
Solutions for Basic Counting and Listing

CL-1.1 This is a simple application of the Rules of Sum and Product.

(a) Choose a discrete math text OR a data structures text, etc. This gives 5 + 2 +
6 + 3 = 16.

(b) Choose a discrete math text AND a data structures text, etc. This gives 5 × 2 ×
6 × 3 = 180.

CL-1.2 We can form n digit numbers by choosing the leftmost digit AND choosing the next
digit AND · · · AND choosing the rightmost digit. The first choice can be made in 9
ways since a leading zero is not allowed. The remaining n − 1 choices can each be
made in 10 ways. By the Rule of Product we have 9× 10n−1. To count numbers with
at most n digits, we could sum up 9× 10k−1 for 1 ≤ k ≤ n. The sum can be evaluated
since it is a geometric series. This does not include the number 0. Whether we add 1
to include it depends on our interpretation of the problem’s requirement that there be
no leading zeroes. There is an easier way. We can pad out a number with less than n
digits by adding leading zeroes. The original number can be recovered from any such
n digit number by stripping off the leading zeroes. Thus we see by the Rule of Product
that there are 10n numbers with at most n digits. If we wish to rule out 0 (which pads
out to a string of n zeroes), we must subtract 1.

CL-1.3 For each element of S you must make one of two choices: “x is/isn’t in the subset.”
To visualize the process, list the elements of the set in any order: a1, a2, . . . , a|S|. We
can construct a subset by

including a1 or not AND

including a2 or not AND

. . .

including a|S| or not.

CL-1.4 (a) By the Rule of Product, we have 9 × 10 × · · · × 10 = 9 × 10n−1.

(b) By the Rule of Product, we have 9n.

(c) By the Rule of Sum, (answer)+9n = 9×10n−1 and so the answer is 9(10n−1−9n−1)

CL-1.5 (a) This is like the previous exercise. There are 264 4-letter strings and there are
(26 − 5)4 4-letter strings that contain no vowels. Thus we have 264 − 214.

(b) We can do this in two ways:
First way: Break the problem into 4 problems, depending on where the vowel is
located. (This uses the Rule of Sum.) For each subproblem, choose each letter in the
list and use the Rule of Product. We obtain one factor equal to 5 and three factors
equal to 21. Thus we obtain 5× 213 for each subproblem and 4× 5× 213 for the final
answer.
Second way: Choose one of the 4 positions for the vowel, choose the vowel and choose
each of the 3 consonants. By the Rule of Product we have 4 × 5 × 21 × 21 × 21.

CL-1.6 The only possible vowel and consonant pattern satisfying the two nonadjacent vowels
and initial and terminal consonant conditions is CVCVC. By the Rule of Product,
there are 3 × 2 × 3 × 2 × 3 = 108 possibilities.
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CL-1.7 To form a composition of n, we can write n ones in a row and insert either “⊕” or “,”
in the spaces between them. This is a series of 2 choices at each of n− 1 spaces, so we
obtain 2n−1 compositions of n. The compositions of 4 are

4 = 3 ⊕ 1 = 2 ⊕ 2 = 2 ⊕ 1 ⊕ 1 = 1 ⊕ 3 = 1 ⊕ 2 ⊕ 1 = 1 ⊕ 1 ⊕ 2 = 1 ⊕ 1 ⊕ 1 ⊕ 1.

The compositions of 5 with 3 parts are

3 ⊕ 1 ⊕ 1 = 2 ⊕ 2 ⊕ 1 = 2 ⊕ 1 ⊕ 2 = 1 ⊕ 3 ⊕ 1 = 1 ⊕ 2 ⊕ 2 = 1 ⊕ 1 ⊕ 3.

CL-1.8 The allowable letters in alphabetic order are A, I, L, S, and T . There are 216 words
that begin with L, and the same number that begin with S, and with T . The word
we are asked to find is the last one that begins with L. Thus the word is of the form
LV CV CC, LV CCV C, or LCV CV C. Since all of the consonants in our allowable-
letters list come after the vowels, we want a word of the form LCV CV C. We need
to start off LTV CV C. The next letter, a vowel, needs to be I (bigger than A in the
alphabet). Thus we have LTICV C. Continuing in this way we get LTITIT . The
next name in dictionary order starts off with S and is of the form SV CV CC. We
now choose the vowels and consonants as small as possible: SALALL. But, this word
doesn’t satisfy the condition that adjacent consonants must be different. Thus the
next legal word is SALALS.

CL-1.9 The ordering on the Ci is as follows:

C1 = ((2, 4), (2, 5), (3, 5)) C2 = (AA,AI, IA, II)

C3 = (LL,LS,LT,SL,SS,ST,TL,TS,TT) C4 = (LS,LT,SL,ST,TL,TS).

The first seven are

(2,4)(AA)(LL)(LS), (2,4)(AA)(LL)(LT), (2,4)(AA)(LL)(SL),

(2,4)(AA)(LL)(ST), (2,4)(AA)(LL)(TL),

(2,4)(AA)(LL)(TS), (2,4)(AA)(LS)(LS).

The last 7 are

(3,5)(II)(TS)(TS), (3,5)(II)(TT)(LS), (3,5)(II)(TT)(LT),

(3,5)(II)(TT)(SL), (3,5)(II)(TT)(ST),

(3,5)(II)(TT)(TL), (3,5)(II)(TT)(TS).

The actual names can be constructed by following the rules of construction from these
strings of symbols (e.g, (3,5)(II)(TT)(LS) says place the vowels II in positions 3,5, the
nonadjacent consonants are TT and the adjacent consonants are LS to get LSITIT).

CL-1.10 (a) One way to do this is to list all the possible multisets in some order. If you do
this carefully, you will find that there are 15 of them. Unfortunately, it is easy to miss
something if you do not choose the order carefully. One way to do this is to first write

Solutions-2



Solutions for Basic Counting and Listing

all the a’s in the multiset, then all the b’s and then all the c’s. For example, we would
write the multiset {a, b, c, a} as aabc. We can now list these in lex order:

aaaa, aaab, aaac, aabb, aabc, aacc, abbb, abbc,

abcc, accc, bbbb, bbbc, bbcc, bccc, cccc

For (b), the answer is that there are an infinite number because an element can be
repeated any number of times. In fact, an infinite number of multisets can be formed
by using just a.

CL-2.1 (a) We can arrange n people in n! ways. Use n = 7.

(b) Arrange b boys (b! ways) AND arrange g girls (g! ways) AND choose which list
comes first (2 ways). Thus we have 2(b! g!). Here b = 3 and g = 4 and the answer
is 288.

(c) As in (b), we arrange the girls and the boys separately, AND then we interleave
the two lists as GBGBGBG. Thus we get 4! 3! = 144.

CL-2.2 This refers to the previous solution.

(a) Use n = 6.

(b) b = g = 3 and the answer is 72.

(c) We can interleave in two ways, as BGBGBG or as GBGBGB and so we get
2(3! 3!) = 72.

CL-2.3 For (a) we have the circular list discussed in the text and the answer is therefore
n!/n = (n − 1)!.
For (b), note that each circular list gives two ordinary lists — one starting with the
girls and the other with the boys. Hence the answer is 2(b! g!)/2 = b! g!. For the two
problems we have 4! 3! = 144 and 3! 3! = 36.
For (c), it is impossible if b < g since this forces two girls to sit together. If we have
b = g, circular lists are possible. As in the unrestricted case, each circular list gives
n = b+g = 2g linear lists by cutting it arbitrarily. Thus we get 2(g!)2/2g = g! (g−1)!,
which in this case is 3! 2! = 12.

CL-2.4 Each of the 7 letters ABMNRST appears once and each of the letters CIO appears
twice. Thus we must form a list of length k from the 10 distinct letters. The solutions
are

k = 2: 10 × 9 = 90
k = 3: 10 × 9 × 8 = 720
k = 4: 10 × 9 × 8 × 7 = 5040

CL-2.5 Each of the 7 letters ABMNRST appears once and each of the letters CIO appears
twice.

• For k = 2, the letters are distinct OR equal. There are (10)2 = 90 distinct choices.
Since the only repeated letters are CIO, there are 3 ways to get equal letters. This
gives 93.

• For k = 3, we have either all distinct ((10)3 = 720) OR two equal. The two equal
can be worked out as follows
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choose the repeated letter (3 ways) AND

choose the positions for the two copies of the letter (3 ways) AND

choose the remaining letter (10 − 1 = 9 ways).

By the Rules of Sum and Product, we have 720 + 3 × 9 × 3 = 801.

CL-2.6 (a) The letters are EILST. The number or 3-words is (5)3 = 60.

(b) The answer is 53 = 125.

(c) The letters are EILST, with T occurring 3-times, L occurring 2-times. Either the
letters are distinct OR one letter appears twice OR one letter appears three times.
We have seen that the first can be done in 60 ways. To do the second, choose one
of L and T to repeat, choose one of the remaining 4 different letters and choose
where that letter is to go, giving 2 × 4 × 3 = 24. To do the third, use T. Thus,
the answer is 60 + 24 + 1 = 85.

CL-2.7 (a) Stripping off the initial R and terminal F, we are left with a list of at most 4 letters,
at least one of which is an L. There is just 1 such list of length 1. There are 32−22 = 5
lists of length 2, namely all those made from E, I and L minus those made from just
E and I. Similarly, there are 33 − 23 = 19 of length 3 and 34 − 24 = 65. This gives us
a total of 90.

(b) The letters used are E, F, I, L and R in alphabetical order. To get the word before
RELIEF, note that we cannot change just the F and/or the E to produce an earlier
word. Thus we must change the I to get the preceding word. The first candidate in
alphabetical order is F, giving us RELF. Working backwards in this manner, we come
to RELELF, RELEIF, RELEF and, finally, RELEEF.

CL-2.8 (a) If there are 4 letters besides R and F, then there is only one R and one F, for a
total of 65 spellings by the previous problem. If there are 3 letters besides R and F, we
may have R· · ·F, R· · ·FF or RR· · ·F, which gives us 3× 19 = 57 words by the previous
problem. We’ll say there are 3 RF patterns, namely RF, RFF and RRF. If there 2
letters besides R and F, there are 6 RF patterns, namely the three just listed, RFFF,
RRFF and RRRF. This gives us 6× 5 = 30 words. Finally, the last case has the 6 RF
patterns just listed as well as RFFFF, RRFFF, RRRFF and RRRRF for a total of 10
patterns. This give us 10 words since the one remaining letter must be L. Adding up
all these cases gives us 65+57+30+10 = 162 possible spellings. Incidentally, there is
a simple formula for the number of n long RF patterns, namely n− 1. Thus there are

1 + 2 + . . . + (n − 1) = n(n − 1)/2

of length at most n. This gives our previous counts of 1, 3, 6 and 10.

(b) Reading toward the front of the dictionary from RELIEF we have RELIEF,
RELFFF, RELFF, RELF, RELELF, RELEIF, RELEFF,. . ., and so the spelling five
before RELIEF is RELEIF.

CL-2.9 There are n!/(n − k)! lists of length k. The total number of lists (not counting the
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empty list) is
n!

(n − 1)!
+

n!

(n − 2)!
+ · · · + n!

1!
+

n!

0!

= n!

(

1

0!
+

1

1!
+ · · · + 1

(n − 1)!

)

= n!
n−1
∑

i=0

1i

i!
.

Since e = e1 =
∑∞

i=0 1i/i!, it follows that the above sum is close to e.

CL-3.1 Choose values for pairs
AND choose suits for the lowest value pair
AND choose suits for the middle value pair
AND choose suits for the highest value pair.

This gives
(

13
3

)(

4
2

)3
= 61, 776.

CL-3.2 Choose the lowest value in the straight (A to 10) AND choose a suit for each of the
5 values in the straight. This gives 10 × 45 = 10240.

Although the previous answer is acceptable, a poker player may object since a
“straight flush” is better than a straight — and we included straight flushes in our
count. Since a straight flush is a straight all in the same suit, we only have 4 choices of
suits for the cards instead of 45. Thus, there are 10 × 4 = 40 straight flushes. Hence,
the number of straights which are not straight flushes is 10240 − 40 = 10200.

CL-3.3 If there are n 1’s in the sequence, there are n − 1 spaces between the 1’s. Thus, there
are 2n−1 compositions of n. A composition of n with k parts has k − 1 commas The
number of ways to insert k − 1 commas into n − 1 positions is

(

n−1
k−1

)

.

