/4—1, €.9.reachingl0=2° for N = 2%0),
0 the error varies by less than 10% from Fig. 2.
16 64 256 1024 4096 16384 65536 262144 1048576 . .
DFT sizeN Another concern, nevertheless, might be simply that

orel . dih § the scaling factor will grow so large/small as to induce

Fig. 2. Root-mean-squaré.{) relative error of our new FFT and the standar e .

conjugate-pair split-radix FFT versus DFT si&g in 64-bit double precision. dover/underﬂow' This is not the case: tmﬁSva from Eq. (7)
grows so much more slowly than the DFT values themselves
(which grow as~ v/ N for random inputs) that over/underflow

implementations of Algorithms 1-3, instrumented to count tr&1ould not be significantly worsened by the new FFT algo-
number of real operations. (They were checked for correctnd88Mm.- In particular, we explicitly avoided the cosine zero (at
via [26], and for accuracy in Sec. V.) This implementation was = V/4) by the symmetric form of (7), so that its cosine
also instrumented to check for any trivial multiplications b§°" S'fe) factor is always> 1/v2; thus, the loose bound
+1, +i, anda - (1+1), as well as for equal scale factors, thaf¥ /" < sk < 1 follows. In fact, the smallest(m)
might have been missed in the above analysis, but we did MJ1€re s k(m) 1S minimum apparently follows the integer
discover any such obvious opportunities for further saving&€duence A007910 [29], which approactigs.) — 2™ /10,
We have also implemented our new algorithm in the symbofd thussy i ~ N'0gs<=(n/5) ~ N=1/6:54 asymptotically.
code-generation framework of FFTW [27], which takes thEOr €xample, with\ = 220, the minimum scale factor is only
abstract algorithm as input, performs symbolic simplificationgz>°,104858 ~ O-_133- . .
and outputs optimized C code for a given fixed size. The It IS instructive to contrast the present algorithm with the
generator also outputs a flop count that again verified Eq. (1}¢al-factor” FFT algorithm that was once proposed to reduce
and the simplifier did not find any trivial optimizations thatn€ number of multiplications, but which proved numerically
we missed; this code was again checked for correctness, §hgehaved and was later surpassed by split radix [1], [30].
its performance is discussed in the concluding section beld®. that algorithm, one obtained an equation of the form
Finally, we should note that if one compares instead to splite = uk — i csc(2mk/N)cx /2 (k # 0, N/2), whereu,, is the
radix with the 3/3 mult/add complex multiplies (which trade§ansform ofz,,, (the even elements) ang is the transform of
off some real multiplications for additions without changingi2»+1 —%2n—1 (the difference of adjacent odd elements). This
the total flops) often used in earlier papers, then our algorittigduces the number of real multiplications (matching standard
has slightly more multiplications and fewer additions (stiffPlit radix, albeit with more additions), but is numerically
beating the total flops, of course). The reason is that tiPehaved because of the singulesc function—unlike in
factored form of the multiplications in Algorithm 3 cannot, a®Ur algorithm, ¢, was not scaled by anysin function that
far as we can tell, exploit the 3/3 trick to trade off multipliegvould cancel thecsc singularity, and thus the addition with
for adds. In any case, this tradeoff no longer appears to ¢ unscaled,, exacerbates roundoff.
beneficial on CPUs with hardware multipliers (and especially
with fused multiply-adders). VI. TWIDDLE FACTORS

In the standard conjugate-pair split-radix Algorithm 1, there
V. FLOATING-POINT ACCURACY is a redundancy in the twiddle factors betwdeand N/4 — k:

