
Unit Fn

Functions

Section 1: Some Basic Terminology

Functions play a fundamental role in nearly all of mathematics. Combinatorics is no ex-
ception. In this section we review the basic terminology and notation for functions. Per-
mutations are special functions that arise in a variety of ways in combinatorics. Besides
studying them for their own interest, we’ll see them as a central tool in other topic areas.

Except for the real numbers R, rational numbers Q and integers Z, our sets are normally
finite. The set of the first n positive integers, {1, 2, . . . , n} will be denoted by n.

Recall that |A| is the number of elements in the set A. When it is convenient to do
so, we linearly order the elements of a set A. In that case we denote the ordering by
a1, a2, . . . , a|A| or by (a1, a2, . . . , a|A|). Unless clearly stated otherwise, the ordering on a
set of numbers is the numerical ordering. For example, the ordering on n is 1, 2, 3, . . . , n.

A review of the terminology concerning sets will be helpful. When we speak about
sets, we usually have a “universal set” U in mind, to which the various sets of our discourse
belong. Let U be a set and let A and B be subsets of U .

• The sets A ∩ B and A ∪ B are the intersection and union of A and B.

• The set A \ B or A − B is the set difference of A and B; that is, the set
{x : x ∈ A,x 6∈ B}.

• The set U \ A or Ac is the complement of A (relative to U). The complement of A is
also written A′ and ∼A.

• The set A ⊕ B = (A \ B) ∪ (B \ A) is symmetric difference of A and B; that is, those
x that are in exactly one of A and B. We have A ⊕ B = (A ∪ B) \ (A ∩ B).

• P(A) is the set of all subsets of A. (The notation for P(A) varies from author to
author.)

• Pk(A) the set of all subsets of A of size (or cardinality) k. (The notation for Pk(A)
varies from author to author.)

• The Cartesian product A × B is the set of all ordered pairs built from A and B:

A × B = { (a, b) | a ∈ A and b ∈ B }.
We also call A × B the direct product of A and B.

If A = B = R, the real numbers, then R × R, written R2, is frequently interpreted as
coordinates of points in the plane. Two points are the same if and only if they have the
same coordinates, which says the same thing as our definition, (a, b) = (a′, b′) if a = a′ and
b = b′. Recall that the direct product can be extended to any number of sets. How can
R × R × R = R

3 be interpreted?

Definition 1 (Function) If A and B are sets, a function from A to B is a rule that tells
us how to find a unique b ∈ B for each a ∈ A. We write f :A → B to indicate that f is a
function from A to B.
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Functions

We call the set A the domain of f and the set B the range1 or, equivalently, codomain

of f . To specify a function completely you must give its domain, range and rule.

The set of all functions from A to B is written BA, for a reason we will soon explain. Thus
f :A → B and f ∈ BA say the same thing.

In calculus you dealt with functions whose ranges were R and whose domains were
contained in R; for example, f(x) = 1/(x2 − 1) is a function from R − {−1, 1} to R.
You also studied functions of functions! The derivative is a function whose domain is all
differentiable functions and whose range is all functions. If we wanted to use functional
notation we could write D(f) to indicate the function that the derivative associates with
f .

Definition 2 (One-line notation) When A is ordered, a function can be written in one-

line notation as (f(a1), f(a2), . . . , f(a|A|)). Thus we can think of a function as an element

of B ×B × . . .×B, where there are |A| copies of B. Instead of writing B|A| to indicate the
set of all functions, we write BA. Writing B|A| is incomplete because the domain A is not
specified. Instead, only its size |A| is given.

Example 1 (Using the notation) To get a feeling for the notation used to specify a
function, it may be helpful to imagine that you have an envelope or box that contains a
function. In other words, this envelope contains all the information needed to completely
describe the function. Think about what you’re going to see when you open the envelope.

You might see

P = {a, b, c}, g:P → 4, g(a) = 3, g(b) = 1 and g(c) = 4.

This tells you that name of the function is g, the domain of g is P , which is {a, b, c}, and
the range of g is 4 = {1, 2, 3, 4}. It also tells you the values in 4 that g assigns to each of
the values in its domain. Someone else may have put

g: 4{a,b,c}, ordering: a, b, c, g = (3, 1, 4).

in the envelope instead. This describes the same function. It doesn’t give a name for the
domain, but we don’t need a name like P for the set {a, b, c} — we only need to know what
is in the set. On the other hand, it gives an order on the domain so that the function can
be given in one-line form. Can you describe other possible envelopes for the same function?