CL-3.4 Note that EXERCISES contains 3 E’s, 2 S’s and 1 each of C, I, R and X. We can use
the multinomial coefficient

(

n

m1,m2, . . . ,mk

)

=
n!

m1! m2! · · ·mk!

where n = m1 + m2 + . . . + mk. Take n = 9, m1 = 3, m2 = 2 and m3 = m4 = m5 =
m6 = 1. This gives 9!/3! 2! = 30240. This calculation can also be done without the use
of a multinomial coefficient as follows. Choose 3 of the 9 possible positions to use for
the three E’s AND choose 2 of the 6 remaining positions to use for the two S’s AND
put a permutation of the remaining 4 letters in the remaining 4 places. This gives us
(

9
3

)

×
(

6
2

)

× 4!.

CL-3.5 An arrangement is a list formed from 13 things each used 4 times. Thus we have
n = 52 and mi = 4 for 1 ≤ i ≤ 13 in the multinomial coefficient

(

n

m1,m2, . . . ,mk

)

=
n!

m1! m2! · · ·mk!
.

CL-3.6 (a) The first 4 names in dictionary order are LALALAL, LALALAS, LALALAT,
LALALIL.

(b) The last 4 names in dictionary order are TSITSAT, TSITSIL, TSITSIS, TSITSIT.

Solutions-5



Solutions for Basic Counting and Listing

(c) To compute the names, we first find the possible consonant vowel patterns. They
are CCVCCVC, CCVCVCC, CVCCVCC and CVCVCVC. The first three each
contain two pairs of adjacent consonants, one isolated consonant and two vowels.
Thus each corresponds to (3 × 2)2 × 3 × 22 names. The last has four isolated
consonants and three vowels and so corresponds to 34 × 23 names. In total, there
are 1,944 names.

CL-3.7 The first identity can be proved by writing the binomial coefficients in terms of facto-
rials. It can also be proved from the definition of the binomial coefficient: Choosing a
set of size k from a set of size n is equivalent to choosing a set of size n − k to throw
away, namely the things not chosen.

The total number of subsets of an n element set is 2n. On the other hand, we can
divide the subsets into collections Tj , where Ti contains all the i element subsets. The
number of subsets in Ti is

(

n
i

)

. Apply the Rule of Sum.

CL-3.8 S(n, n) = 1: The only way to partition an n element set into n blocks is to put each
element in a block by itself, so S(n, n) = 1.

S(n, n− 1) =
(

n
2

)

: The only way to partition an n element set into n− 1 blocks is to
choose two elements to be in a block together and put the remaining n − 2 elements
in n− 2 blocks by themselves. Thus it suffices to choose the 2 elements that appear in
a block together and so S(n, n − 1) =

(

n
2

)

.

S(n, 1) = 1: The only way to partition a set into one block is to put the entire set
into the block.

S(n, 2) = (2n−2)/2: We give two solutions. Note that S(n, k) is the number of k-sets
S where the entries in S are nonempty subsets of a given n-set T and each element
of T appears in exactly one entry of S. We will count k-lists, which is k! times the
number of k-sets. We choose a subset for the first block (first list entry) and use the
remaining set elements for the second block. Since an n-set has 2n, this would seem
to give 2n/2; however, we must avoid empty blocks. In the ordered case, there are two
ways this could happen since either the first or second list entry could be the empty
set. Thus, we must have 2n − 2 instead of 2n. The answer is (2n − 2)/2.

Here is another way to compute S(n, 2). Look at the block containing n. Once
it is determined, the entire two block partition is determined. The block containing n
can be gotten by starting with n and adjoining one of the 2n−1 − 1 proper subsets of
{1, 2, . . . , n − 1}.

CL-3.9 We use the hint. Choose i elements of {1, 2, · · · , n} to be in the block with n+ 1 AND
either do nothing else if i = n OR partition the remaining elements. This gives

(

n
n

)

if

i = n and
(

n
i

)

Bn−i otherwise. If we set B0 = 1, the second formula applies for i = n,
too. Since i = 0 OR i = 1 OR · · · OR i = n, the result follows.

(b) To calculate Bn for n ≤ 5: We have B0 = 1 from (a). Using the formula in (a) for
n = 0, 1, 2, 3, 4 in order, we obtain B1 = 1, B2 = 2, B3 = 5, B4 = 15 and B5 = 52.

CL-3.10 (a) There is exactly one arrangement — 1,2,3,4,5,6,7,8,9.

(b) We do this by counting those arrangements that have ai ≤ ai+1 except, perhaps,
for i = 5. Then we subtract off those that also have a5 < a6. In set terms:

• S is the set of rearrangements for which a1 < a2 < a3 < a4 < a5 and a6 < a7 <
a8 < a9,

Solutions-6



Solutions for Basic Counting and Listing

• T is the set of rearrangements for which a1 < a2 < a3 < a4 < a5 < a6 < a7 <
a8 < a9, and

• we want |S \ T | = |S| − |T |.
An arrangement in S is completely determined by specifying the set {a1, . . . , a5},
of which there are

(

9
5

)

= 126. In (a), we saw that |T | = 1. Thus the answer is
126 − 1 = 125.

CL-4.1 Let the probability space consist of all
(

6
2

)

= 15 pairs of horses and use the uniform
probability. Thus each pair has probability 1/15. Since each horse is in exactly 5 pairs,
the probability of your choosing the winner is 5/15 = 1/3, regardless of which horse
wins.

Here is another way. You could choose your first horse and your second horse, so
the space consists of 6×5 choices. The probability that your first choice was the winner
is 1/6. The probability that your second choice was the winner is also 1/6. Since these
events are disjoint, the probability of picking the winner is 1/6 + 1/6 = 1/3.

Usually the probability of winning a bet on a horse race depends on picking the
fastest horse after much study. The answer to this problem, 1/3, doesn’t seem to have
anything to do with studying the horses? Why?

CL-4.2 The sample space is {0, 1, . . . , 36, 00}. We have P (0) = P (1) = · · · = P (36) and
P (00) = 1.05P (0). Thus

1 = P (0) + · · · + P (36) + P (00) = 38.05P (0).

Hence P (0) = 1/38.05 and so P (00) = 1.05/38.05 = 0.0276.

CL-4.3 Let the event space be {A,B}, depending on who finds the key. Since Alice searches
20% faster than Bob, it is reasonable to assume that P (A) = 1.2 P (B). The odds that
Alice finds the key are P (A)/P (B) = 1.2, that is, 1.2:1, which can also be written
as 6:5. Combining P (A) = 1.2 P (B) with P (A) + P (B) = 1, we find that P (A) =
1.2/2.2 = 0.545.

CL-4.4 Let A be the event that you pick the winner and B the probability that you pick the
horse that places. From a previous exercise, P (A) = 1/3 Similarly, P (B) = 1/3. We
want P (A ∪ B). By the principle of inclusion and exclusion, this is P (A) + P (B) −
P (A ∩ B). Of all

(

6
2

)

= 15 choices, only one is in A ∩ B. Thus P (A ∩ B) = 1/15 and
the answer is 1/3 + 1/3 − 1/15 = 3/5.

CL-4.5 Since probabilities are uniform, we simply count the number of events that satisfy
the conditions and divide by the total number of events, which is mn for n balls and
m boxes. First we will do the problems in an ad hoc manner, then we’ll discuss a
systematic solution. We use (a′)–(c′) to denote the answers for (d).

(a) We place one ball in the first box AND one in the second AND so on. Since this
can be done in 4! ways, the answer is 4!/44 = 3/32.

(a′) We must have one box with two balls and one ball in each of the other three boxes.
We choose one box to contain two balls AND two balls for the box AND distribute
the three remaining balls into three boxes as in (a). This gives us 4×

(

5
2

)

×3! = 240.
Thus the answer is 240/45 = 15/64.
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(b) This is somewhat like (a′). Choose a box to be empty AND choose a box to
contain two balls AND choose two balls for the box AND distribute the other two
balls into the other two boxes. This gives 4× 3×

(

4
2

)

× 2! = 144. Thus the answer
is 144/44 = 9/16.

(b′) This is more complicated since the ball counts can be either 3,1,1,0 or 2,2,1,0. As
in (b), there are 4 × 3 ×

(

5
3

)

× 2! = 240 to do the first. In the second, there are
(

4
2

)

× 2 = 12 ways to designate the boxes and
(

5
2

)

×
(

3
2

)

= 30 ways to choose the
balls for the boxes that contain two each. Thus there are 360 ways and the answer
is (240 + 360)/45 = 75/128.

(c) Simply subtract the answer for (a) from 1 since we are asking for the complemen-
tary event. This gives 29/32. For (c′) we have 39/64.

We now consider a systematic approach. Suppose we want to assign n balls to m
boxes so that exactly k ≤ m of the boxes contain balls. Call the balls 1, 2, . . . , n
First partition the set of n balls into k blocks. This can be done in S(n, k) ways,
where S(n, k) is the Stirling number discussed in Section 3. List the blocks in some
order (pick your favorite; e.g., numerical order based on the smallest element in the
block). Assign the first block to a box AND assign the second block to a box AND,
etc. This can be done in m(m − 1) · · · (m − k + 1) = m!/(m − k)! ways. Hence the
number of ways to distribute the balls is S(n, k)m!/(m− k)! and so the probability is
S(n, k)m!/(m− k)!mn. For our particular problems, the answers are

(a) S(4, 4)4!/0! 44 = 3/32 (a′) S(5, 4)4!/0! 45 = 15/64
(b) S(4, 3)4!/1! 44 = 9/16 (b′) S(5, 3)4!/1! 45 = 75/128 .

The moral here is that if you can think of a systematic approach to a class of problems,
it is likely to be easier than solving each problem separately.

CL-4.6 (a) Since the die is thrown k times, the sample space is Sk, where S = {1, 2, 3, 4, 5, 6}.
Since the die is fair, all 6k sequences in Sk are equally likely. We claim that exactly
half have an even sum and so P (E) = 1/2. Why do half have an even sum? Here are
two proofs.

• Let No(n) be the number of odd sums in the first n throws and let Ne(n) be the
number of even sums. We have

Ne(k) = 3Ne(k − 1) + 3No(k − 1) and No(k) = 3No(k − 1) + 3Ne(k − 1)

because an even sum is obtained from an even by throwing 2, 4, or 6 and from an
odd by throwing 1, 3, or 5; and similarly for an odd sum. Thus Ne(k) = No(k).
Since the probability on Sk is uniform, the probability of an even sum is 1/2.

• Let So be all the k-lists in Sk with odd sum and let Se be those with even sum.
Define the function f : Sk → Sk as follows

f(x1, x2 . . . , xk) =

{

(x1 + 1, x2, . . . , xk), if x1 is odd;
(x1 − 1, x2, . . . , xk), if x1 is even.

We leave it to you to convince yourself that this function is a bijection between
So and Se. (A bijection is a one-to-one correspondence between elements of So

and Se.)
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(b) The sample space for drawing cards n times is Sn where S is the Cartesian product

{A, 2, 3, . . . , 10, J,Q,K} × {♣,♦,♥,♠}.

The probability of any point in Sn is (1/52)n. The number of draws with no king is
(52− 4)n and so the probability of none is (48/52)n = (12/13)n. The probability of at
least one king is 1 − (12/13)n.

(c) The equiprobable sample space is gotten by distinguishing the marbles M =
{w1, w2, w3, r1, . . .} and defining the sample space by

S = {(m,m′) : m and m′ are distinct elements of M}.

If Er is the event that both m and m′ are red, then P (Er) = 4∗3/|S| where |S| = 12∗11.

RELATED PROBLEMS TO THINK ABOUT: What is the probability of two white
and two blue marbles being drawn if four marbles are drawn without replacement? Of
two white and two blue marbles being drawn if four marbles are drawn with replace-
ment?

CL-4.7 This is nearly identical to the example on hypergeometric probabilities. The answer
is C(5, 3)C(10, 3)/C(15, 6).

CL-4.8 Let B = {1, 2, . . . , 10}.
(a) The sample space S is the set of all subsets of B of size 2. Thus |S| =

(

10
2

)

= 45.
Since each draw is equally likely, we just need to know how many pairs have an
odd sum. One of the balls must have an odd label and the other an even label.
The number of pairs with this property is 5 × 5 since there are 5 odd labels and
5 even labels. Thus the probability is 25/45 = 5/9.

(b) The sample space S is the set of ordered pairs (b1, b2) with b1 6= b2 both from B.
Thus |S| = 10 × 9 = 90. To get an odd sum, one of b1 and b2 must be even and
the other odd. Thus there are 10 choices for b1 AND then 5 choices for b2. The
probability is 50/90 = 5/9.