In order to measure the accuracy of the new algwx/‘l_k:—z’wg"’. This can be exploited to halve the number
rithm, we computed the., (root-mean-square) relative er-of twiddle factors that need to be computed (or stored in
ror (/Y [Ayx2//> lyk|?) of our “toy” implementation a lookup table):wk is computed only fork < N/8, and
compared to the “exact” result (from an FFT implementefbr N/8 < k < N/4 it is found by the above identity
in arbitrary-precision arithmetic), for uniform pseudo-randomia conjugation and multiplication by-i: (both of which
inputs =, € [-0.5,0.5), in 64-bit double precision on aare costless operations). This symmetry is preserved by the
Pentium IV with Linux and gcc 3.3.5. The results, in Fig. 2rescaling of our new algorithm, sineg; /4 = sn.x. Thus,
show that our new FFT has errors within 10% of the standafok N/8 < k < N/4 we can share the (rescaled) twiddle
conjugate-pair split-radix algorithm, both growing roughly aactors withk < N/8. For example, imewfftSy (z), we
~ log N [28]. At first glance, this may seem surprisingpbtain yx = ux — ity 2z + ity gz, for & > N/8 (the
since our use of the tangent function, which is singular, @peration count is unchanged, of course). The twiddle factors
equivalently our division by a cosine iy sy ., may appear to in newffty (z) are also redundant becausg 4 n/4—r =
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snya,k (from the periodicity ofs ). FornewfftS2y (z), we FLOPS OF STANDAEADB:;EAIII—DATA SPLIT RADIX
have constants;y ;, and s,y .4 n/4, @nd we use the fact that AND OUR NEW ALGORITHM
SoN,N/4a—k = SoNk4+nN/4 AN SoN (N/a—k)4N/4 = S2Nk SO
that the constants are shared betwken N/8 andk > N/8, [N [ Real-data spiit radix] New split radix |
albeit in reverse order. Similarly, fonewfftS4y (z), we 16248 1521:6 1521740
have constantsy i, S4n,k+N/2+ SN, k+nN/4) ANAS4N k13N/47 556 3078 3022
whenk — N/4 — k, these becom8yy i13n/4s SN, k+N/4» 512 7174 7014
S4N k+N/2, andsyy . respectively. 1024 16390 15962
Despite these redundancies, our new FFT requires a larger iggg g?g;g ?g;gi
number of distinct twiddle-factor—like constants to be com- 3197 180230 174150
puted or loaded than the standard conjugate-pair FFT algo- 16384 393222 379250

rithm, because of the differing scale factors in the four subrou-
tines. It is difficult to make precise statements about the conse- _ _
quences of this fact, however, because the performance impghét real scale factors, which satisfyy n—x = SIN k for ¢ <
will depend on the implementation of the FFT, the layout of)- Therefore, in the loop ovek, the computation of,. 4 /2
the pre-computed twiddle tables, the memory architecture, & ¥k+sn/4 is redundant and can be eliminated, saving half
the degree to which loads of twiddle factors can be overlappgti M (N) (in Mg (N), etc), except fork = 0 whereyy,s
with other operations in the CPU. Moreover, the access pattégnthe real Nyquist element. Far = 0, we must compute
is complex; for example, theewfftSy () routine actually Poth yo and yy/,, but since these arboth purely real we
requiresfewertwiddle constants thasplitfft  (z), sincety, ~ Still save half of M (V) (multiplying a real number by a real
is only 1 nontrivial real constant vs. 2 fary,. Such practical Scale factor costs 1 multiplys. 2 multiplies for a complex
concerns are discussed further in the concluding remarks. Number and a real scale factor). As for complex data, Eg. (15)
A standard alternative to precomputed tables of twiddiéelds savings over the standard split-radix method starting at
constants is to generate them on the fly using an iteratide = 64, as summarized in Table II.
recurrence relation of some sok.g. one crude method is AS mentioned above, we also implemented our complex-
Wkt = Wk - wL), although this sacrifices substantial accudata algorithm in the code-generation program of FFTW,
racy in the FFT unless Sophisticated methods W}(ﬂbg N) which performs Symbo“c-algebra S|mpl|f|Cat|OnS that have
storage are employed [31]. Because of the recursive nat@féved sufficiently powerful to automatically derive optimal-
of Eq. (7), however, it is not obvious to us how one migHfithmetic real-data FFTs from the corresponding “optimal”
computesy 41 by a simple recurrence fromw ;, or similar. complex-data algorithm—it merely imposes the appropriate
input/output symmetries and prunes redundant outputs and
computations [27]. Given our new FFT, we find that it can
) again automatically derive a real-data algorithm matching the
For real inputsz,, the outputSyk obey the symmetry predicted flop count of Eq. (15).
yn—k = y; and one can save slightly more than a factor of two
in flops yvhen computing the DFT by eliminatipg the redundant VIIl. DISCRETE COSINE TRANSFORMS
calculations; practical implementations of this approach have.. . . -
been devised for many EET algorithms. including a splits Similarly, our new FFT algorithm can be specialized for
. y 9 ' 1ding h bfTs of real-symmetric data, otherwise known as discrete
radix—based real-data FFT [32], [33] that achieved the best . ;
cosine transforms (DCTs) of the various types [34] (and
known flop count of2N1lg N — 4N + 6 for N = 2™. The ; : . .
T . . also discrete sine transforms for real-antisymmetric data).
same elimination of redundancy applies to our algorithm, arMiS