What if the envelope contained only g = (3, 1, 4)? You’ve been cheated! You must

know the domain of g in order to known what g is. What if the envelope contained

the domain of g is {a, b, c}, ordering: a, b, c, g = (3, 1, 4)?

We haven’t specified the range of g, but is it necessary since we know the values of the
function? Our definition included the requirement that the range be specified, so this is
not a complete definition. On the other hand, in some discussions the range may not be
important; for example, if g = (3, 1, 4) all that may matter is that the range is large enough
to contain 1, 3 and 4. In such cases, we’ll be sloppy and accept this as if it were a complete
specification.

1 Some people define “range” to be the values that the function actually takes on. Most
people call that the image, a concept we will discuss a bit later.
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Example 2 (Counting functions) By the Rule of Product,
∣

∣BA
∣

∣ = |B||A|
. We can

represent a subset S of A by a unique function f :A → {0, 1} where f(x) = 0 if a 6∈ S
and f(x) = 1 if x ∈ S. This proves that there are 2|A| such subsets. For example, if
A = {a, b, d}, then the number of subsets of A is 2|{a,b,d}| = 23 = 8.

We can represent a multiset S formed from A by a unique function f :A → N =
{0, 1, 2, . . .} where f(x) is the number of times x appears in S. If no element is allowed to
appear more than k times, then we can restrict the codomain of f to be {0, 1, . . . , k} and
so there are (k+1)|A| such multisets. For example, the number of multisets of A = {a, b, d}
where each element can appear at most 4 times is (4 + 1)|A| = 53 = 125. The particular
multiset {a, a, a, d, d} is represented by the function f(a) = 3, f(b) = 0 and f(d) = 2.

We can represent a k-list of elements drawn from a set B, with repetition allowed, by
a unique function f : k → B. In this representation, the list corresponds to the function
written in one-line notation. (Recall that the ordering on k is the numerical ordering.)
This proves that there are exactly |B|k such lists. For example, the number of 4-lists that
can be formed from B = {a, b, d} is |B|4 = 34 = 81. The 4-list (b, d, d, a) corresponds to
the function f = (b, d, d, a) in 1-line notation, where the domain is 4.

Definition 3 (Types of functions) Let f :A → B be a function. (Specific examples of
these concepts are given after the definition.)

• If for every b ∈ B there is an a ∈ A such that f(a) = b, then f is called a surjection

(or an onto function). Another way to describe a surjection is to say that it takes on
each value in its range at least once.

• If f(x) = f(y) implies x = y, then f is called an injection or a one-to-one function).
Another way to describe an injection is to say that it takes on each value in its range
at most once. The injections in Sk correspond to k-lists without repetitions.

• If f is both an injection and a surjection, it is a called a bijection.

• The bijections of AA are called the permutations of A.

• If f :A → B is a bijection, we may talk about the inverse of f , written f−1, which
reverses what f does. Thus f−1:B → A and f−1(b) is that unique a ∈ A such that
f(a) = b. Note that f(f−1(b)) = b and f−1(f(a)) = a.2

Example 3 (Types of functions) Let A = {1, 2, 3} and B = {a, b} be the domain and
range of the function f = (a, b, a). The function is a surjection because every element of
the range is “hit” by the function. It is not an injection because a is hit twice.

Now consider the function g with domain B and range A given by g(a) = 3 and
g(b) = 1. It is not a surjection because it misses 2; however, it is an injection because each
element of A is hit at most once.

Neither f nor g is a bijection because some element of the range is either hit more than
once or is missed. The function h with domain B and range C = {1, 3} given by h(a) = 3
and h(b) = 1 is a bijection. At first, it may look like g and h are the same function. They

2 Do not confuse f−1 with 1/f . For example, if f : R → R is given by f(x) = x3 + 1,
then 1/f(x) = 1/(x3 + 1) and f−1(y) = (y − 1)1/3.
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are not because they have different ranges. You can tell if a function is an injection without
knowing its range, but you must know its range to decide if it is a surjection.

The inverse of the bijection h has domain C and range B it is given by h−1(1) = b and
h−1(a) = 3.