(c) The sample space is S = B ×B and |S| = 100. The number of pairs (b1, b2) is 50
as in (b). Thus the probability is 50/100 = 1/2.

CL-4.9 This is an inclusion and exclusion type of problem. There are three ways to approach
such problems:

• Have a variety of formulas handy that you can plug into. This, by itself, is not
a good idea because you may encounter a problem that doesn’t fit any of the
formulas you know.

• Draw a Venn diagram and use the information you have to compute the probability
of as many regions as you can. If there are more than 3 sets, the Venn diagram is
too confusing to be very useful. With 2 or 3 sets, it is a good approach.

• Carry out the preceding idea without the picture. We do this here.

Suppose we are dealing with k sets, A1, . . . , Ak. We need to know what the regions in
the Venn diagram are. Each region corresponds to T1 ∩ · · · ∩ Tk where Ti is either Ai

or Ac
i . In our case, k = 2 and so the probabilities of the regions are

P (A ∩ B) P (A ∩ Bc) P (Ac ∩ B) P (Ac ∩ Bc).
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We get A by combining A∩B and A∩Bc. We get B by combining A∩B and Ac ∩B.
By properties of sets, (A ∪ B)c = Ac ∩ Bc. Thus our data corresponds to the three
equations

P (A∩B) + P (A∩Bc) = 3/8 P (A∩B) + P (Ac ∩B) = 1/2 P (Ac ∩Bc) = 3/8.

We have one other equation: The probabilities of all four regions sum to 1. This gives
us four equations in four unknowns whose solution is

P (A ∩ B) = 1/4 P (A ∩ Bc) = 1/8 P (Ac ∩ B) = 1/4 P (Ac ∩ Bc) = 3/8.

Thus the answer to the problem is 1/4.
When we are not asked for the probability of all regions, it is often possible to

take shortcuts. That is the case here. From P ((A ∪ B)c) = 3/8 we have P (A ∪ B) =
1−3/8 = 5/8. Since P (A∪B) = P (A)+P (B)−P (A∩B) and three of the four terms
in this equation are known, we can easily solve for P (A ∩ B).

CL-4.10 This is another Venn diagram problem. This time we’ll work with number of people
instead of probabilities. Let C correspond to the set of computer science majors, W
the set of women and S to the entire student body. We are given

|C| = 20% × 5, 000 = 1, 000

|W | = 58% × 5, 000 = 2, 900

|C ∩ W | = 430.

(a) We want |W ∩ Cc|, which equals |W | − |W ∩ C| = 2, 470. You should be able to
see why this is so by the Venn diagram or by the method used in the previous
problem.

(b) The number of men who are computer science majors is the number of computer
science majors who are not women. This is |C|−|C∩W | = 1, 000−430 = 570. The
number of men in the student body is 42%× 5, 000 = 2, 100. Thus 2, 100− 570 =
1, 530 men are not computer science majors.

(c) The probability is 430
5,000

= 0.086.

(c) Since there are 58% × 5, 000 = 2, 900 women, the probability is 430
2,900 .

CL-4.11 Since the coin is fair P (H) = 1/2, what about P (W ), the probability that Beatlebomb
wins? Recall the meaning of the English phrase “the odds that it will occur.” This is
trivial but important, as the phrase is used often in everyday applications of probability.
If you don’t recall the meaning, see the discussion of odds in the text. From the
definition of odds, you should be able to show that P (W ) = 1/101. If we had studied
“independent” events, you could immediately see that the answer to the questions is
(1/2) × (1/101) = 1/202, but we need a different approach which lets independent
events sneak in through the back door.

Let the sample space be {H,T}×{W,L}, corresponding to the outcome of the coin
toss and the outcome of the race. From the previous paragraph P ({(H,W ), (T,W )}) =
1/101. Since the coin is fair and the coin toss doesn’t influence the race, we should
have P ((H,W )) = P ((T,W )). Since

P ({(H,W ), (T,W )}) = P ((H,W )) + P ((T,W )),
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It follows after a little algebra that P (H,W )) = 1/202.

CL-4.12 This is another example of the hypergeometric probability. Do you see why? The
answer is C(37, 11)C(2, 2)/C(39, 13).

CL-4.13 It may seem at first that you need to break up the problem according to what the other
players have been dealt. Not so! You should be able to see that the results would have
been the same if you had been dealt your fifth card before the other players had been
dealt their cards. Now it’s not hard to work things out. After you’ve been dealt 4
cards, there are 48 cards left. Of those, the fourth card in the 3 of a kind (4♦ in the
example) and any of the 3 cards with the same value as your odd card (10♥ 10♦ 10♣
in the example) improve your hand. That’s 4 cards out of 48, so the probability is
4/48 = 1/12.

CL-4.14 (a) Let words of length 6 formed from three G’s and three B’s stand for the arrange-
ments in terms of Boys and Girls; for example, BBGGBG or BBBGGG. There are
(

6
3

)

= 6!/(3! 3!) = 20 such words. Four such words correspond to the three girls to-
gether: GGGBBB, BGGGBB, BBGGGB, BBBGGG. The probability of three girls
being together is 4/20 = 1/5.

(b) If they are then seated around a circular table, there are two additional arrangements
that will result in all three girls sitting together: GGBBBG and GBBBGG. The prob-
ability is 6/20 = 3/10.

CL-4.15 You can draw the Venn diagram for three sets and, for each of the eight regions, count
how much a point in the region contributes to the addition and subtraction. This does
not extend to the general case. We give another proof that does.

Let S be the sample space and let T be a subset of S Define the function χT with
domain S by

χT (s) =

{

1 if s ∈ T ,
0 if s 6∈ T .

This is called the characteristic function of T .1 We leave it to you to check that

χT c(s) = 1 − χT (s), χT∩U (s) = χT (s) χU (s), and P (S) =
∑

s∈S

P (s)χT (s).

1 χ is a lower case Greek letter and is pronounced like the “ki” in “kind.”
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Using these equations and a little algebra, we have

P (Ac ∩ Bc ∩ Cc) =
∑

s∈S

P (s)χAc∩Bc∩Cc(s)

=
∑

s∈S

P (s)
(

1 − χA(s)
)(

1 − χB(s)
)(

1 − χC(s)
)

=
∑

s∈S

P (s) −
∑

s∈S

P (s)χA(s) −
∑

s∈S

P (s)χB(s) −
∑

s∈S

P (s)χC(s)

+
∑

s∈S

P (s)χA(s)χB(s) +
∑

s∈S

P (s)χA(s)χC(s)

+
∑

s∈S

P (s)χB(s)χC(s) −
∑

s∈S

P (s)χA(s)χB(s)χC(s)

= 1 − P (A) − P (B)− P (C)

+ P (A ∩ B) + P (A ∩ C)

+ P (B ∩ C) − P (A ∩ B ∩ C).

CL-4.16 Let the stick have unit length and let x be the distance from the end of the stick where
the break is made. Thus 0 ≤ x ≤ 1. The longer piece will be at least twice the length
of the shorter if x ≤ 1/3 or if x ≥ 2/3. The probability of this is 1/3 +1/3 = 2/3. You
should be able to fill in the details.

CL-4.17 Let x and y be the places where the stick is broken. Thus, (x, y) is chosen uniformly at
random in the square S = (0, 1)× (0, 1). Three pieces form a triangle if the sum of the
lengths of any two is always greater than the length of the third. We must determine
which regions in S satisfy this condition.

Suppose x < y. The lengths are then x, y − x, and 1 − y. The conditions are

x + (y − x) > 1 − y, x + (1 − y) > y − x, and (y − x) + (1 − y) > x.

With a little algebra, these become

y > 1/2, y < x + 1/2, and x < 1/2,

respectively. If you draw a picture, you will see that this is a triangle of area 1/8.
If x > y, we obtain the same results with the roles of x and y reversed. Thus the

total area is 1/8 + 1/8 = 1/4. Since S has area 1, the probability is 1/4.

CL-4.18 Look where the center of the coin lands. If it is within d/2 of a lattice point, it
covers the lattice point. Thus, there is a circle of diameter d about each lattice point
and the coin covers a lattice point if and only if it lands in one of the circles. We
need to compute the fraction of the plane covered by these circles. Since the pattern
repeats in a regular fashion, all we need to do is calculate the fraction of the square
{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} that contains parts of circles. There is a quarter circle
about each of the points (0,0), (0,1), (1,0) and (1,1) inside the square. Since the circle
has diameter at most 1, the quarter circles have no area in common and so their total
area equals the area of the coin, πd2/4. Since the area of the square is 1, the probability
that the coin covers a lattice point is πd2/4.
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CL-4.19 Select the three points uniformly at random from the circumference of the circle and
label them 1, 2, 3 going clockwise around the circle from the top of the circle. Let E1

denote the event consisting of all such configurations where points 2 and 3 lie in the
half circle starting at 1 and going clockwise (180 degrees). Let E2 denote the event
that points 2 and 1 lie in the half circle starting at 2 and going clockwise 180 degrees.
Let E3 be defined similarly. Note that the events E1, E2, and E3 are mutually ex-
clusive. (Draw a picture and think about this.) By our basic probability axioms, the
probability of the union is the sum of the probabilities P (E1) + P (E2) + P (E3). To
compute P (E1), imagine point 1 on the circle, consider its associated half circle and,
before looking at the other two points, ask “What is the probability that they lie in
that half circle?” Let x be the number of degrees clockwise from point 1 to point 2 and
y the number from 1 to 3. Thus (x, y) is a point chosen uniformly at random in the
square [0, 360) × [0, 360). For event E1 to occur, (x, y) must lie in [0, 180) × [0, 180),
which is 1/4 of the original square. Thus P (E1) = 1/4. (This can also be done using
independent events: the locations of points 2 and 3 are chosen independently so one
gets (1/2)× (1/2).) The probabilities of E2 and E3 are the same for the same reason.
Thus P (E1) + P (E2) + P (E3) = 3/4.

What is the probability that k points selected uniformly at random on the cir-
cumference of a circle lie the same semicircle? Use the same method. The answer is
k/(2k−1).

Solutions-13



Solutions for Functions

Solutions for Functions

Fn-1.1 (a) We know the domain and range of f . f is not an injection. Since no order is given
for the domain, the attempt to specify f in one-line notation is meaningless (the ASCII
order +, <,>, ?, is a possibility, but is unusual enough in this context that explicitly
specifying it would be essential). If the attempt at specification makes any sense, it
tells us that f is a surjection. We cannot give it in two-line form since we don’t know
the function.

(b) We know the domain and range of f and the domain has an implicit order. Thus
the one-line notation specifies f . It is an injection but not a surjection. In two-line

form it is

(

1 2 3
? < +

)

.

(c) This function is specified and is an injection. In one-line notation it would be

(4,3,2), and, in two-line notation,

(

1 2 3
4 3 2

)

.

Fn-1.2 (a) If f is an injection, then |A| ≤ |B|. Solution: Since f is an injection, every element
of A maps to a different element of B. Thus B must have at least as many elements
as A.

(b) If f is a surjection, then |A| ≥ |B|. Solution: Since f is a surjection, every element
of B is the image of at least one element of A. Thus A must have at least as many
elements as B.

(c) If f is a bijection, then |A| = |B|. Solution: Combine the two previous results.

(d) If |A| = |B|, then f is an injection if and only if it is a surjection. Solution:
Suppose that f is an injection and not a surjection. Then there is some b ∈ B which is
not the image of any element of A under f . Hence f is an injection from A to B−{b}.
By (a), |A| ≤ |B − {b}| < |B|, contradicting |A| = |B|.
Now suppose that f is a surjection and not an injection. Then there are a, a′ ∈ A such
that f(a) = f(a′). Consider the function f with domain restricted to A − {a′}. It is
still a surjection to B and so by (b) |B| ≤ |A − {a′}| < |A| , contradicting |A| = |B|.
(e) If |A| = |B|, then f is a bijection if and only if it is an injection or it is a surjection.
Solution: By the previous part, if f is either an injection or a surjection, then it is
both, which is the definition of a bijection.

Fn-1.3 (a) Since ID numbers are unique and every student has one, this is a bijection.

(b) This is a function since each student is born exactly once. It is not a surjection
since D includes dates that could not possibly be the birthday of any student; e.g., it
includes yesterday’s date. It is not an injection. Why? You may very well know of two
people with the same birthday. If you don’t, consider this. Most entering freshman
are between 18 and 19 years of age. Consider the set F of those freshman and their
possible birth dates. The maximum number of possible birth dates is 366+365, which
is smaller than the size of the set F . Thus, when we look a the function on F it is not
injective.