thus we can lower the minimum flops required for the real-daga. o " since FFTW's generator can automatically derive
FET psreq a"T‘gorithms for types I-IV of the DCT and DST [2], we

have found that it can automatically realize arithmetic savings

Because our algorithm only differs from standard split rad%(ver the best-known DCT/DST implementations given our

by scale factors that are purely real and symmetric, existin%W FFT, as summarized in Table Ill. Although here we

algorithms for the decimation-in-time split-radix FFT of reaexploit the generator and have not derived explicit genaal-

data [33] immediately apply: the number of additions is unéallgorithms for the DCT flop count (except for type 1), the same

changed as for the complex algorithm, and the number of real. principles (expressing the DCT as a larger DFT with

muItlpI|_cat|ons is exactly half that OT the complex algorlthm"clppropriate symmetries and pruning redundant computations
In particular, we savelM (N)/2 multiplies compared to the

) : m an FFT) have been applied to “manually” derive DCT
gﬁ\e”r?;ti ]a\ljlg_or;tgr?ss.n'gcvu.s, the flop count for a real-data Flzf'jl(;orithms in the past and we expect that doing so with the

new algorithm will be straightforward. Below, we consider
%ng]\f _ %N —1IgN — %(,1)lgN1gN (15) types Il, 1, 1V, and | of the DCT.
LB (—1)EN 46 A type-1l DCT (often called simply “the” DCT) of lengtiv
27 is derived by a real-data DFT of lengthV with appropriate
for N > 1. To derive this more explicitly, note that each of thesymmetries. Therefore, since our new algorithm begins to yield
recursive sub-transforms in Algorithms 2—3 operates on reaiprovements starting av. = 64 for real/complex data, it
inputsz,, and thus hagy_, = y;; (a symmetry unaffected by yields an improved DCT-II starting av = 16. Previously,

VIl. REAL-DATA FFTs
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TABLE Il
FLOPS REQUIRED FOR THE DISCRETE COSINE TRANSFOR(DCT) BY
PREVIOUS ALGORITHMS AND BY OUR NEW ALGORITHM

this symmetry, one can employ exactly the same approach
to saveM (2N)/4 multiplications starting from our new FFT
(proof as in [32]). Indeed, precisely these savings are derived

[N, DCT type [ Previous besi] New split radix | automatically by the FFTW generator for the first féwy as

16, DCT-II 112 110 shown in Table IlI.

32, DCT-II 288 282

64, DCT-1I 704 684

128, DCT-II 1664 1612

8 DCTIV 5 =2 IX. CONCLUDING REMARKS

16, DCT-IV 144 140 _ _ _ ,

32, DCT-IV 352 338 The longstanding arithmetic-complexity record of Yavne for
64, DCT-IV 832 800 the power-of-two DFT has finally been broken, but at least
128, DCTIV 1920 1838 two important questions remain unanswered. First, can one do
32, DCT 239 237

