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A modified split-radix FFT
with reduced arithmetic complexity

Steven G. Johnson* and Matteo Frigo

Abstract— Recent results by Van Buskirket al.have broken the
record set by Yavne in 1968 for the lowest arithmetic complexity
(exact count of real additions and multiplications) to compute
a power-of-two discrete Fourier transform. Here, we present a
simple recursive modification of the split-radix algorithm that
computes the DFT with asymptotically about 6% fewer opera-
tions than Yavne, matching the count achieved by Van Buskirk’s
program-generation framework. We also discuss the application
of our algorithm to real-data and real-symmetric (discrete cosine)
transforms, where we are again able to achieve lower arithmetic
complexity than previously published algorithms.

Index Terms— FFT, DCT, split radix, arithmetic complexity

I. I NTRODUCTION

FAST Fourier transform (FFT) algorithms all compute
the discrete Fourier transform (DFT) of sizeN in

Θ(N log N) operations, so any improvement in them relies
on reducing the exact number or cost of these operations
rather than their asymptotic functional form. For many years,
the time to perform an FFT was dominated by real-number
arithmetic, and so considerable effort was devoted to proving
and achieving lower bounds on the exact count of arithmetic
operations (real additions and multiplications), herein called
“flops” (floating-point operations), required for a DFT of a
given size [1]. Although the performance of FFTs on recent
computer hardware is determined by many factors besides
pure arithmetic counts [2], there still remains an intriguing
unsolved mathematical question: what is the smallest number
of flops required to compute a DFT of a given sizeN , in
particular for the important case ofN = 2m? In 1968, Yavne
[3] presented what became known as the “split-radix” FFT
algorithm [4]–[6] for N = 2m, and achieved a record flop
count of 4N lg N − 6N + 8 for N > 1 (where lg denotes
log2), an improvement by 20% over the classic “radix-2”
algorithm presented by Cooley and Tukey (flops∼ 5N lg N )
[7]. Here, we present a modified version of the split-radix FFT
that (without sacrificing numerical accuracy) lowers the flop
count by a further∼ 5.6% ( 1

18 ) to:
34
9 N lg N − 124

27 N − 2 lg N − 2
9 (−1)lg N lg N (1)

+ 16
27 (−1)lg N + 8

for N > 1, where the savings (starting atN = 64) are purely
in the number of real multiplications (when general complex
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TABLE I

FLOP COUNTS(REAL ADDITIONS + MULTIPLICATIONS) OF STANDARD

COMPLEX-DATA SPLIT RADIX AND OUR NEW ALGORITHM

N Yavne split radix New split radix

64 1160 1152
128 2824 2792
256 6664 6552
512 15368 15048
1024 34824 33968
2048 77832 75688
4096 172040 166856
8192 376840 364680
16384 819208 791264

multiplication is implemented with the usual 4 multiplies and
2 additions). See also Table I.

The first demonstration of this improved count was in a
2004 Usenet post by Van Buskirk [8], who had managed to
save 8 multiplications over Yavne (with the same number of
additions) by hand optimization forN = 64, using an unusual
algorithm based on decomposing the DFT into its real and
imaginary and even-symmetry and odd-symmetry components
(essentially, type-I discrete cosine and sine transforms). These
initial gains came by rescaling the size-8 sub-transforms
and absorbing the scale factor elsewhere in the computation
(related savings occur in the type-II discrete cosine transform
of size 8, where one can save six multiplications by rescaling
the outputs [9] as discussed in Sec. VIII). Van Buskirk later
developed an automatic code-generation implementation of his
approach that achieves Eq. (1) given an arbitrary fixedN =
2m [10]. Meanwhile, following his initial posting, we devel-
oped a way to explicitly achieve the same savings recursively
in a more conventional split-radix algorithm. Our split-radix
approach involves a recursive rescaling of the trigonometric
constants (“twiddle factors” [11]) in sub-transforms of the
DFT decomposition (while the final FFT result is still the
correct, unscaled value), relying on four mutually recursive
stages.

A few rigorous bounds on the DFT’s arithmetic complexity
have been proven in the literature, but no tight lower bound on
the flop count is known (and we make no claim that Eq. (1) is
the lowest possible). A realizableΘ(N) lower boundis known
for the number of irrational real multiplications forN = 2m,
given by Winograd’s4N −2 lg2 N −2 lg N −4 [1], [12]–[14]
(matching split radix as well as our algorithm up toN = 16),
but is achieved only at the price of many more additions and
thus has limited utility on CPUs with hardware multipliers.
The DFT has been proven to requireΩ(N log N) additions



SUBMITTED FOR PUBLICATION, APRIL 2005 2

[15], in fact, so the overall arithmetic complexity must be
Θ(N log N). Furthermore, the number of complex additions in
Cooley-Tukey algorithms (such as split-radix) has been argued
to be optimal [1], [16], but only under the constraint that the
structure of the twiddle factors is unmodified. Our algorithm
does modify the twiddle factors, but nevertheless does not
change the number of complex additions.