(c) This is not a function. It is not defined for some dates because no student was
born on that date. For example, D includes yesterday’s date
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(d) This is not a function because there are students whose GPAs are outside the range
2.0 to 3.5. (We cannot prove this without student record information, but we can be
sure it is true.)

(e) We cannot prove that it is a function without gaining access to student records;
however, we can be sure that it is a function since we can be sure that each of the
16 GPAs between 2.0 and 3.5 will have been obtained by many students. It is not
a surjection since the codomain is larger than the domain. It is an injection since a
student has only one GPA.

Fn-1.4 {(1, a), (2, b), (3, c)} is not a relation because c /∈ B. The others are relations.
Among the relations, {(1, a), (2, b), (1, d)} is not a functional relation because the
value of the function at 3 is not defined and {(1, a), (2, b) (3, d), (1, b)} is not a
function because the value of the function at 1 is not uniquely defined. Thus only
{(3, a), (2, b), (1, a)} is a functional relation.
Only the inverse of {(1, a), (2, b), (1, d)} is a functional relation. We omit the expla-
nation.

Fn-2.1 (a) For (1,5,7,8) (2,3) (4) (6):

(

1 2 3 4 5 6 7 8
5 3 2 4 7 6 8 1

)

is the two-line form and

(5,3,2,4,7,6,8,1) is the one-line form. (We’ll omit the two-line form in the future
since it is simply the one-line form with 1, 2, . . . placed above it.) The inverse is
(1,8,7,5) (2,3) (4) (6) in cycle form and (8,3,2,4,1,6,5,7) in one-line form.

(b) For

(

1 2 3 4 5 6 7 8
8 3 7 2 6 4 5 1

)

: The cycle form is (1,8) (2,3,7,5,6,4). Inverse:

cycle form is (1,8) (2,4,6,5,7,3); one-line form is (8,4,2,6,7,5,3,1).

(c) For (5,4,3,2,1), which is in one-line form: The cycle form is (1,5) (2,4) (3). The
permutation is its own inverse.

(d) (5,4,3,2,1), which is in cycle form: This is not the standard form for cycle form.
Standard form is (1,5,4,3,2). The one-line form is (5,1,2,3,4). The inverse is (1,2,3,4,5)
in cycle form and (2,3,4,5,1) in one-line form.

Fn-2.2 Write one entire set of interchanges as a permutation in cycle form. The interchanges
can be written as (1,3), (1,4) and (2,3). Thus the entire set gives 1 → 3 → 2, 2 → 3,
3 → 1 → 4 and 4 → 1. In cycle form this is (1,2,3,4). Thus five applications takes 1 to
2.

Fn-2.3 (a) Imagine writing the permutation in cycle form. Look at the cycle containing 1,
starting with 1. There are n − 1 choices for the second element of the cycle AND
then n− 2 choices for the third element AND · · · AND (n− k + 1) choices for the kth
element. Prove that the number of permutations in which the cycle generated by 1
has length n is (n − 1)!: The answer is given by the Rule of Product and the above
result with k = n.

(b) For how many permutations does the cycle generated by 1 have length k? We
write the cycle containing 1 in cycle form as above AND then permute the remaining
n− k elements of n in any fashion. For the k long cycle containing 1, the above result

gives (n−1)!
(n−k)!

choices. There are (n − k)! permutations on a set of size n − k. Putting

this all together using the Rule of Product, we get (n − 1)!, a result which does not
depend on k.
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(c) Since 1 must belong to some cycle and the possible cycle lengths are 1, 2, . . . , n,
summing the answer to (b) over 1 ≤ k ≤ n will count all permutations of n exactly
once. In our case, the sum is (n − 1)! + · · · + (n − 1)! = n × (n − 1)! = n!.

This problem has shown that if you pick a random element in a permutation of an
n-set, then the length of the cycle it belongs to is equally likely to be any of the values
from 1 to n.

Fn-2.4 Let e be the identity permutation of A. Since e ◦ f = f for any permutation of A, we
have e ◦ e = e. Applying this many times ek = e ◦ e ◦ · · · ◦ e = e for any k > 0. We will
use this in discussing the solution.

(a) We can step around the cycle as in Example 8 and see that after 3 steps we are back
where we started from. Three hundred steps simply does this one hundred times.
Instead of phrasing it this way, we could say (1, 2, 3)3 = e and so (1, 2, 3)300 =
((1, 2, 3)3)100 = e100e.

(b) Since we step around each cycle separately,

(

(1, 3)(2, 5, 4)
)300

= (1, 3)300(2, 5, 4)300 = e300/2e300/3 = e.

(c) A permutation of a k-set cannot have a cycle longer than k. Thus the possi-
ble cycle lengths for permutations of 5 are 1, 2, 3, 4 and 5. A cycle of any of
these lengths raised to the 60th power is the identity. For example (a, b, c, d)60 =
((a, b, c, d)4)15 = e15 = e. Thus f60 = e. Finally f61 = f60f = ef = f .

Fn-3.1 (a) The domain and range of f are specified and f takes on exactly two distinct values.
f is not an injection. Since we don’t know the values f takes, f is not completely
specified; however, it cannot be a surjection because it would have to take on all four
values in its range.

(b) Since each block in the coimage has just one element, f is an injection. Since
|Coimage(f)| = 5 = |range of f |, f is a surjection. Thus f is a bijection and, since the
range and domain are the same, f is a permutation. In spite of all this, we don’t know
the function; for example, we don’t know f(1), but only that it differs from all other
values of f .

(c) We know the domain and range of f . From f−1(2) and f−1(4), we can determine
the values f takes on the union f−1(2) ∪ f−1(4) = 5. Thus we know f completely. It
is neither a surjection nor an injection.

(d) This function is a surjection, cannot be an injection and has no values specified.

(e) This specification is nonsense. Since the image is a subset of the range, it cannot
have more than four elements.

(f) This specification is nonsense. The number of blocks in the coimage of f equals
the number of elements in the image of f , which cannot exceed four.

Fn-3.2 (a) The coimage of a function is a partition of the domain with one block for each
element of Image(f).

(b) You can argue this directly or apply the previous result. In the latter case, note
that since Coimage(f) is a partition of A, |Coimage(f)| = |A| if and only if each block
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of Coimage(f) contains just one element. On the other hand, f is an injection if and
only if no two elements of A belong to the same block of Coimage(f).

(c) By the first part, this says that |Image| = |B|. Since Image(f) is a subset of B, it
must equal B.

Fn-3.3 (a) The list is 321, 421, 431, 432, 521, 531, 532, 541, 542, 543.

(b) The first number is
(

x1−1
3

)

+
(

x2−1
2

)

+
(

x3−1
1

)

+ 1 =
(

2
3

)

+
(

1
2

)

+
(

0
1

)

+ 1 = 1. The

last number is
(

4
3

)

+
(

3
2

)

+
(

2
1

)

+ 1 = 10. The numbers
(

x1−1
3

)

+
(

x2−1
2

)

+
(

x3−1
1

)

+ 1
are, consecutively, 1, 2, . . . 10 and represent the positions of the corresponding strings
x1x2x3 in the list.

(c) The list is 123, 124, 125, 134, 135, 145, 234, 245, 345.

(d) If, starting with the list of (c), you form the list (6− x1)(6 − x2)(6 − x3), you get
543, 542, 541, 532, 531, 521, 432, 431, 421, 321 which is the list of (a) in reverse order.
Thus the formula of (b) gives the positions ρ(xx, x2, x3) in reverse order of the list (c).
Subtract 11 − ρ(xx, x2, x3) to get the position in forward order.

(e) Successor: 98421. Predecessor: 97654.

(f) Let x1 = 9, x2 = 8, x3 = 3, x2 = 2 and x1 = 1. Using the idea in part (b) of this
exercise, the answer is

(

x1 − 1

5

)

+

(

x2 − 1

4

)

+

(

x3 − 1

3

)

+

(

x4 − 1

2

)

+

(

x5 − 1

1

)

=

(

8

5

)

+

(

7

4

)

+

(

2

3

)

+

(

1

2

)

+

(

0

1

)

= 56 + 35 + 0 + 0 + 0 = 91.

Fn-3.4 (a) The first distribution of balls to boxes corresponds to the strictly decreasing string
863. The next such string in lex order on all strictly decreasing strings of length 3
from 8 is 864. To get the corresponding distribution, place the three moveable box
boundaries under positions 8, 6, and 4 and put balls under all other positions in 8. The
predecessor to 863 is 862. The second distribution corresponds to 542. Its successor is
543, its predecessor is 541.

(b) The formula p(x1, x2, x3) =
(

x1−1
3

)

+
(

x2−1
2

)

+
(

x3−1
1

)

+ 1 gives the position of
the string x1x2x3 in the list of decreasing strings of length three from 8. We solve
the equation p(x1, x2, x3) =

(

8
3

)

/2 = 28 for the variables x1, x2, x3. Equivalently, find

x1, x2, x3 such that
(

x1−1
3

)

+
(

x2−1
2

)

+
(

x3−1
1

)

= 27. First try to choose x1−1 as large as

possible so that
(

x1−1
3

)

≤ 27. A little checking gives x1−1 = 6, with
(

x1−1
3

)

=
(

6
3

)

= 20.

Subtracting, 27 − 20 = 7. Now choose x2 − 1 as large as possible so that
(

x1−1
2

)

≤ 7.

This gives x2 − 1 = 4 with
(

x2−1
2

)

=
(

4
2

)

= 6. Now subtract 7 − 6 = 1 and choose
x3 − 1 = 1. Thus, (x1, x2, x3) = (7, 5, 2). The first element in the second half of the
list is the next one in lex order after 752 which is 753. The corresponding distributions
of ball into boxes can be obtained in the usual way.

Fn-3.5 (a) 2, 2, 3, 3 is not a restricted growth (RG) function because it doesn’t start with 1.
1, 2, 3, 3, 2, 1 is a restricted growth function. It starts with 1 and the first occurrence
of each integer is exactly one greater than the maximum of all previous integers.
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1, 1, 1, 3, 3 is not an RG function. The first occurrence of 3 is two greater than the max
of all previous integers.
1, 2, 3, 1 is an RG function.

(b) We list the blocks f−1(i) in order of i. Observe that all partitions of 4 occur exactly
once as coimages of the RG functions.

1111 → {1, 2, 3, 4} 1112 → {1, 2, 3}, {4} 1121 → {1, 2, 4}, {3}
1122 → {1, 2}, {3, 4} 1123 → {1, 2}, {3}, {4} 1211 → {1, 3, 4}, {2}
1212 → {1, 3}, {2, 4} 1213 → {1, 3}, {2}, {4} 1221 → {1, 4}, {2, 3}
1222 → {1}, {2, 3, 4} 1223 → {1}, {2, 3}, {4} 1231 → {1, 4}, {2}, {3}
1232 → {1}, {2, 4}, {3} 1233 → {1}, {2}, {3, 4} 1234 → {1}, {2}, {3}, {4}

(c) 11111, 11112, 11121, 11122, 11123 → {{1, 2, 3}, {4}, {5}}
11211, 11212, 11213, 11221, 11222 → {{1, 2}, {3, 4, 5}}
11223, 11231, 11232, 11233, 11234 → {{1, 2}, {3}, {4}, {5}}

Fn-3.6 S(6, 3)(5)3 = 90 × 5 × 4 × 3 = 5400.

Fn-3.7 The set B of balls is the domain and the set C of cartons is the range. Every function
in CB describes a different one of the ways to put balls into cartons. Since 2 cartons
are to remain empty, we are interested in functions f with |Image(f)| = 3. Thus the
answer to this exercise is exactly the same as for the previous exercise.

Fn-3.8 By the theorem in the text and Example 14, these are all the same. By the method in
Example 14, the answer is

(

4+6−1
6

)

=
(

9
6

)

=
(

9
3

)

= 84.

Fn-4.1 hX,Y 0 1 2 3 4 fX

0 1/16 0 0 0 0 1/16
1 0 4/16 0 0 0 4/16
2 0 3/16 3/16 0 0 6/16
3 0 0 2/16 2/16 0 4/16
4 0 0 0 0 1/16 1/16

fY 1/16 7/16 5/16 2/16 1/16

The row index is X and
the column index is Y .

E(X) = 2, Var(X) = σX = 1 E(Y ) = 1.69, Var(Y ) = 0.96, σY = 0.98

(c) Cov(X,Y ) = 0.87

(d) ρ(X,Y ) = 0.87/(1)(0.98) = +0.89 Since the correlation is close to 1, X and Y move
up and down together. In fact, you can see from the table for the joint distribution
that X and Y are often equal.