64 DCT 593 585 better still? Second, will the new algorithm result in practical
128, DCTAI 1427 1399 improvements to actual computation times for the FFT?
Since this algorithm represents a simple transformation
applied to the existing split-radix FFT, a transformation that
[9] reported a 16-point DCT-1l with 112 flops, whereas ouhas obviously been insufficiently explored in the past four
generator now produces the same transform with only 1@i@cades of FFT research, it may well be that further gains can
flops. In general2Nlg N — N flops were required for the be realized by applying similar ideas to other algorithms or
DCT-1l [35], as can be derived from the standard split-radiRy extending these transformations to greater generality. One
approach [36] (and is also reproduced automatically by oavenue to explore is theutomaticapplication of such ideas—
generator starting from complex split radix), whereas the flap there a simple algebraic transformational rule that, when
counts produced by our generator starting from our new FRpplied recursively in a symbolic FFT-generation program
are given in Table Ill. The DCT-1ll (also called the “IDCT” such as [27] or [39], can derive automatically the same (or
since it inverts DCT-1I) is simply the transpose of the DCT-Igreater) arithmetic savings? (Note that both our own code gen-
and its operation counts are identical. eration and that of [10] currently require explicit knowledge
It is also common to compute a DCT-1l with scaled output®f a rescaled FFT algorithm.) Moreover, a new fundamental
e.g. for the JPEG image-compression standard where theestion is to find the lowest-complexiscaled DFT—our
scaling is absorbed into a subsequent quantization step [3rrent best answer inewfftSy (x) and Eq. (14), but any
and in this case [9] showed that the scaling could saveirBprovement will also improve the unscaled DFT.
multiplications over the 40 flops required for an unscaled 8- The question of practical impact is even harder to answer,
point DCT-II. Since ournewfftSy (x) attempts to be the because the question is not very well defined—the “fastest”
optimal scaled FFT, we should be able to derive this scalatforithm depends upon what hardware is running it. For large
DCT-II by using it in the generator instead néwffty (x£)— N, however, it is likely that the split-radix algorithm here will
indeed, we find that it does save exactly 6 multiplies ovérave to be substantially modified in order to be competitive,
our unscaled result (after scaling by an overall factol @ since we have found in our FFTW high-performance library
due to the DCT symmetry). Moreover, we can now fin¢ghat modern architectures tend to favor much larger radices
the corresponding scaled transforms of larger sizeg:96 combined with other tricks to placate the memory hierarchy
flops for a size-16 scaled DCT-II, and 252 flops for size 322]. (Unless similar savings can be realized directly for higher
saving 14 and 30 flops, respectively, compared to the unscatadices [40], this would mean “unrolling” or “blocking” the
transform above. decomposition ofV so that several subdivisions are performed
For the DCT-IV, which is the basis of the modified discretat once.) On the other hand, for small which can form the
cosine transform (MDCT) [38], the corresponding symmetricomputational “kernels” of genera FFTs, we already use
DFT is of length8N, and thus the new algorithm yieldsthe original conjugate-pair split-radix algorithm in FFTW [27]
savings starting afiv = 8: the best (split-radix) methods for and can immediately compare the performance of these kernels
an 8-point DCT-1V require 56 flops (&N lg N+ N as shown with ones generated from the new algorithm. We have not yet
in [36] and also derivable by our generator), whereas the n@arformed extensive benchmarking, however, and the results of
algorithm requires 54 flops folV = 8 (as derived by our our limited tests are somewhat difficult to assess. On a 2GHz
generator), with other sizes shown in Table IlI. Pentium-IV with gcc, the performance was indistinguishable
Finally, a type-I DCT of lengthV (with /V +1 data points) for the DFT of size 64 or 128, but the new algorithm was
is exactly equivalent to a DFT of lengthV where the input up to 10% faster for the DCT-Il and IV of small sizes—a
data are real-symmetricc{y_,, = x,,), and the split-radix performance difference greater than the change in arithmetic
FFT adapted for this symmetry requir@¥V Ig N — 3N + complexity, leading us to suspect some fortuitous interaction
21g N +5 flops [32]2 Because the scale factors ;. preserve with the code scheduling. Nevertheless, it is precisely because
practical performance is so unpredictable that the availability
2This count assumes a normalization that maintains equivalence to Eq. &) new algorithms, especially ones with reasonably regular
for real—even_ dat_a, rather t_h_an the unitary form of the DCT-I. Note 'also tha{ . . .
the formula is slightly modified from that of Duhamel [32], who omitted al® ructure amenable to implementation, opens up rich areas for
multiplications by 2 from the flops. future experimentation.
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