The function f with domain and range {a, b, c, d} given in 2-line form by

f =

(

a b c d
b c a d

)

is a permutation. You can see this immediately because the domain equals the range and
the bottom line of the 2-line form is a rearrangement of the top line. The 2-line form is
convenient for writing the inverse—just switch the top and bottom lines. In this example,

f−1 =

(

b c a d
a b c d

)

.

Example 4 (Functions as relations) There is another important set-theoretic way of
defining functions. Let A and B be sets. A relation from A to B is a subset of A×B. For
example:

If A = 3 and B = 4, then R = {(1, 4), (1, 2), (3, 3), (2, 3)} is a relation from A to B.

If the relation R satisfies the condition that, for all x ∈ A there is a unique y ∈ B such that
(x, y) ∈ R, then the relation R is called a functional relation. In the notation from logic,
this can be written

∀x ∈ A ∃ ! y ∈ B ∋ (x, y) ∈ R.

This mathematical shorthand is well worth knowing:

• “∀” means “for all”,

• “∃” means “there exists”,

• “∃ !” means “there exists a unique”, and

• “∋” means “such that.”

In algebra or calculus, when you draw a graph of a real-valued function f : R → R (such
as f(x) = x3), you are attempting a pictorial representation of the set {(x, f(x)) : x ∈ R},
which is the subset of R × R that is the “functional relation from R to R.” In general, if
R ⊂ A × B is a functional relation, then the function f corresponding to R has domain A
and codomain B and is given by the ordered pairs {(x, f(x)) | x ∈ A} = R.

If you think of the “envelope game,” Example 1, you will realize that a functional
relation is yet another thing you might find in the envelope that describes a function.
When a subset is defined it is formally required in mathematics that the “universal set”
from which it has been extracted to form a subset also be described. Thus, in the envelope,
in addition to R, you must also find enough information to describe completely A×B. As
you can see, a function can be described by a variety of different “data structures.”

Given any relation R ⊆ A × B, the inverse relation R−1 from B to A is defined to be
{(y, x) : (x, y) ∈ R}. Recall the example in the previous paragraph where A = 3, B = 4, and
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R = {(1, 4), (1, 2), (3, 3), (2, 3)}, The inverse relation is R−1 = {(4, 1), (2, 1), (3, 3), (3, 2)}.
Notice that all we’ve had to do is reverse the order of the elements in the ordered pairs
(1, 4), . . . , (2, 3) of R to obtain the ordered pairs (4, 1), . . . , (3, 2) of R−1.

Note that neither R nor R−1 is a functional relation in the example in the previous
paragraph. You should make sure you understand why this statement is true (Hint: R fails
the “∃ !” test and R−1 fails the “∀” part of the definition of a functional relation). Note
also that if both R and R−1 are functional relations then |A| = |B|. In this case, R (and
R−1) are bijections in the sense of Definition 3.

Example 5 (Two-line notation) Since one-line notation is a simple, brief way to specify
functions, we’ll use it frequently. If the domain is not a set of numbers, the notation is
poor because we must first pause and order the domain. There are other ways to write
functions which overcome this problem. For example, we could write f(a) = 4, f(b) = 3,
f(c) = 4 and f(d) = 1. This could be shortened up somewhat to

a → 4, b → 3, c → 4 and d → 1.

By turning each of these sideways, we can shorten it even more:

(

a b c d
4 3 4 1

)

. For

obvious reasons, this is called two-line notation. Since x always appears directly over f(x),
there is no need to order the domain; in fact, we need not even specify the domain separately
since it is given by the top line. If the function is a bijection, its inverse function is obtained
by interchanging the top and bottom lines.

The arrows we introduced in the last paragraph can be used to help visualize different
properties of functions. Imagine that you’ve listed the elements of the domain A in one
column and the elements of the range B in another column to the right of the domain.
Draw an arrow from a to b if f(a) = b. Thus the heads of arrows are labeled with elements
of B and the tails with elements of A. Here are some arrow diagrams.

A B

1

2

3

a

b

c

d

A B

1

2

3

a

b

c

A B

1

2

3

a

b

In all three functions, the domain A = {1, 2, 3}; however, the range B is different for each
function. Since each diagram represents a function f , no two arrows have the same tail. If
f is an injection, no two arrows have the same head. Thus the second and third diagrams
are injections, but the first is not. If f is a surjection, every element of B is on the head
of some arrow. Thus the first and third diagrams are surjections, but the second is not.
Since the third diagram is both an injection and a surjection, it is a bijection. You should
be able to describe the situation with the arrowheads when f is a bijection. How can you
tell if a diagram represents a permutation?
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Exercises for Section 1

1.1. This exercise lets you check your understanding of the definitions. In each case
below, some information about a function is given to you. Answer the following
questions and give reasons for your answers:

• Have you been given enough information to specify the function?