Fn-4.2 (a) You should be able to supply reasons for each of the following steps

Cov(aX + bY, aX − bY ) = E[(aX + bY )(aX − bY )] − E[(aX + bY )]E[(aX − bY )]

= E[a2X2 − b2Y 2] − [aE(X) − bE(Y )][aE(X) + bE(Y )]

= E[a2X2 − b2Y 2] − [a2(E(X))2 − b2(E(Y ))2]

= a2[E(X2) − (E(X))2] − b2[E(Y 2) − (E(Y ))2]

= a2Var(X) − b2Var(Y )

Alternatively, using the bilinear and symmetric properties of Cov:

Cov(aX + bY, aX − bY ) = a2Cov(X,X) − abCov(X,Y ) + baCov(Y,X) + b2Cov(Y, Y )

= a2Var(X) − b2Var(Y )
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(b) Here is the calculation:

Var[(aX + bY )(aX − bY )] = Var[a2X2 − b2Y 2)]

= a4Var(X2) − 2a2b2Cov(X2, Y 2) + b4Var(Y 2)

Fn-4.3 We begin our calculations with no assumptions about the distribution for X. Expand
the argument of the expectation and then use linearity of expectation to obtain.

E((aX + b)2) = E(a2X2 + 2abX + b2)) = a2E(X2) + 2abE(X) + b2 .

(The last term comes from the fact that E(b2) = b2 since b2 is a constant.) By
definition, Var(X) + (E(X))2 = E(X2). Thus

E((aX + b)2) = a2
(

Var(X) + (E(X))2
)

+ 2abE(X) + b2 .

With a little algebra this becomes,

E((aX + b)2) = a2Var(X) + (aE(X) + b)2 .

Specializing to the particular distributions for parts (a) and (b), we have the following.

(a) E((aX + b)2) = a2np(1 − p) + (anp + b)2.

(b) E((aX + b)2) = a2λ + (aλ + b)2.

Fn-4.4 We make the dubious assumption that the misprints are independent of one another.
(This would not be the case if the person preparing the book was more careless at
some times than at others.)

Focus your attention on page 8. Go one by one through the misprints m1,
m2, . . ., m200 asking the question, “Is misprint mi on page 8?”

By the assumptions of the problem, the probability that the answer is “yes” for
each mi is 1/100. Thus, we are dealing with the binomial distribution b(k; 200, 1/100).
The probability of there being less than four misprints on page 8 is

3
∑

k=0

b(k; 200, 1/100) =
3

∑

k=0

(

200

k

)

(1/100)k(99/100)200−k.

Using a calculator, we find the sum to be 0.858034.
Using the Poisson approximation, we set λ = np = 2 and compute the easier sum

e−220/0! + e−221/1! + e−222/2! + e−223/3!,

which is 0.857123 according to our calculator.

Fn-4.5 From the definition of Z and the independence of X and Y , Tchebycheff’s inequality
states that

P (|Z − aE(X) − bE(y)| ≥ ǫ) ≤ Var(X) + Var(Y )

ǫ2
.

Applying this to the two parts (a) and (b), we get
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(a) P (|Z − aγ − bδ| ≥ ǫ) ≤ γ + δ

ǫ2
.

(b) P (|Z − anr − bns ≥ ǫ) ≤ nr(1 − r) + ns(1 − s)

ǫ2
.

Fn-4.6 We are dealing with b(k; 1000, 1/10). The mean is np = 100 and the variance is
npq = 90. The standard deviation is thus, 9.49. The exact solution is

115
∑

k=85

b(k; 1000, 1/10) =
115
∑

k=85

(

1000

k

)

(1/10)k(9/10)1000−k .

Using a computer with multi-precision arithmetic, the exact answer is 0.898. To apply
the normal distribution, we would compute the probability of the event [100, 115]
using the normal distribution with mean 100 and standard deviation 9.49. In terms of
the standard normal distribution, we compute the probability of the event [0, (115 −
100)/9.49] = [0, 1.6] (rounded off). If you have access to values for areas under the
standard normal distribution, you can find that the probability is 0.445. We double
this to get the approximate answer: 0.89.

Fn-4.7 We have

E(X) = E((1/n)(X1 + · · · + Xn)) = (1/n)E(X1 + · · · + Xn)

= (1/n)(E(X1) + · · · + E(Xn)) = (1/n)(µ + · · · + µ) = µ

Var(X) = Var((1/n)(X + 1 + · · · + Xn)) = (1/n)2 Var(X + 1 + · · · + Xn)

= (1/n)2(Var(X + 1) + · · · + Var(Xn)) = (1/n)2(nσ2) = σ2/n.

Since X has mean µ, it is a reasonable approximation to µ. Of course, it’s important
to know something about the accuracy.

(c) Since Var(X)= σ2/n, we have σX = σ/
√

n. If we change from n to N , σX changes
to σ/

√
N . Since we want to improve accuracy by a factor of 10, we want to have

σ/
√

N = (1/10)(σ/
√

n). After some algebra, this gives us N = 100n. In other words
we need to do 100 times as many measurements!
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Solutions for Decision Trees and Recursion

DT-1.1 PREV: C, CC, CCV, CCVC, CCVCC, CCCVCV, CV, CVC, CVCC, CVCCV, CVCV,
CVCVC, V, VC, VCC, VCCV, VCCVC, VCV, VCVC, VCVCC, VCVCV.
POSV: CCVCC, CCVCV, CCVC, CCV, CC, CVCCV, CVCC, CVCVC, CVCV,
CVC, CV, C, VCCVC, VCCV, VCC, VCVCC, VCVCV, VCVC, VCV, VC, V.
BFV: C, V, CC, CV, VC, CCV, CVC, VCC, VCV, CCVC, CVCC, CVCV, VCCV,
VCVC, CCVCC, CCVCV, CVCCV, CVCVC, VCCVC, VCVCC, VCVCV.

DT-1.2 You will need the decision trees for lex and insertion order for permutations of 3 and
4. The text gives the tree for insertion order for 4, from which the tree for 3 can be
found — just stop one level above the leaves of 4. You should construct the tree for
lex order.

(a) To answer this, compare the leaves. For n = 3, permutations σ = 123, 132, and
321 have RANKL(σ) = RANKI(σ). For n = 4 the permutations σ = 1234, 1243,
and 4321 have RANKL(σ) = RANKI(σ).

(b) From the tree for (a), RANKL(2314) = 8.
Rather than draw the large tree for 5, we use a smarter approach to compute

RANKL(45321) = 95. To see the latter, Note that all permutations on 5 that
start with 1, 2, or 3 come before 45321. There are 3×24 = 72 of those. This leads
us to the subtree for permutations of {1, 2, 3, 5} in lex order. It looks just like the
decision tree for 4 with 4 replaced by 5. (Why is this?) Since RANKL(4321) = 23,
this makes a total of 72 + 23 = 95 permutations that come before 45321 and so
RANKL(45321) = 95. If you find this unclear, you should try to draw a picture
to help you understand it.

(c) RANKI(2314) = 16. What about RANKI(45321)? First does 1, then 2, and so
on. After have done all but 5, we are at the rightmost leaf of the tree for 4. It
has 23 leaves to the left of it. When we insert 5, each of these leaves is replaced
by 5 new leaves because there are 5 places to insert 5. This gives us 5× 23 = 115
leaves. Finally, of the 5 places we could insert 5 into 4321, we chose the 4th so
there are 3 additional leaves to the left of it. Thus the rank is 115 = 3 = 118.

(d) RANKL(3241) = 15.

(e) RANKI(4213) = 15.

(f) The first 24 permutations on 5 consist of 1 followed by a permutation on {2, 3, 4, 5}.
Since our goal is the permutation of rank 15, it is in this set. By (d), RANKL of
3241 is 15 for n = 4. Thus RANKL(4352) = 15 in the lex list of permutations on
{2, 3, 4, 5}.
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DT-1.3 Here is the tree

ABABAB ABABBA, ABBABA,  ABBABB BABABA BABABB BABBAB BBABAB BBABBA

The list in lex order:

A

A

A

A

A

A A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

BB

B B

B

B

DT-1.4 Here is a decision tree for D(64). The leaves correspond to the elements of D(64) in
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lex order, obtained by reading the sequence of vertex labels from the root to the leaf.

1111111111 22

2

2

22

2

222 33

3

3

3

33 4

4

4

4

5

5 6

(a) The rank of 5431 is 3. The rank of 6531 is 10.

(b) 4321 has rank 0 and 6431 has rank 7.

(c) The first 5 leaves correspond to D(54).

(d) D(64) is bijectively equivalent to the set, P(6, 4), of all subsets of 6 of size 4.
Under this bijection, an element such as 5431 ∈ D(64) corresponds to the set
{1, 3, 4, 5}.

DT-1.5 For PREV and POSV, omit Step 2. For PREV, begin Step 3 with the sentence

“If you have not used any edges leading out from the vertex, list the vertex.”

For POSV, change Step 3 to

“If there are no unused edges leading out from the vertex, list the vertex
and go to Step 4; otherwise, go to Step 5.”

DT-1.6 The problem is that the eight hibachi grills, though different as domino coverings, are
all equivalent or “isomorphic” once they are made into grills. All eight in the first row
below can be gotten by rotating and/or turning over the first grill.

vvhvvhhh vvhhvhvh hhvvhvvh vhvhhvvh hvvhvhvh hvvvvhhh vhvhvvhh hhhvvvvh

(1) (2) (3) (4) (5) (6) (7) (8) (9)
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There are nine different grills as shown in the picture. These nine might be called a
“representative system” for the domino coverings up to “grill equivalence.” Note that
these nine representatives are listed in lex order according to their codes (starting with
hhhhhhhh and ending with hvvhvvhh). They each have another interesting property:
each one is lexicographically minimal among all patterns equivalent to it. The one we
selected from the list of “screwup” grills (number (6)) has code hhhvvvvh and that is
minimal among all codes on the first row of coverings.

This problem is representative of an important class of problems called “isomorph
rejection problems.” The technique we have illustrated, selecting a lex minimal system
of representatives up to some sort of equivalence relation, is an important technique
in this subject.

DT-2.1 We refer to the decision tree in Example 10. The permutation 87612345 specifies, by
edge labels, a path from the root L(8) to a leaf in the decision tree. To compute the
rank, we must compute the number of leaves “abandoned” by each edge just as was
done in Example 14. There are eight edges in the path with the number of abandoned
leaves equal to 7×7!+6×6!+5×5!+0+0+0+0+0 = 35, 280+4, 320+600 = 40, 200. This
is the RANK of 87612345 in the lex list of permutations on 8. Note that 8! = 40, 320, so
the RANK 20,160 permutation is the first one of the second half of the list: 51234678.

DT-2.2 (a) The corresponding path in the decision tree is H(8, S, E, G), H(7, E, S, G),

H(6, S, E, G), H(5, S, G, E), H(4, S, E, G), H(3, E, S, G), E
3→ G.

(b) The move that produced the configuration of (a) was E
3→ G. The configuration

prior to that was Pole S: 6, 5, 2, 1; Pole E: 3; Pole G: 8, 7, 4.

(c) The move just prior to E
3→ G was G

1→ S. This is seen from the decision tree
structure or from the fact that the smallest washer, number 1, moves every other time

in the pattern S, E, G, S, E, G, etc. The configuration just prior to the move G
1→ S

was Pole S: 6, 5, 2; Pole E: 3; Pole G: 8, 7, 4, 1.

(d) The next move after E
3→ G will be another move by washer 1 in its tiresome cycle

S, E, G, S, E, G, etc. That will be S
1→ E.

(e) The RANK of the move that produced (a) can be computed by summing the
abandoned leaves associated with each edge of the path (a) in the decision tree. (See
Example 14.) There are six edges in the path of part (a) with associated abandoned
leaves being 27 = 128, 26 = 64, 0, 0, 23 = 8, 22 − 1 = 3. The total is 203.

DT-2.3 (a) 110010000 is preceded by 110010001 and is followed by 110110000. You can find
this by first drawing the path from the root to 110110000. You will find that the last
edge of the path goes to the right. Therefore, we can get the preceding element by
going to the left instead. This changes the last element from 0 to 1 and all other
elements remain fixed. To get the element that follows it, we want to branch to the
right instead of the left. The last five edges to 110110000 all go to the right and the
edge just before them, say e goes to the left. Instead of taking e, we take the edge that
goes to the right. Now what? We must take edges to the left after this so that we end
up as close to the original leaf 110010000 as possible. A trick: Since we are dealing
with a Gray code, we know that there is only one change so that when we’ve found
it we can just copy everything else. In this case we changed the underlined symbol in
110010000 (from 0 to 1) and so the others are the same.
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(b) The first element of the second half of the list corresponds to a path in the decision
tree that starts with a right-sloping edge and has all of the remaining eight edges
left-sloping. That element is 110000000.