In the following, we first review the known variant of the
split-radix FFT that is the starting point for our modifications,
then describe our modified algorithm, analyze its complexity
(both theoretically and with a sample implementation instru-
mented to count the operations) as well as its numerical accu-
racy, describe its application to real-input and real-symmetric
(discrete cosine) transforms where one also finds arithmetic
gains over the literature, and conclude with some remarks
about practical realizations and further directions.

II. CONJUGATE-PAIR SPLIT-RADIX FFT

The starting point for our improved algorithm is not the
standard split-radix algorithm, but rather a variant called the
“conjugate-pair” FFT that was itself initially proposed to re-
duce the number of flops [17], but its operation count was later
proved identical to that of ordinary split radix [18]–[20]. This
variant was rediscovered in unpublished work by Bernstein
[21], who argued that it reduces the number of twiddle-factor
loads and thus the memory pressure. We use it for a related
reason: because the conjugate-pair FFT exposes redundancies
in the twiddle factors, it makes possible rescalings of twiddle
pairs that otherwise seem more difficult to extract. To derive
the algorithm, recall that the DFT is defined by:

yk =
N−1∑
n=0

ωnk
N xn, (2)

wherek = 0 . . . N − 1 andωN is the primitive root of unity
exp(−2πi/N). Then, for N divisible by 4, we perform a
decimation-in-time decomposition ofxn into three smaller
DFTs, ofx2n2 (the even elements),x4n4+1, andx4n4−1 (where
x−1 = xN−1)—this last sub-sequence would bex4n4+3 in
standard split radix, but here is shifted cyclically by−4.1 We
obtain:

yk =
N/2−1∑
n2=0

ωn2k
N/2x2n2

+ωk
N

N/4−1∑
n4=0

ωn4k
N/4x4n4+1

+ω−k
N

N/4−1∑
n4=0

ωn4k
N/4x4n4−1, (3)

where theωk
N and ω−k

N are the conjugate pair of twiddle
factors (whereas ordinary split radix would haveωk

N andω3k
N ).

(In this paper, we will use the term “twiddle factor” to refer to
all data-independent trigonometric constants that appear in an

1Past formulations of the conjugate-pair FFT sentn4 → −n4 and used an
inverse DFT for this sub-transform, but they are essentially equivalent to our
expression; the difference is a matter of convenience only.

FFT.) These summations are DFTs of sizeN/2 andN/4, and
theωk

N for k ≥ N/4 are related tok = 0 . . . N/4−1 via trivial
multiplications byi and−1. Thus, we obtain Algorithm 1.

Algorithm 1 Standard conjugate-pair split-radix FFT of length
N (divisible by 4). (Special-case optimizations fork = 0 and
k = N/8 are omitted from the loop.)

function yk=0..N−1 ← splitfftN (xn):
uk2=0...N/2−1 ← splitfftN/2 (x2n2)
zk4=0...N/4−1 ← splitfftN/4 (x4n4+1)
z′k4=0...N/4−1 ← splitfftN/4 (x4n4−1)
for k = 0 to N/4− 1 do

yk ← uk +
(
ωk

Nzk + ω−k
N z′k

)
yk+N/2 ← uk −

(
ωk

Nzk + ω−k
N z′k

)
yk+N/4 ← uk+N/4 − i

(
ωk

Nzk − ω−k
N z′k

)
yk+3N/4 ← uk+N/4 + i

(
ωk

Nzk − ω−k
N z′k

)
end for

For clarity, Algorithm 1 omits special-case optimizations
for k = 0 in the loop (whereωk

N is unity andωk
Nzk requires

no flops) and fork = N/8 (where ωk
N = (1 − i)/

√
2 and

requires only 2 real multiplications instead of 4 forωk
Nzk).

(In this paper, we assume the standard 4 mults + 2 adds form
of complex multiplication, rather than the 3 mults + 3 adds
variant of [22].) It also omits the base cases of the recursion:
N = 1 is just a copyy0 = x0, and N = 2 is an addition
y0 = x0 + x1 and a subtractiony1 = x0 − x1. With these
optimizations and base cases, noting that multiplications by1
and i are free and extracting common sub-expressions such
as ωk

Nzk ± ω−k
N z′k, the flop count of Yavne is obtained, or

a number of real additionsα(N) and multiplicationsµ(N)
given by (for 4/2 mult/add complex multiplies):

α(N) =
8
3
N lg N − 16

9
N − 2

9
(−1)lg N + 2 (4)

µ(N) =
4
3
N lg N − 38

9
N +

2
9
(−1)lg N + 6 (5)

Traditionally, the recursion is “flattened” into an iterative
algorithm that performs all the FFTs of a given size at once
[23], may work in-place, can exploitωN/4−k

N = −iω−k
N to

halve the number of twiddle factors (see Sec. VI),etc., but
none of this affects the flop count.