• Can you tell whether or not the function is an injection? a surjection?
a bijection?

• If possible, give the function in two-line form.

(a) f ∈ 3{>,<,+,?}, f = (3, 1, 2, 3).

(b) f ∈ {>,<,+, ?}3
, f = (?, <,+).

(c) f ∈ 43, 2 → 3, 1 → 4, 3 → 2.

1.2. Let A and B be finite sets and f :A → B. Prove the following claims. Some are
practically restatements of the definitions, some require a few steps.

(a) If f is an injection, then |A| ≤ |B|.
(b) If f is a surjection, then |A| ≥ |B|.
(c) If f is a bijection, then |A| = |B|.
(d) If |A| = |B|, then f is an injection if and only if it is a surjection.

(e) If |A| = |B|, then f is a bijection if and only if it is an injection or it is a
surjection.

1.3. Let S be the set of students attending a large university, let I be the set of student
ID numbers for those students, let D be the set of dates for the past 100 years
(month/day/year), let G be the set of 16 possible grade point averages between 2.0
and 3.5, rounded to the nearest tenth. For each of the following, decide whether or
not it is a function. If it is, decide whether it is an injection, bijection or surjection.
Give reasons for your answers.

(a) The domain is S, the codomain is I and the function maps each student to his
or her ID number.

(b) The domain is S, the codomain is D and the function maps each student to
his or her birthday.

(c) The domain is D, the codomain is I and the function maps each date to the
ID number of a student born on that date. If there is more than one such
student, the lexicographically least ID number is chosen.

(d) The domain is S, the codomain is G and the function maps each student to
his or her GPA rounded to the nearest tenth.

Fn-6



Section 2: Permutations

(e) The domain is G, the codomains is I and the function maps each GPA to the
ID number of a student with that GPA. If there is more than one such student,
the lexicographically least ID number is chosen.

1.4. Let A = {1, 2, 3} and B = {a, b, d}. Consider the following subsets of sets.

{(3, a), (2, b), (1, a)}, {(1, a), (2, b), (3, c)},
{(1, a), (2, b), (1, d)}, {(1, a), (2, b) (3, d), (1, b)}.

Which of them are relations on A × B? Which of the are functional relations?
Which of their inverses are functional relations?

Section 2: Permutations

Before beginning our discussion, we need the notion of composition of functions. Suppose
that f and g are two functions such that the values f takes on are contained in the domain
of g. We can write this as f :A → B and g:C → D where f(a) ∈ C for all a ∈ A. We
define the composition of g and f , written gf :A → D by (gf)(x) = g(f(x)) for all x ∈ A.
The notation g ◦ f is also used to denote composition. Suppose that f and g are given in
two-line notation by

f =

(

p q r s
P R T U

)

g =

(

P Q R S T U V
1 3 5 2 4 6 7

)

.

Then gf =

(

p q r s
1 5 4 6

)

. To derive (gf)(p), we noted that f(p) = P and g(P ) = 1. The

other values of gf were derived similarly.

The set of permutations on a set A is denoted in various ways in the literature. Two
notations are PER(A) and S(A). Suppose that f and g are permutations of a set A. Recall
that a permutation is a bijection from a set to itself and so it makes sense to talk about f−1

and fg. We claim that fg and f−1 are also permutations of A. This is easy to see if you
write the permutations in two-line form and note that the second line is a rearrangement
of the first if and only if the function is a permutation. You may want to look ahead at the
next example which illustrates these ideas.

The permutation f given by f(a) = a for all a ∈ A is called the identity permutation.
Notice that f ◦ f−1 and f−1 ◦ f both equal the identity permutation. You should be able
to show that, if f is any permutation of A and e is the identity permutation of A, then
f ◦ e = e ◦ f = f .