(c) Each right-sloping edge abandons 2n−k leaves, if the edge is the kth one in the
path. For the path 111111111 the right-sloping edges are numbers 1, 3, 5, 7, and 9
(remember, after the first edge, a label 1 causes the direction of the path to change).
Thus, the rank of 111111111 is 28 + 26 + 24 + 22 + 20 = 341.

(d) To compute the element of RANK 372, we first compute the path in the decision
tree that corresponds to the element. The first edge must be (1) right sloping (aban-
doning 256 leaves), since the largest rank of any leaf at the end of a path that starts left
sloping is 28 − 1 = 255. We apply this same reasoning recursively. The right sloping
edge leads to 256 leaves. We wish to find the leaf of RANK 372 − 256 = 116 in that
list of 256 leaves. That means the second edge must be (1) left sloping (abandoning
0 leaves), so our path starts off (1) right sloping, (1) left sloping. This path can
access 128 leaves. We want the leaf of RANK 116 − 0 in this list. Thus we must
access a leaf in the second half of the list of 128, so the third edge must be (1) right
sloping (abandoning 64 leaves). In that second half we must find the leaf of RANK
116 − 64 = 52.

Our path is now (1) right sloping, (1) left sloping, (1) right sloping. Fol-
lowing that path leads to 64 leaves of which we want the leaf of RANK 52. Thus,
the fourth edge must be (0) right sloping (abandoning 32 leaves). This path of
four edges leads to 32 leaves of which we must find the one of RANK 52 − 32 = 20.
Thus the fifth edge must also be (0) right sloping (abandoning 16 leaves). Thus we
must find the leaf of RANK 20 − 16 = 4. This means that the sixth edge must be
(1) left sloping (abandoning 0 leaves), the seventh edge must be (1) right sloping
(abandoning 4 leaves), and the last two edges must be left sloping: (1) left sloping
(abandoning 0 leaves), (0) left sloping (abandoning 0 leaves). Thus the final path is
111001110.

DT-2.4 (a) Let A(n) be the assertion “H(n,S,E,G) takes the least number of moves.” Clearly
A(1) is true since only one move is required. We now prove A(n). Note that to do

S
n→ G we must first move all the other washers to pole E. They can be stacked only

one way on pole E, so moving the washers from S to E requires using a solution to
the Towers of Hanoi problem for n− 1 washers. By A(n− 1), this is done in the least
number of moves by H(n − 1,S,G,E). Similarly, H(n − 1,E,S,G) moves these washers
to G in the least number of moves.

(b) For n = 1, f1 = 1: S
1→ G

For n = 2, f2 = 3: S
1→ E, S

2→ G, E
1→ G

For n = 3, f3 = 5: S
1→ E, S

2→ F, S
1→ G, F

2→ G, E
1→ G

(c) Let s(p, q) be the number of moves for G(p, q, S, E, F, G). The recursive step in the
problem is described for p > 0, so the simplest case is p = 0 and s(0, q) = h(q) = 2q−1.
In that case, (i) tells us what to do.

Otherwise, the number of moves in (ii) is s(p, q) = 2s(i, j) + hq. To find the
minimum, we look at all allowed values of i and j, choose those for which s(i, j) is a
minimum. This choice of i and j, when used in (ii) tells us which moves to make. In
the following table, numbers on the rows refer to p and those on the columns refer to q.
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Except for the sp column, then entries are s(p, q). The p = 0 row is hq by (i). To find
s(p, q) for p > 0, we use (ii). To do this, we look along the diagonal whose indices sum
to p, choose the minimum (It’s location is (i, j).), double it and add hq. For example,
s(5, 2) is found by taking the minimum of the diagonal entries at (0,5), (1,4), (2,3),
(3,2), and (4,1). Since these entries are 31, 17, 13, 13, and 19, the minimum is 13.
Since this occurs at (2,3) and (3,2), we have a choice for (i, j). Either one gives us
2 × 13 + h2 = 29 moves. To compute sn we simply look along the p + q = n diagonal
and choose the minimum.

sp 1 2 3 4 5 6 (values of q)

0 1 3 7 15 31 63 (s(0, q) = hq)

1 1 3 5 9 17 33 65

2 3 7 9 13 21 27

3 5 11 13 17 25

4 9 19 21 25

5 13 27 29

6 17 35 Column labels are p.

(d) From the description of the algorithm,

• s(p, q) = 2 min s(i, j) + hq, where the minimum is over i + j = p and

• sn = min s(p, q), where the minimum is over p + q = n.

Putting these together gives us s(p, q) = 2sp + hq and so sn = min(2sp + hq). The
initial condition is s0 = 0. In summary

sn =







0 if n = 0,
min

p+q=n
q>0

(2sp + hq) if n > 0.

(e) Change the recursive procedure in the algorithm to use the moves for fp instead of
using those for s(p, q). It follows that we can solve the puzzle in 2fn−j + hj moves.

DT-3.1 When there is replacement, the result of the first choice does not matter since the ball
is placed back in the box. Hence the answer to both parts of (a) is 3/7.

(b) If the first ball is green, we are drawing a ball from three white and three green
and so the probability is 3/6 = 1/2. If the first ball is white, we are drawing a ball
from two white and four green and so the probability is 2/6 = 1/3.

DT-3.2 There are five ways to get a total of six: 1 + 5, 2 + 4, 3 + 3, 4 + 2, and 5 + 1. All
five are equally likely and so each outcome has probability 1/5. We get the answers
by counting the number that satisfy the given conditions and multiplying by 1/5:
(a) 1/5, (b) 2/5, (c) 3/5.
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DT-3.3 Here is the decision tree for this problem

P E B H

Root

P R P ~R E R E ~R B R B ~R H R H ~R

.10 .40 .20 .30

.90 .30.50.50 .70 .20.10

.09.01 .20.20 .06 .06 .24.14

.80

(a) We want to compute the conditional probability that a student is a humanities
major, given that that student has read Hamlet. In the decision tree, if we follow
the path from the Root to H to H ∩ R, we get a probability of .06 at the leaf.
We must divide this by the sum over all probabilities of such paths that end at
X ∩ R (as opposed to X∩ ∼ R). That sum is 0.01 + 0.20 + 0.06 + 0.06 = 0.33.
The answer is 0.06/0.33 = 0.182.

(b) We compute the probabilities that a student has not read Hamlet and is a P
(Physical Science) or E (Engineering) major: 0.09 + 0.20 = 0.29. We must divide
this by the sum over all probabilities of such paths that end at X∩ ∼ R (as
opposed to X ∩ R). The answer is 0.29/0.67 = 0.433.

DT-3.4 Here is a decision tree where the vertices are urn compositions. The edges incident
on the root are labeled with the outcome sets of the die and the probabilities that
these sets occur. The edges incident on the leaves are labeled with the color of the ball
drawn and the probability that such a ball is drawn. The leaves are labeled with the
product of the probabilities on the edges leading from the root to that leaf.

[2R, 1W]

[3R, 1W]

[1R, 1W]

[2R, 0W][1R, 1W] [4R, 0W]

[4R, 1W]

2/3

2/3

8/15 2/15

1/5

1/9

4/5

1/3

1/3

2/9

{1,2,} {3,4,5,6}

RR WW

(a) To compute the conditional probability that a 1 or 2 appeared, given that a red
ball was drawn, we take the probability 2/9 that a 1 or 2 appeared and a red
ball was drawn and divide by the total probability that a red ball was drawn:
2/9 + 8/15 = 34/45. The answer is 5/17 = 0.294.
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(b) We divide the probability that a 1 or 2 appeared and the final composition had
more than one red ball (1/9) by the sum of the probabilities where the final
composition had more than one red ball : 1/9 + 8/15 + 2/15 = 7/9 = 0.78.

DT-3.5 A decision tree is shown below. The values of the random variable X are shown just
below the amount remaining in the pot associated with each leaf. To compute E(X)
we sum the values of X times the product of the probabilities along the path from the
root to that value of X. Thus, we get

E(X) = 1 × (1/2) + 2 × (1/8) + (2 + 3 + 3 + 3 + 4 + 5) × (1/16) = 2 .

1

1

1

1

22

2

2

2

3

3

3

3

3 3

3 5

5

4

4

1/21/2

1/2

1/21/21/2

1/21/2

1/2 1/2 1/2

1/2

1/21/2

0

0

1

DT-3.6 A decision tree is shown below. Under the leaves is the length of the game (the height
of the leaf). The expected length of the game is the sum of the products of the
probabilities on the edges of each path to a leaf times the height of that leaf:

2((1/3)2 + (2/3)2)+

4((1/3)3(2/3) + (1/3)2(2/3)2 + (1/3)2(2/3)2 + (1/3)(2/3)3)+

3((1/3)(2/3)2 + (1/3)2(2/3) .
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The expected number of games is about 2.69.

2

4 4

3 3

4 4

2

B

B

B

B

B

B

B

A

A

A

A

A

A

A

1/3

1/3

1/3

1/3

1/3

1/3

1/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

DT-3.7 We are given

P (F ′ | A) = 0.6, P (F | A′) = 0.8 and P (A) = 0.7 .

You can draw a decision tree. The first level branches according as the air strike is
successful (A) or not (A’). The probabilities, left to right, are 0.7 and 1 − 0.7 = 0.3 .
The second level branches according as there is enemy fire (F) or not (F’). To compute
the conditional probabilities on the edges, note that

P (F | A) = P (F ′ | A) = 1 − 0.6 = 0.4 and P (F ′ | A′) = 1 − 0.8 = 0.2 .

The leaves and their probabilities are

P (A ∩ F ) = 0.7 × 0.4 = 0.28, P (A ∩ F ′) = 0.7 × 0.6 = 0.42,

P (A′ ∩ F ) = 0.3 × 0.8 = 0.24, P (A′ ∩ F ′) = 0.3 × 0.2 = 0.06.

For (a), P (F ′) = 0.42 + 0.06 = 0.48 and for (b)

P (A | F ′) =
P (A ∩ F ′)

P (F ′)
=

0.42

0.48
≈ 82%.

DT-4.1 (a) an = 1 for all n.

(b) a0 = 0, a1 = 0 + a0 = 0, a2 = 1 + a1 = 1, a3 = 1 + a2 = 2, a4 = 2 + a3 = 4.
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(c) a0 = 1, a1 = 1 + a0 = 2, a2 = 2 + a1 = 4, a3 = 3 + a1 = 5, a4 = 4 + a2 = 8.

(d) a0 = 0, a1 = 1, a2 = 1 + a1a1 = 2, a3 = 1 + min(a1a2, a2a1) = 1 + a1a2 = 3,
a4 = 1 + min(a1a3, a2a2, a3, a1) = 1 + min(3, 4) = 4.

DT-4.2 an = ⌊n/2⌋, bn = (−1)n⌊1 + (n/2)⌋ = (−1)n(1 + ⌊n/2⌋), cn = n2 + 1, dn = n!.

DT-4.3 x2 − 6x + 5 = 0 has roots r1 = 1 and r2 = 5
x2 − x − 2 = 0 has roots r1 = −1 and r2 = 2
x2 − 5x − 5 = 0 has roots 5±

√
45

2 .

DT-4.4 The characteristic equation is x2 − 6x + 9 = 0, which factors as (x − 3)2 = 0. Thus
r1 = r2 = 3. We have K1 = a0 = 0 and 3K2 = a1 = 3. Thus an = n3n.

DT-4.5 Let An = an+2 so that A0 = 1, A1 = 3 and An = 3An−1 + 2An−2 for n > 2. The
characteristic equation is x2−3x−2 = 0 and has roots r1 = 1, r2 = 2. Thus K1+K2 = 1
and K1 +2K2 = 3 and so K1 = −1 and K2 = 2. We have An = −1+2×2n = 2n+1−1
and so an = An−2 = 2n−1 − 1.

DT-4.6 The characteristic equation is x2 − 2x + 1 = (x − 1)2 = 0. Thus r1 = r2 = 1 and so
K1 = a0 = 2 and K1 + K2 = a1 = 1. We have K2 = 1 − K1 = −1 and so an = 2 − n.