III. N EW FFT: RESCALING THE TWIDDLES

The key to reducing the number of operations is the obser-
vation that, in Algorithm 1, bothzk andz′k (the k-th outputs
of the size-N/4 sub-transforms) are multiplied by a twiddle
factorωk

N or ω−k
N before they are used to findyk. This means

that we can rescale the size-N/4 sub-transforms byany factor
1/sN/4,k desired, and absorb the scale factor intoωk

NsN/4,k at
no cost. So, we merely need to find a rescaling that will save
some operations in the sub-transforms. (As is conventional in
counting FFT operations, we assume that all data-independent
constants likeωk

NsN/4,k are precomputed and are therefore
not included in the flops.) Moreover, we rely on the fact that
zk and z′k have conjugate twiddle factors in the conjugate-
pair algorithm, so that a single rescaling below will simplify
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Fig. 1. Scale factorsN,k, from Eq. (7), vs. one period ofk for N = 212 =
4096.

both twiddle factors to save operations. Below, we begin with
an outline of the general ideas, and then analyze the precise
algorithm in Sec. IV.

Consider a sub-transform of a given sizeN that we wish to
rescale by some1/sN,k for each outputyk. Suppose we take
sN,k = sN,k+N/4 = cos(2πk/N ) for k ≤ N/8. In this case,
yk from Algorithm 1 becomesyk ← uk/sN,k + (tN,kzk +
t∗N,kz′k), where

tN,k = 1− i tan(2πk/N) = ωk
N/ cos(2πk/N). (6)

Multiplying ωk
Nzk requires 4 real multiplications and 2 real

additions (6 flops) for generalk, but multiplying tN,kzk

requires only 2 real multiplications and 2 real additions (4
flops). (A related rescaling was proposed in [24] to increase
the number of fused multiply-add operations.) Thus, we have
saved 4 real multiplications in computingtN,kzk ± t∗N,kz′k,
but spent 2 real multiplications inuk/sN,k and another 2
for uk+N/4/sN,k, for what may seem to be no net change.
However, instead of computinguk/sN,k directly, we can
instead push the1/sN,k scale factor “down” into the recursive
computation ofuk. In this way, it turns out that we can save
most of these “lost” multiplications by combining them with
twiddle factors inside theN/2 transform. Indeed, we shall
see that we need to push1/sN,k down throughtwo levels of
recursion in order to gain all of the possible savings.

Moreover, we perform the rescaling recursively, so that the
sub-transformszk are themselves rescaled by1/sN/4,k for
the same savings, and the product of the sub-transform scale
factors is combined withcos(2πk/N) and pushed up to the
top-level transform. The resulting scale factorsN,k is given
by the following recurrence, where we letk4 = k mod N/4:

sN=2m,k =

 1 for N ≤ 4
sN/4,k4 cos(2πk4/N) for k4 ≤ N/8

sN/4,k4 sin(2πk4/N) otherwise
, (7)

which has an interesting fractal pattern plotted in Fig. 1. This
definition has the properties:sN,0 = 1, sN,k+N/4 = sN,k, and
sN,N/4−k = sN,k (a symmetry whose importance appears in

subsequent sections). We can now generally define:

tN,k = ωk
NsN/4,k/sN,k, (8)

wheresN/4,k/sN,k is eithersec or csc and thustN,k is always
of the form±1±i tan or± cot±i. This last property is critical
because it means that we obtaintN,kzk ± t∗N,kz′k in all of the
scaled transforms and multiplication bytN,k requires at most
4 flops as above.

Algorithm 2 New FFT algorithm of lengthN (divisible
by 4). The sub-transformsnewfftSN/4 (x) are rescaled by
sN/4,k to save multiplications. The sub-sub-transforms of size
N/8, in turn, use two additional recursive subroutines from
Algorithm 3 (four recursive functions in all, which differ in
their rescalings).

function yk=0..N−1 ← newfftN (xn):
{computes DFT}
uk2=0...N/2−1 ← newfftN/2 (x2n2)
zk4=0...N/4−1 ← newfftSN/4 (x4n4+1)
z′k4=0...N/4−1 ← newfftSN/4 (x4n4−1)
for k = 0 to N/4− 1 do

yk ← uk +
(
ωk

NsN/4,kzk + ω−k
N sN/4,kz′k

)
yk+N/2 ← uk −

(
ωk

NsN/4,kzk + ω−k
N sN/4,kz′k

)
yk+N/4 ← uk+N/4

− i
(
ωk

NsN/4,kzk − ω−k
N sN/4,kz′k

)
yk+3N/4 ← uk+N/4

+ i
(
ωk

NsN/4,kzk − ω−k
N sN/4,kz′k

)
end for

function yk=0..N−1 ← newfftSN (xn):
{computes DFT /sN,k}
uk2=0...N/2−1 ← newfftS2N/2 (x2n2)
zk4=0...N/4−1 ← newfftSN/4 (x4n4+1)
z′k4=0...N/4−1 ← newfftSN/4 (x4n4−1)
for k = 0 to N/4− 1 do