DT-4.7 (a) Let A(n) be the assertion that G(n) = (1 − An)/(1 − A). When n = 1, G(1) = 1
and (1 − An)/(1 − A) = 1, so the base case is proved. For n > 1, we have

G(n) = 1 + A + A2 + . . . + An−1 by definition,

= (1 + A + A2 + . . . + An−2) + An−1

=
1 − An−1

1 − A
+ An−1 by A(n − 1),

=
1 − An

1 − A
by algebra.

(b) The recursion can be found by looking at the definition or by examining the proof
in (a). It is G(1) = 1 and, for n > 1, G(n) = G(n − 1) + An−1.

(c) Applying the theorem is straightforward. The formula equals 1 when n = 1, which
agrees with G(1). By some simple algebra

1 − An−1

1 − A
+ An−1 =

(1 − An−1) + (An−1 − An)

1 − A
=

1 − An

1 − A
,

and so the formula satisfies the recursion.

(d) Letting A = y/x and cleaning up some fractions

1 − (y/x)n

1 − y/x
=

yn − xn

x − y
xn−1.

Let n = k + 1, multiply by xk and use the geometric series to obtain

xk+1D − yk+1

x − y
= xk

(

1 + (y/x) + (y/x)2 + · · · + (y/x)k
)

= xky0 + xk−1y1 + · · · + x0yk.

Solutions-30



Solutions for Decision Trees and Recursion

DT-4.8 We will Theorem 7 to prove our conjectures are correct.

(a) Writing out the first few terms gives A, A/(1 + A), A/(1 + 2A), A/(1 + 3A), etc.
It appears that ak = A/(1 + kA). Since A > 0, the denominators are never zero.
When k = 0, A/(1 + kA) = A, which satisfies the initial condition. We check the
recursion:

A/(1 + (k − 1)A)

1 + A/(1 + (k − 1)A)
=

A

(1 + (k − 1)A) + A
= A/(1 + kA),

which is the conjectured value for ak.

(b) Writing out the first few terms gives C, AC + B, A2C + AB + B, A3C + A2B +
AB + B, A4C + A3B + A2B + AB + B, etc. Here is one possible formula:

ak = AkC + B(1 + A + A2 + . . . + Ak−1) .

Here is a second possibility:

ak = AkC + B

(

1 − Ak

1 − A

)

.

Using the previous exercise, you can see that they are equal. We leave it to you to
give a proof of correctness for both formulas, without using the previous exercise.

DT-4.9 We use Theorem 7. The formula gives the correct value for k = 0. The recursion
checks because

A + B(k − 1)
(

((k − 1)2 − 1)/3
)

+ Bk(k − 1) = A + B(k − 1)
(

(k2 − 2k + 1 − 1) − 3k
)

= A + B(k − 1)k(k + 1)/3

= A + Bk(k2 − 1)/3.

This completes the proof.

DT-4.10 (a) We apply Theorem 7, but there is a little complication: The formula starts at
k = 1, so we cannot check the recursion for k = 1. Thus we need a1 to be the initial
condition. From the recursion, a1 = 2A − C, which we take as our initial condition
and use the recursion for k > 1. You should verify that the formula gives a1 correctly
and that the formula satisfies the recursion when k > 1.

(b) From the last part of Exercise 4.7 with x = 2 and y = −1, we obtain

ak = A

(

2k+1 − (−1)k+1

3

)

+ (−1)k(C − A) .

Make sure you can do the calculations to derive this.

DT-4.11 Let pk denote the probability that the gambler is ruined if he starts with 0 ≤ k ≤ Q
dollars. Note that p0 = 1 and pQ = 0. Assume 1 < k ≤ Q. Then the recurrence
relation pk−1 = (1/2)pk + (1/2)pk−2 holds. Solving for pk gives pk = 2pk−1 − pk−2.
This looks familiar. It is a two term linear recurrence relation. But the setup was a
little strange! We would expect to know p0 and p1 and would expect the values of pk
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to make sense for all k ≥ 0. But here we have an interpretation of the pk only for
0 ≤ k ≤ Q and we know p0 and pQ instead of p0 and p1. Such a situation is not for
faint-hearted students.

We are going to keep going as if we knew what we were doing. The characteristic
equation is r2 − 2r + 1 = 0. There is one root, r = 1. That means that the sequence
ak = 1, for all k = 0, 1, 2, . . ., is a solution and so is bk = k, for k = 0, 1, 2, . . .. We need
to find A and B such that Aa0 + Bb0 = 1 and AaQ + BbQ = 0. We find that A = 1
and B = −1/Q. Thus we have the general solution

pk = 1 − k

Q
=

Q − k

Q
qk =

k

Q
.

Note that pk is defined for all k ≥ 0 like it would be for any such linear two term
recurrence. The fact that we are only interested in it for 0 ≤ k ≤ Q is no problem to
the theory.

Suppose a rich student, Brently Q. Snodgrass the III, has 8, 000 dollars and he
wants to play the coin toss game to make 10, 000 dollars so he has 2, 000 his parents
don’t know about. His probability of being ruined is (10, 000 − 8000)/10000 = 1/5.
His probability of getting his extra 2000 dollars is 4/5. A poor student who only had
100 dollars and wanted to make 2000 dollars would have a probability of (2, 100 −
100)/2, 100 = 0.95 of being ruined. Life isn’t fair.

There is one consolation. The expected number of times Brently will have to toss
the coin to earn his 2,000 dollars is 16, 000, 000. It will take him 69.4 weeks tossing 40
hours per week, one toss every 10 seconds. If he does get his 2000 dollars, he will have
been working as a “coin tosser” for over a year at a salary of 72 cents per hour. He
should get a minimum wage job instead!
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Solutions for Basic Concepts in Graph Theory

GT-1.1 To specify a graph we must choose E ∈ P2(V ). Let N = |P2(V )|. (Note that N =
(

n
2

)

.)

There are 2N subsets E of P2(V ) and
(

N
q

)

of them have cardinality q. This proves (a)

and answers (b).

GT-1.2 The sum is the number of ends of edges since, if x and y are the ends of an edge, the
edge contributes 1 to the value of d(x) and 1 to the value of d(y). Since each edge has
two ends, the sum is twice the number of edges.

Since
∑

v d(v) is even if and only if the number of odd summands is even, it follows
that there are an even number of v for which d(v) is odd.

GT-1.3 (a) The graph is isomorphic to Q. The correspondence between vertices is given by

φ =

(

A B C D E F G H
H A C E F D G B

)

where the top row corresponds to the vertices of Q.

(b) The graph Q′ is not isomorphic to Q. It can be made isomorphic by deleting one
edge and adding another. You should try to figure out which edges these are.

GT-1.4 (a) (0, 2, 2, 3, 4, 4, 4, 5) is the degree sequence of Q. (b) If a pictorial representation
of R can be created by labeling P ′(Q) with the edges and vertices of R, then R has
degree sequence (0, 2, 2, 3, 4, 4, 4, 5) because the degree sequence is determined by φ.

(c) This is the converse of (b). It is false. The following graph has degree sequence
(0, 2, 2, 3, 4, 4, 4, 5) but cannot be morphed into the form P ′(Q).

GT-1.5 (a) There is no graph Q with degree sequence (1, 1, 2, 3, 3, 5) since the sum of the
degrees is odd. The sum of the degrees of a graph is 2|E| and must, therefore, be even.

(d) (answers (b) and (c) as well) There is a graph with degree sequence (1, 2, 2, 3, 3, 5),
no loops or parallel edges allowed. Take

φ =





a b c d e f g h
A B C A B C E F
B C E D D D D D



 .

(e) (answers (f) as well) A graph with degree sequence (3, 3, 3, 3) has (3+3+3+3)/2 = 6
edges and, of course 4 vertices. That is the maximum

(

4
2

)

of edges that a simple graph
with 4 vertices can have. It is easy to construct such a graph. Draw the four vertices
and make all possible connections. This graph is called the complete graph on 4
vertices.

(g) There is no simple graph (or graph without loops or parallel edges) with degree
sequence (3, 3, 3, 5). See (f).
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(h) Similar arguments to (f) apply to the complete graph with degree sequence
(4, 4, 4, 4, 4). Such a graph would have 20/2 = 10 edges. But

(

5
2

)

= 10. To con-
struct such a graph, use 5 vertices and make all possible connections.

(i) There is no such graph. See (h).

GT-1.6 Each of (a) and (c) has just one pair of parallel edges (edges with the same endpoints),
while (b) and (d) each have two pairs of parallel edges. Thus neither (b) nor (d) is
equivalent to (a) or (c). Vertex 1 of (b) has degree 4, but (d) has no vertices of degree
4. Thus (b) and (d) are not equivalent. It turns out that (a) and (c) are equivalent.
Can you see how to make the forms correspond?

GT-1.7 (a) We know that the expected number of triangles behaves like (np)3/6. This equals
1 when p = 61/3/n.

(b) By Example 6, the expected number of edges is
(

n
2

)

p, which behaves like (n2/2)p for

large n. Thus we expect about (61/3/2)n

GT-1.8 Introduce random variables XS, one for each S ∈ Pk(V ). Reasoning as in the example,
E(XS) = pK where K =

(

k
2

)

, the number of edges that must be present. Thus the

expected number of sets of k vertices with all edges present is
(

n
k

)

pK .

For large n, this behaves like nkpK/k!, which will be 1 when p = (k!/nk)1/K . For
large n, the expected number of edges behaves like (n2/2)(k!/nk)1/K . This last number

has the form Cnα where C = (k!)1/K/2 and α = 2 − k/K = 2 − 2/(k − 1) = 2(k−2)
k−1

.

GT-1.9 The first part comes from factoring out
(

n
3

)

p3 from the last equation in Example 7. To
obtain the inequality, replace (1−p3) with (1−p2), factor it out, and use 1+3(n−3) <
3n.

GT-2.1 Since E ⊆ P2(V ), we have a simple graph. Regardless of whether you are in set C
or S, following an edge takes you into the other set. Thus, following a path with an
odd number of edges takes you to the opposite set from where you started while a
path with an even number of edges takes you back to your starting set. Since a cycle
returns to its starting vertex, it obviously returns to its starting set.

GT-2.2 (a) The graph is not Eulerian. The longest trail has 5 edges, the longest circuit has 4
edges.

(b) The longest trail has 9 edges, the longest circuit has 8 edges.

(c) The longest trail has 13 edges (an Eulerian trail starting at C and ending at D).
The longest circuit has 12 edges (remove edge f).

(d) This graph has an Eulerian circuit (12 edges).

GT-2.3 (a) The graph is Hamiltonian.

(b) The graph is Hamiltonian.

(c) The graph is not Hamiltonian. There is a cycle that includes all vertices except K.

(d) The graph is Hamiltonian.

GT-2.4 (a) There are |V × V | potential edges to choose from. Since there are two choices for

each edge (either in the digraph or not), we get 2n2

simple digraphs.

Solutions-34



Solutions for Basic Concepts in Graph Theory

(b) With loops forbidden, our possible edges include all elements of V × V except
those of the form (v, v) with v ∈ V . Thus there are 2n(n−1) loopless simple digraphs.
An alternative derivation is to note that a simple graph has

(

n
2

)

edges and we have
4 possible choices in constructing a digraph: (i) omit the edge, (ii) include the edge
directed one way, (iii) include the edge directed the other way, and (iv) include two

edges, one directed each way. This gives 4(n

2) = 2n(n−1). The latter approach is not
useful in doing part (c).

(c) Given the set S of possible edges, we want to choose q of them. This can be done

in
(|S|

q

)

ways. In the general case, the number is
(

n2

q

)

and in the loopless case it is
(

n(n−1)
q

)

.

GT-2.5 (a) Let V = {u, v} and E = {(u, v), (v, u)}.
(b) For each {u, v} ∈ P2(V ) we have three choices: (i) select the edge (u, v), (ii) select
the edge (v, u) or (iii) have no edge between u and v. Let N = |P2(V )| =

(

n
2

)

. There
are 3N oriented simple graphs.

(c) We can choose q elements of P2(V ) and then orient each of them in one of two
ways. This gives us

(

N
q

)

2q.

GT-2.6 (a) For all x ∈ S, x|x. For all x, y ∈ S, if x|y and x 6= y, then y does not divide x. For
all x, y, z ∈ S, x|y, y|z implies that x|z.

(b) The covering relation is

H = {(2, 4), (2, 6), (2, 10), (2, 14), (3, 6), (3, 9), (3, 15),

(4, 8), (4, 12), (5, 10), (5, 15), (6, 12), (7, 14)}.
We leave it to you to draw the picture!

GT-3.1 (a) Suppose G is a connected graph with v vertices and v edges. A connected graph is
a tree if and only if the number of vertices is one more than the number of edges. Thus
G is not a tree and must have at least one cycle. This proves the base case, n = 0.
Suppose n > 0 and G is a graph with v vertices and v + n edges. We know that the
graph is not a tree and thus has a cycle. We know that removing an edge from a cycle
does not disconnect the graph. However, removing the edge destroys any cycles that
contain it. Hence the new graph G′ contains one less edge and at least one less cycle
than G. By the induction hypothesis, G′ has at least n cycles. Thus G has at least
n + 1 cycles.

(b) Let G be a graph with components G1, . . . , Gk. With subscripts denoting compo-
nents, Gi has vi vertices, ei = vi + ni edges and at least ni + 1 cycles. From the last
two formulas, Gi has at least 1 + ei − vi cycles. Now sum over i.

(c) For each n we wish to construct a simple graph that has n more edges than vertices
but has only n + 1 cycles. There are many possibilities. Here’s one solution. The
vertices are v and, for 0 ≤ i ≤ n, xi and yi. The edges are {v, xi}, {v, yi}, and {xi, yi}.
(This gives n+1 triangles joined at v.) There are 1+2(n+1) vertices, 3(n+1) edges,
and n + 1 cycles.

GT-3.2 (a)
∑

v∈V d(v) = 2|E|. For a tree, |E| = |V | − 1. Since 2|V | =
∑

v∈V 2,

2 = 2|V | − 2|E| =
∑

v∈V

(2 − d(v)).
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(b) Suppose that T is more than just a single vertex. Since T is connected, d(v) 6= 0
for all v. Let nk be the number of vertices of T of degree k. By the previous result,
∑

k≥1(2 − k)nk = 2. Rearranging gives n1 = 2 +
∑

k≥2(k − 2)nk. If nm ≥ 1, the sum
is at least m − 2.

(c) Let the vertices be u and vi for 1 ≤ i ≤ m. Let the edges be {u, vi} for 1 ≤ i ≤ m.

GT-3.3 (a) No such tree exists. A tree with six vertices must have five edges.

(b) No such tree exists. Such a tree must have at least one vertex of degree three or
more and hence at least three vertices of degree one.

(c) A graph with two connected components, each a tree, each with five vertices will
have this property.

(d) No such graph exists.

(e) No such tree exists.

(f) Such a graph must have at least c + e − v = 1 + 6 − 4 = 3 cycles.

(g) No such graph exists. If the graph has no cycles, then each component is a tree.
In such a graph, the number of vertices is strictly greater than the number of edges
for each component and hence for the whole graph.

GT-3.4 (a) The idea is that for a rooted planar tree of height h, having at most 2 children
for each non-leaf, the tree with the most leaves occurs when each non-leaf vertex has
exactly 2 children. You should sketch some cases and make sure you understand this
point. For this case l = 2h and so log2(l) = h. Any other rooted planar tree of height
h, having most 2 children for each non-leaf, is a subtree (with the same root) of this
maximal-leaf binary tree and thus has fewer leaves.

(b) Knowing the number of leaves does not bound the height of a tree — it can be
arbitrarily large.

(c) The maximum height is h = l− 1. One leaf has height 1, one height 2, etc., one of
height l − 2 and, finally, two of height l − 1.

(d) (answers (e) as well) ⌈log2(l)⌉ is a lower bound for the height of any binary tree
with l leaves. It is easy to see that you can construct a full binary tree with l leaves
and height ⌈log2(l)⌉.

GT-3.5 (a) A binary tree with 35 leaves and height 100 is possible.

(b) A full binary tree with 21 leaves can have height at most 20. So such a tree of
height 21 is impossible.

(c) A binary tree of height 5 can have at most 32 leaves. So one with 33 leaves is
impossible.

(d) No way! The total number of vertices is

5
∑

i=0

35 =
36 − 1

2
= 364 .

GT-3.6 (a) For (1) there are four spanning trees. For (2) there are 8 spanning trees. Note
that there are

(

5
3

)

= 10 ways to choose three edges. Eight of these 10 choices result in
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spanning trees, the other two choices result in cycles (with vertex sequences (A,B,D)
and (B,C,D)). For (3) there are 16 spanning trees.

(b) For (1) there is one. For (2) there are two. For (3) there are two.

(c) For (1) there are two. For (2) there are four. For (3) there are six.

(d) For (1) there are two. For (2) there are three. For (3) there are six.

GT-3.7 (a) For (1) there are three minimum spanning trees. For (2) there are two minimum
spanning trees. For (3) there is one minimum spanning tree.

(b) For (1) there is one minimum spanning tree up to isomorphism. For (2) there are
two. For (3) there is one.

(c) For (1) there is one. For (2) there is one. For (3) there are four.

(d) For (1) there are two. For (2) there is one. For (3) there are four.

GT-3.8 (a) (and (b)) There are 21 vertices, so the minimum spanning tree has 20 edges. Its
weight is 30. We omit details.

( c) Note that K is a the only vertex in common to the two bicomponents of this graph.
Whenever this happens (two bicomponents, common vertex), the depth-first spanning
tree rooted at that common vertex has exactly two “principal subtrees” at the root.
In other words, the root of the depth-first spanning tree has down-degree two (two
children). The two children of K can be taken to be P and L. P is the root of a
subtree consisting of 5 vertices, 4 with one child, one leaf. L is the root of a subtree
consisting of 15 vertices, 14 with one child, one leaf.

GT-4.1 (a) The algorithm that has running time 100n is better than the one with running
time n2 for n > 100. 100n is better than (2n/10 − 1)100 for n ≥ 60. For 1 ≤ n < 10,
(2n/10 − 1)100 is worse than n2. At n = 10 they are the same. For 10 < n < 43, n2 is
worse than (2n/10 − 1)100. For n ≥ 43, (2n/10 − 1)100 is worse than n2. Here are the
graphs:

(b) When n is very large, B is fastest and C is slowest. This is because, of two
polynomials the one with the lower degree is eventually faster and an exponential
function grows faster than any polynomial.
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GT-4.2 (a) The most direct way to prove this is to use Example 23. additional observations
on Θ and O.

lim
n→∞

g(n)

f(n)
= C > 0 implies g(n) is Θ(f(n))

Let p(n) =
∑k

i=0 bin
i with bk > 0. Take f(n) = p(n), g(n) = nk and C = bk > 0.

Thus, p(n) is Θ(nk), hence the equivalence class of each is the same set: Θ(p(n)) is
Θ(nk).

(b) O(p(n)) is O(nk) follows from (a).

(c) lim
n→∞

p(n)/an = 0. This requires some calculus. By applying l’Hospital’s Rule k

times, we see that the limit is lim
n→∞

(k!/(log(a))k)/an, which is 0. Any algorithm with

exponential running time is eventually much slower than a polynomial time algorithm.

(d) For p(n) to be Θ(aCnk

), we must have positive constants A and B such that

A ≤ ap(n)/aCnk ≤ B. Taking logarithms gives us loga A ≤ p(n) − Cnk ≤ loga B. The
center of this expression is a polynomial which is not constant unless p(n) = Cnk + D
for some constant D, the case which is ruled out. Thus p(n) − Cnk is a nonconstant
polynomial and so is unbounded.

GT-4.3 Here is a general method of working this type of problem:

Let p(n) =
∑k

i=0 bin
i with bk > 0. Show using definition that Θ(p(n)) is Θ(nk).

Let s =
∑k−1

i=0 |bi| and assume that n ≥ 2s/bk. We have

|p(n) − bknk| ≤
∣

∣

∣

∣

k−1
∑

i=0

bin
i

∣

∣

∣

∣

≤
k−1
∑

i=0

|bi|ni ≤
k−1
∑

i=0

|bi|nk−1 = snk−1 ≤ bknk/2.

Thus |p(n)| ≥ bknk−bknk/2 ≥ (bk/2)nk and also |p(n)| ≤ bknk +bknk/2 ≤ (3bk/2)nk.
The definition is satisfied with N = 2s/bk, A = (bk/2) and B = (3bk/2). If you

want to show, using the definition, that Θ(p(n)) is Θ(Knk) for some K > 0, replace
A with A′ = A/K and B with B′ = B/K.

In our particular cases we can be sloppy and it gets easier. Take (a) as an example.

(a) For g(n) = n3 + 5n2 + 10, choose N such that n3 > 5n2 + 10 for n > N . You can
be ridiculous in the choice of N . N3 > 5N2 + 10 is valid if 1 > 5/N + 10/N3. N = 10
is plenty big enough. If n3 > 5n2 + 10 then n3 < g(n) < 2n3. So taking A = 1 and
B = 2 works for the definition: An3 < g(n) < Bn3 showing g is Θ(n3). If you want to
use f(n) = 20n3 as the problem calls for, replace these constants by A′ = A/20 and
B′ = B/20. Thus, A′(20n3) < g(n) < B′(20n3) for n > N .

This problem should make you appreciate the much easier approach of Example 23.

GT-4.4 (a) There is an explicit formula for the sum of the squares of integers.

n
∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

This is a polynomial of degree 3, hence the sum is Θ(n3).
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(b) There is an explicit formula for the sum of the cubes of integers.

n
∑

i=1

i3 =
(n(n + 1))

2

)2
.

This is a polynomial of degree 4, hence the sum is Θ(n4).

(c) To show the
∑n

i=1 i1/2 is Θ(n3/2) it helps to know a little calculus. You can
interpret the integral as upper and lower Riemann sum approximations to the integral
of f(x) = x1/2 with ∆x = 1:

∫ n

0

f(x) dx <
n

∑

i=1

i1/2 =
n−1
∑

i=1

i1/2 + n1/2 <

∫ n

1

f(x) dx + n1/2.

Since
∫

x1/2 dx = 2x3/2/3 + C. You can fill in the details to get Θ(n3/2).

The method used in (c) will also work for (a) and (b). The idea works in general:
Suppose f(x) ≥ 0 and f ′(x) > 0. Let F (x) be the antiderivative of f(x). If f(n) is
O(F (n)), then

∑n
i=0 f(n) is Θ(F (n)). There is a similar result if f ′(x) < 0: replace

“f(n) is O(F (n))” with “f(1) is O(F (n)).”

GT-4.5 (a) To show
∑n

i=1 i−1 is Θ(logb(n)) for any base b > 1 use the Riemann sum trick
from the previous exercise.

∫ n

1
x−1 dx = ln(x). This shows that

∑n
i=1 i−1 is Θ(loge(n)).

But, loge(x) = loge(b) logb(x) (as we learned in high school). Thus, loge(x) and logb(x)
belong to the same Θ equivalence class as they differ by a positive constant multiple
loge(b) (recall b > 1).

(b) First you need to note that logb(n!) =
∑n

i=1 logb(i). Use the Riemann sum trick
again.

∫ n

1

logb(x) dx = logb(e)

∫ n

1

loge(x) dx = logb(e)
(

n ln(n) − n + 1
)

.

Thus, the sum is Θ(n ln(n) − n + 1) which is Θ(n ln(n)) which is Θ(n logb(n)).

(c) Use Stirling’s approximation for n!, n! is asymptotic to (n/e)n(2πn)1/2. Thus,
n! is Θ((n/e)n(2πn)1/2), by Example 23. Do a little algebra to rearrange the latter
expression to get Θ((n/e)n+1/2).

GT-4.6 A single execution of “C(i,j) = C(i,j) + A(i,k)*B(k,j)” takes a constant amount of time
and so its time is Θ(1).
The loop on k is done n times and so its time is nΘ(1), which is Θ(n).
The loop on j is done n times and each time requires work that is Θ(n). Thus its time
is nΘ(n), which is Θ(n2).
The loop on i is done n times and so its time is nΘ(n2), which is Θ(n3).

Alternatively, you could notice that innermost loops take the most time and “C(i,j)
= C(i,j) + A(i,k)*B(k,j)” is executed once for each value of i, j, and k. Thus it is done
n3 times and so the time for the algorithm is Θ(n3).

GT-4.7 We use the Master Theorem. Since there is just one recursive call, w = 1 and s1(n) = q.
Since 0 ≤ n/2 − q ≤ 1/2, c = 1/2. We have T (n) = an + T (s1(n)) where an is
1 or 2. Thus an is Θ(n0). In summary, w = 1, c = 1/2 and b = 0. Thus d =
− log(1)/ log(1/2) = 0 and so T (n) is Θ(log n).
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