yk ← uk +
(
tN,kzk + t∗N,kz′k

)
yk+N/2 ← uk −

(
tN,kzk + t∗N,kz′k

)
yk+N/4 ← uk+N/4 − i

(
tN,kzk − t∗N,kz′k

)
yk+3N/4 ← uk+N/4 + i

(
tN,kzk − t∗N,kz′k

)
end for

Rather than elaborate further at this point, we now sim-
ply present the algorithm, which consists of four mutually-
recursive split-radix–like functions listed in Algorithms 2–3,
and analyze it in the next section. As in the previous section,
we omit for clarity the special-case optimizations fork = 0
andk = N/8 in the loops, as well as the trivial base cases for
N = 1 andN = 2.

IV. OPERATION COUNTS

Algorithms 2 and 3 manifestly have the same number of
real additions as Algorithm 1 (for 4/2 mult/add complex
multiplies), since they only differ by real multiplicative scale
factors. So, all that remains is to count the numberM(N)
of real multiplicationssavedcompared to Algorithm 1, and
this will give the number of flops saved over Yavne. We must
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Algorithm 3 Rescaled FFT subroutines called recursively
from Algorithm 2. The loops in these routines havemore
multiplications than in Algorithm 1, but this is offset by
savings fromnewfftSN/4 (x) in Algorithm 2.

function yk=0..N−1 ← newfftS2N (xn):
{computes DFT /s2N,k}
uk2=0...N/2−1 ← newfftS4N/2 (x2n2)
zk4=0...N/4−1 ← newfftSN/4 (x4n4+1)
z′k4=0...N/4−1 ← newfftSN/4 (x4n4−1)
for k = 0 to N/4− 1 do

yk ← uk +
(
tN,kzk + t∗N,kz′k

)
· (sN,k/s2N,k)

yk+N/2 ← uk −
(
tN,kzk + t∗N,kz′k

)
· (sN,k/s2N,k)

yk+N/4 ← uk+N/4

− i
(
tN,kzk − t∗N,kz′k

)
· (sN,k/s2N,k+N/4)

yk+3N/4 ← uk+N/4

+ i
(
tN,kzk − t∗N,kz′k

)
· (sN,k/s2N,k+N/4)

end for

function yk=0..N−1 ← newfftS4N (xn):
{computes DFT /s4N,k}
uk2=0...N/2−1 ← newfftS2N/2 (x2n2)
zk4=0...N/4−1 ← newfftSN/4 (x4n4+1)
z′k4=0...N/4−1 ← newfftSN/4 (x4n4−1)
for k = 0 to N/4− 1 do

yk ←
[
uk +

(
tN,kzk + t∗N,kz′k

)]
· (sN,k/s4N,k)

yk+N/2 ←
[
uk −

(
tN,kzk + t∗N,kz′k

)]
· (sN,k/s4N,k+N/2)

yk+N/4 ←
[
uk+N/4 − i

(
tN,kzk − t∗N,kz′k

)]
· (sN,k/s4N,k+N/4)

yk+3N/4 ←
[
uk+N/4 + i

(
tN,kzk − t∗N,kz′k

)]
· (sN,k/s4N,k+3N/4)

end for

also count the numbersMS(N), MS2(N), and MS4(N) of
real multiplications saved (or spent, if negative) in our three
rescaled sub-transforms. InnewfftN (x) itself, the number
of multiplications is clearly the same as insplitfftN (x),
since all scale factors are absorbed into the twiddle factors—
note that sN/4,k = 1 so the i = 0 special case is not
worsened either—and thus the savings come purely in the sub-
transforms:

M(N) = M(N/2) + 2MS(N/4). (9)

In newfftSN (x), as discussed above, the substitution oftN,k

for ωk
N means that 2 real multiplications are saved from each

twiddle factor, or 4 multiplications per iterationk of the loop.
This savesN multiplications, except that we have to take into
account thek = 0 andk = N/8 special cases. Fork = N/8,
tN,k = 1− i, again saving two multiplications (by1/

√
2) per

twiddle factor. SincetN,0 = 1, however, thek = 0 special
case is unchanged (no multiplies), so we only saveN − 4
multiplies overall. Thus,

MS(N) = MS2(N/2) + 2MS(N/4) + N − 4. (10)

At first glance, thenewfftS2N (x) routine may seem to
have the same number of multiplications assplitfftN (x),
since the 2 multiplications saved in eachtN,k (as above) are
exactly offset by thesN,k/s2N,k multiplications. (Note that
we do not fold thesN,k/s2N,k into the tN,k because we also
have to scale bysN,k/s2N,k+N/4 and would thus destroy the
tN,kzk common sub-expression.) However, we spend 2 extra
multiplications in thek = 0 special case, which ordinarily
requires no multiplies, sincesN,0/s2N,N/4 = 1/s2N,N/4 6=
±1 (for N > 2) appears inyN/4 andy3N/4. Thus,

MS2(N) = MS4(N/2) + 2MS(N/4)− 2. (11)

Finally, the routinenewfftS4N (x) involves O(N) more
multiplications than ordinary split-radix, although we have
endeavored to minimize this by proper groupings of the
operands. We save 4 real multiplications per loop iteration
k because of thetN,k replacingωk

N . However, because each
output has a distinct scale factor (s4N,k 6= s4N,k+N/2 6=
s4N,k+N/4 6= s4N,k+3N/4), we spend 8 real multiplications
per iteration, for a net increase of 4 multiplies per iteration
k. For thek = 0 iteration, however, thetN,0 = 1 gains us
nothing, whiles4N,0 = 1 does not cost us, so we spend 6 net
multiplies instead of 4, and therefore:

MS4(N) = MS2(N/2) + 2MS(N/4)−N − 2. (12)

Above, we omitted the base cases of the recurrences,i.e.
the N = 1 or 2 that we handle directly as in Sec. II (without
recursion). There, we findM(N ≤ 2) = MS(N ≤ 2) =
MS2(N ≤ 2) = MS4(1) = 0 (where the scale factors are
unity), andMS4(2) = −2. Finally, solving these recurrences
by standard generating-function methods [25] (forN > 1):

M(N) =
2
9
N lg N − 38

27
N + 2 lg N (13)

+
2
9
(−1)lg N lg N − 16

27
(−1)lg N .

Subtracting Eq. (13) from the flop count of Yavne, we obtain
Eq. (1) and Table I. Separate counts of real adds/mults are
obtained by subtracting (13) from (5).

In the above discussion, one immediate question that arises
is: why stop at four routines? Why not take the scale factors
in newfftS4N (x) and push them down into yet another
recursive routine? The reason is, unlike innewfftS2N (x),
we lack sufficient symmetry: because the scale factors are
different foryk andyk+N/2, no single scale factor foruk will
save us that multiplication, nor can we apply the same scale
factor to thetN,kzk ± t∗N,kz′k common sub-expressions.

In some FFT applications, such as convolution with a fixed
kernel, it is acceptable to compute a scaled DFT instead of
the DFT, since any output scaling can be absorbed elsewhere
at no cost. In this case, one would callnewfftSN (x) directly
and saveMS(N) multiplications over Yavne, where:

MS(N) =
2
9
N lg N−20

27
N+

2
9
(−1)lg N lg N− 7

27
(−1)lg N+1,

(14)
with savings starting atMS(16)= 4.

To verify these counts, as well as the correctness, accu-
racy, and other properties of our algorithm, we created “toy”
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Fig. 2. Root-mean-square (L2) relative error of our new FFT and the standard
conjugate-pair split-radix FFT versus DFT sizeN , in 64-bit double precision.

implementations of Algorithms 1–3, instrumented to count the
number of real operations. (They were checked for correctness
via [26], and for accuracy in Sec. V.) This implementation was
also instrumented to check for any trivial multiplications by
±1, ±i, anda · (1± i), as well as for equal scale factors, that
might have been missed in the above analysis, but we did not
discover any such obvious opportunities for further savings.
We have also implemented our new algorithm in the symbolic
code-generation framework of FFTW [27], which takes the
abstract algorithm as input, performs symbolic simplifications,
and outputs optimized C code for a given fixed size. The
generator also outputs a flop count that again verified Eq. (1),
and the simplifier did not find any trivial optimizations that
we missed; this code was again checked for correctness, and
its performance is discussed in the concluding section below.

Finally, we should note that if one compares instead to split-
radix with the 3/3 mult/add complex multiplies (which trades
off some real multiplications for additions without changing
the total flops) often used in earlier papers, then our algorithm
has slightly more multiplications and fewer additions (still
beating the total flops, of course). The reason is that the
factored form of the multiplications in Algorithm 3 cannot, as
far as we can tell, exploit the 3/3 trick to trade off multiplies
for adds. In any case, this tradeoff no longer appears to be
beneficial on CPUs with hardware multipliers (and especially
with fused multiply-adders).

V. FLOATING-POINT ACCURACY

In order to measure the accuracy of the new algo-
rithm, we computed theL2 (root-mean-square) relative er-
ror (

√∑
|∆yk|2/

√∑
|yk|2) of our “toy” implementation

compared to the “exact” result (from an FFT implemented
in arbitrary-precision arithmetic), for uniform pseudo-random
inputs xn ∈ [−0.5, 0.5), in 64-bit double precision on a
Pentium IV with Linux and gcc 3.3.5. The results, in Fig. 2,
show that our new FFT has errors within 10% of the standard
conjugate-pair split-radix algorithm, both growing roughly as
∼
√

log N [28]. At first glance, this may seem surprising,
since our use of the tangent function, which is singular, or
equivalently our division by a cosine in1/sN,k, may appear to

raise questions about the numerical accuracy of our algorithm.
Although we have not performed a detailed numerical analysis,
the reason for the similarity to standard split radix seems
clear upon closer inspection: wenever add scaled values
with unscaled values, so that whenever standard split radix
computesa + b our new FFT merely computess · (a + b) for
some constant scale factors. An alternative explanation might
simply be that our scale factors are not very big, as described
below, but we have checked this: changing Eq. (7) forsN,k to
a less-symmetric form that always usescos (and thus grows
very small forsN,N/4−1, e.g. reaching10−25 for N = 220),
the error varies by less than 10% from Fig. 2.

Another concern, nevertheless, might be simply that
the scaling factor will grow so large/small as to induce
over/underflow. This is not the case: the1/sN,k from Eq. (7)
grows so much more slowly than the DFT values themselves
(which grow as∼

√
N for random inputs) that over/underflow

should not be significantly worsened by the new FFT algo-
rithm. In particular, we explicitly avoided the cosine zero (at
k = N/4) by the symmetric form of (7), so that its cosine
(or sine) factor is always≥ 1/

√
2; thus, the loose bound

N−1/4 < sN,k ≤ 1 follows. In fact, the smallestk(m)
where s2m,k(m) is minimum apparently follows the integer
sequence A007910 [29], which approachesk(m) → 2m/10,
and thussN,k ∼ N log4 cos(π/5) ≈ N−1/6.54 asymptotically.
For example, withN = 220, the minimum scale factor is only
s220,104858 ≈ 0.133.

It is instructive to contrast the present algorithm with the
“real-factor” FFT algorithm that was once proposed to reduce
the number of multiplications, but which proved numerically
ill-behaved and was later surpassed by split radix [1], [30].
In that algorithm, one obtained an equation of the form
yk = uk − i csc(2πk/N)ck/2 (k 6= 0, N/2), whereuk is the
transform ofx2n (the even elements) andck is the transform of
x2n+1−x2n−1 (the difference of adjacent odd elements). This
reduces the number of real multiplications (matching standard
split radix, albeit with more additions), but is numerically
ill-behaved because of the singularcsc function—unlike in
our algorithm, ck was not scaled by anysin function that
would cancel thecsc singularity, and thus the addition with
the unscaleduk exacerbates roundoff.

VI. T WIDDLE FACTORS

In the standard conjugate-pair split-radix Algorithm 1, there
is a redundancy in the twiddle factors betweenk andN/4−k:
ω

N/4−k
N = −iω−k

N . This can be exploited to halve the number
of twiddle factors that need to be computed (or stored in
a lookup table):ωk

N is computed only fork ≤ N/8, and
for N/8 < k < N/4 it is found by the above identity
via conjugation and multiplication by−i (both of which
are costless operations). This symmetry is preserved by the
rescaling of our new algorithm, sincesN,N/4−k = sN,k. Thus,
for N/8 < k < N/4 we can share the (rescaled) twiddle
factors with k < N/8. For example, innewfftSN (x), we
obtain yk = uk − it∗N,kzk + itN,kz′k for k > N/8 (the
operation count is unchanged, of course). The twiddle factors
in newfftN (x) are also redundant becausesN/4,N/4−k =
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sN/4,k (from the periodicity ofsN,k). FornewfftS2N (x), we
have constantss2N,k ands2N,k+N/4, and we use the fact that
s2N,N/4−k = s2N,k+N/4 and s2N,(N/4−k)+N/4 = s2N,k so
that the constants are shared betweenk < N/8 andk > N/8,
albeit in reverse order. Similarly, fornewfftS4N (x), we
have constantss4N,k, s4N,k+N/2, s4N,k+N/4, ands4N,k+3N/4;
when k → N/4 − k, these becomes4N,k+3N/4, s4N,k+N/4,
s4N,k+N/2, ands4N,k respectively.

Despite these redundancies, our new FFT requires a larger
number of distinct twiddle-factor–like constants to be com-
puted or loaded than the standard conjugate-pair FFT algo-
rithm, because of the differing scale factors in the four subrou-
tines. It is difficult to make precise statements about the conse-
quences of this fact, however, because the performance impact
will depend on the implementation of the FFT, the layout of
the pre-computed twiddle tables, the memory architecture, and
the degree to which loads of twiddle factors can be overlapped
with other operations in the CPU. Moreover, the access pattern
is complex; for example, thenewfftSN (x) routine actually
requiresfewertwiddle constants thansplitfftN (x), sincetN,k

is only 1 nontrivial real constant vs. 2 forωk
N . Such practical

concerns are discussed further in the concluding remarks.
A standard alternative to precomputed tables of twiddle

constants is to generate them on the fly using an iterative
recurrence relation of some sort (e.g. one crude method is
ωk+1

N = ωk
N · ω1

N ), although this sacrifices substantial accu-
racy in the FFT unless sophisticated methods withΩ(log N)
storage are employed [31]. Because of the recursive nature
of Eq. (7), however, it is not obvious to us how one might
computesN,k+1 by a simple recurrence fromsN,k or similar.

VII. R EAL-DATA FFTS

For real inputsxn, the outputsyk obey the symmetry
yN−k = y∗k and one can save slightly more than a factor of two
in flops when computing the DFT by eliminating the redundant
calculations; practical implementations of this approach have
been devised for many FFT algorithms, including a split-
radix–based real-data FFT [32], [33] that achieved the best
known flop count of2N lg N − 4N + 6 for N = 2m. The
same elimination of redundancy applies to our algorithm, and
thus we can lower the minimum flops required for the real-data
FFT.

Because our algorithm only differs from standard split radix
by scale factors that are purely real and symmetric, existing
algorithms for the decimation-in-time split-radix FFT of real
data [33] immediately apply: the number of additions is un-
changed as for the complex algorithm, and the number of real
multiplications is exactly half that of the complex algorithm.
In particular, we saveM(N)/2 multiplies compared to the
previous algorithms. Thus, the flop count for a real-data FFT
of lengthN = 2m is now:

17
9 N lg N − 89

27N − lg N − 1
9 (−1)lg N lg N (15)

+ 8
27 (−1)lg N + 6

for N > 1. To derive this more explicitly, note that each of the
recursive sub-transforms in Algorithms 2–3 operates on real
inputsxn and thus hasyN−k = y∗k (a symmetry unaffected by

TABLE II
FLOPS OF STANDARD REAL-DATA SPLIT RADIX

AND OUR NEW ALGORITHM

N Real-data split radix New split radix

64 518 514
128 1286 1270
256 3078 3022
512 7174 7014
1024 16390 15962
2048 36870 35798
4096 81926 79334
8192 180230 174150
16384 393222 379250

the real scale factors, which satisfys`N,N−k = s`N,k for ` ≤
4). Therefore, in the loop overk, the computation ofyk+N/2

andyk+3N/4 is redundant and can be eliminated, saving half
of M(N) (in MS(N), etc.), except fork = 0 where yN/2

is the real Nyquist element. Fork = 0, we must compute
both y0 and yN/2, but since these areboth purely real we
still save half ofM(N) (multiplying a real number by a real
scale factor costs 1 multiply,vs. 2 multiplies for a complex
number and a real scale factor). As for complex data, Eq. (15)
yields savings over the standard split-radix method starting at
N = 64, as summarized in Table II.

As mentioned above, we also implemented our complex-
data algorithm in the code-generation program of FFTW,
which performs symbolic-algebra simplifications that have
proved sufficiently powerful to automatically derive optimal-
arithmetic real-data FFTs from the corresponding “optimal”
complex-data algorithm—it merely imposes the appropriate
input/output symmetries and prunes redundant outputs and
computations [27]. Given our new FFT, we find that it can
again automatically derive a real-data algorithm matching the
predicted flop count of Eq. (15).

VIII. D ISCRETE COSINE TRANSFORMS

Similarly, our new FFT algorithm can be specialized for
DFTs of real-symmetric data, otherwise known as discrete
cosine transforms (DCTs) of the various types [34] (and
also discrete sine transforms for real-antisymmetric data).
Moreover, since FFTW’s generator can automatically derive
algorithms for types I–IV of the DCT and DST [2], we
have found that it can automatically realize arithmetic savings
over the best-known DCT/DST implementations given our
new FFT, as summarized in Table III. Although here we
exploit the generator and have not derived explicit general-N
algorithms for the DCT flop count (except for type I), the same
basic principles (expressing the DCT as a larger DFT with
appropriate symmetries and pruning redundant computations
from an FFT) have been applied to “manually” derive DCT
algorithms in the past and we expect that doing so with the
new algorithm will be straightforward. Below, we consider
types II, III, IV, and I of the DCT.

A type-II DCT (often called simply “the” DCT) of lengthN
is derived by a real-data DFT of length4N with appropriate
symmetries. Therefore, since our new algorithm begins to yield
improvements starting atN = 64 for real/complex data, it
yields an improved DCT-II starting atN = 16. Previously,
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TABLE III

FLOPS REQUIRED FOR THE DISCRETE COSINE TRANSFORM(DCT) BY

PREVIOUS ALGORITHMS AND BY OUR NEW ALGORITHM

N , DCT type Previous best New split radix

16, DCT-II 112 110
32, DCT-II 288 282
64, DCT-II 704 684
128, DCT-II 1664 1612

8, DCT-IV 56 54
16, DCT-IV 144 140
32, DCT-IV 352 338
64, DCT-IV 832 800
128, DCT-IV 1920 1838

32, DCT-I 239 237
64, DCT-I 593 585
128, DCT-I 1427 1399

[9] reported a 16-point DCT-II with 112 flops, whereas our
generator now produces the same transform with only 110
flops. In general,2N lg N − N flops were required for the
DCT-II [35], as can be derived from the standard split-radix
approach [36] (and is also reproduced automatically by our
generator starting from complex split radix), whereas the flop
counts produced by our generator starting from our new FFT
are given in Table III. The DCT-III (also called the “IDCT”
since it inverts DCT-II) is simply the transpose of the DCT-II
and its operation counts are identical.

It is also common to compute a DCT-II with scaled outputs,
e.g. for the JPEG image-compression standard where the
scaling is absorbed into a subsequent quantization step [37],
and in this case [9] showed that the scaling could save 6
multiplications over the 40 flops required for an unscaled 8-
point DCT-II. Since ournewfftSN (x) attempts to be the
optimal scaled FFT, we should be able to derive this scaled
DCT-II by using it in the generator instead ofnewfftN (x)—
indeed, we find that it does save exactly 6 multiplies over
our unscaled result (after scaling by an overall factor of1/2
due to the DCT symmetry). Moreover, we can now find
the corresponding scaled transforms of larger sizes:e.g. 96
flops for a size-16 scaled DCT-II, and 252 flops for size 32,
saving 14 and 30 flops, respectively, compared to the unscaled
transform above.

For the DCT-IV, which is the basis of the modified discrete
cosine transform (MDCT) [38], the corresponding symmetric
DFT is of length 8N , and thus the new algorithm yields
savings starting atN = 8: the best (split-radix) methods for
an 8-point DCT-IV require 56 flops (or2N lg N +N as shown
in [36] and also derivable by our generator), whereas the new
algorithm requires 54 flops forN = 8 (as derived by our
generator), with other sizes shown in Table III.

Finally, a type-I DCT of lengthN (with N +1 data points)
is exactly equivalent to a DFT of length2N where the input
data are real-symmetric (x2N−n = xn), and the split-radix
FFT adapted for this symmetry requires2N lg N − 3N +
2 lg N +5 flops [32].2 Because the scale factorssN,k preserve

2This count assumes a normalization that maintains equivalence to Eq. (2)
for real-even data, rather than the unitary form of the DCT-I. Note also that
the formula is slightly modified from that of Duhamel [32], who omitted all
multiplications by 2 from the flops.

this symmetry, one can employ exactly the same approach
to saveM(2N)/4 multiplications starting from our new FFT
(proof as in [32]). Indeed, precisely these savings are derived
automatically by the FFTW generator for the first fewN , as
shown in Table III.

IX. CONCLUDING REMARKS

The longstanding arithmetic-complexity record of Yavne for
the power-of-two DFT has finally been broken, but at least
two important questions remain unanswered. First, can one do
better still? Second, will the new algorithm result in practical
improvements to actual computation times for the FFT?

Since this algorithm represents a simple transformation
applied to the existing split-radix FFT, a transformation that
has obviously been insufficiently explored in the past four
decades of FFT research, it may well be that further gains can
be realized by applying similar ideas to other algorithms or
by extending these transformations to greater generality. One
avenue to explore is theautomaticapplication of such ideas—
is there a simple algebraic transformational rule that, when
applied recursively in a symbolic FFT-generation program
such as [27] or [39], can derive automatically the same (or
greater) arithmetic savings? (Note that both our own code gen-
eration and that of [10] currently require explicit knowledge
of a rescaled FFT algorithm.) Moreover, a new fundamental
question is to find the lowest-complexityscaled DFT—our
current best answer isnewfftSN (x) and Eq. (14), but any
improvement will also improve the unscaled DFT.

The question of practical impact is even harder to answer,
because the question is not very well defined—the “fastest”
algorithm depends upon what hardware is running it. For large
N , however, it is likely that the split-radix algorithm here will
have to be substantially modified in order to be competitive,
since we have found in our FFTW high-performance library
that modern architectures tend to favor much larger radices
combined with other tricks to placate the memory hierarchy
[2]. (Unless similar savings can be realized directly for higher
radices [40], this would mean “unrolling” or “blocking” the
decomposition ofN so that several subdivisions are performed
at once.) On the other hand, for smallN , which can form the
computational “kernels” of general-N FFTs, we already use
the original conjugate-pair split-radix algorithm in FFTW [27]
and can immediately compare the performance of these kernels
with ones generated from the new algorithm. We have not yet
performed extensive benchmarking, however, and the results of
our limited tests are somewhat difficult to assess. On a 2GHz
Pentium-IV with gcc, the performance was indistinguishable
for the DFT of size 64 or 128, but the new algorithm was
up to 10% faster for the DCT-II and IV of small sizes—a
performance difference greater than the change in arithmetic
complexity, leading us to suspect some fortuitous interaction
with the code scheduling. Nevertheless, it is precisely because
practical performance is so unpredictable that the availability
of new algorithms, especially ones with reasonably regular
structure amenable to implementation, opens up rich areas for
future experimentation.
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