Again suppose that f is a permutation. Instead of f ◦ f or ff we write f2. Note that
f2(x) is not (f(x))2. (In fact, if multiplication is not defined in A, (f(x))2 has no meaning.)
We could compose three copies of f . The result is written f3. In general, we can compose
k copies of f to obtain fk. A cautious reader may be concerned that f ◦ (f ◦ f) may not
be the same as (f ◦ f) ◦ f . They are equal. In fact, fk+m = fk ◦ fm for all nonnegative
integers k and m, where f0 is defined by f0(x) = x for all x in the domain. This is based
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on the “associative law” which states that f ◦(g◦h) = (f ◦g)◦h whenever the compositions
make sense. We’ll prove these results.

To prove that the two functions are equal, it suffices to prove that they take on the
same values for all x in the domain. Let’s use this idea for f ◦ (g ◦ h) and (f ◦ g) ◦ h. We
have

(f ◦ (g ◦ h))(x) = f((g ◦ h)(x)) by the definition of ◦,
= f(g(h(x))) by the definition of ◦.

Similarly

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) by the definition of ◦,
= f(g(h(x))) by the definition of ◦.

More generally, one can use this approach to prove by induction that f1 ◦f2 ◦ · · · ◦fn is well
defined. This result then implies that fk+m = fk ◦ fm. Note that we have proved that the
associative law for any three functions f , g and h for which the domain of f contains the
values taken on by g and the domain of g contains the values taken on by h.

Example 6 (Composing permutations) We’ll use the notation. Let f and g be the
permutations

f =

(

1 2 3 4 5
2 1 4 5 3

)

g =

(

1 2 3 4 5
2 3 4 5 1

)

.

We can compute fg by calculating all the values. This can be done fairly easily from the
two-line form: For example, (fg)(1) can be found by noting that the image of 1 under g is
2 and the image of 2 under f is 1. Thus (fg)(1) = 1. You should be able to verify that

fg =

(

1 2 3 4 5
1 4 5 3 2

)

gf =

(

1 2 3 4 5
3 2 5 1 4

)

6= fg

and that

f2 =

(

1 2 3 4 5
1 2 5 3 4

)

f3 =

(

1 2 3 4 5
2 1 3 4 5

)

g5 = f6 =

(

1 2 3 4 5
1 2 3 4 5

)

.

Note that it is easy to get the inverse, simply interchange the two lines. Thus

f−1 =

(

2 1 4 5 3
1 2 3 4 5

)

which is the same as f−1 =

(

1 2 3 4 5
2 1 5 3 4

)

,

since the order of the columns in two-line form does not matter.

Let f be a permutation of the set A and let n = |A|. If x ∈ A, we can look at the
sequence

x, f(x), f(f(x)), . . . , fk(x), . . . ,

D which is often written as

x → f(x) → f(f(x)) → . . . → fk(x) → · · · .
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Since the range of f has n elements, this sequence will contain a repeated element in the
first n + 1 entries. Suppose that fs(x) is the first sequence entry that is ever repeated and
that fs+p(x) is the first time that it is repeated. Thus fs(x) = fs+p(x). Apply (f−1)s to
both sides of this equality to obtain x = fp(x) and so, in fact, s = 0. It follows that the
sequence cycles through a pattern of length p forever since

fp+1(x) = f(fp(x)) = f(x), fp+2(x) = f2(fp(x)) = f2(x), and so on.

We call (x, f(x), . . . , fp−1(x)) the cycle containing x and call p the length of the cycle. If a
cycle has length p, we call it a p-cycle.3 Cyclic shifts of a cycle are considered the same; for
example, if (1,2,6,3) is the cycle containing 1 (as well as 2, 3 and 6), then (2,6,3,1), (6,3,1,2)
and (3,1,2,6) are other ways of writing the cycle (1,2,6,3). A cycle looks like a function in
one-line notation. How can we tell them apart? Either we will be told or it will be clear
from the context.

Example 7 (Using cycle notation) Consider the permutation

f =

(

1 2 3 4 5 6 7 8 9
2 4 8 1 5 9 3 7 6

)

.

Since 1 → 2 → 4 → 1, the cycle containing 1 is (1,2,4). We could equally well write it
(2,4,1) or (4,1,2); however, (1,4,2) is a different cycle since it corresponds to 1 → 4 → 2 → 1
The usual convention is to list the cycle starting with its smallest element. The cycles of f
are (1,2,4), (3,8,7), (5) and (6,9). We write f in cycle form as

f = (1, 2, 4) (3, 8, 7) (5) (6, 9).

It is common practice to omit the cycles of length one and write f = (1, 2, 4)(3, 8, 7)(6, 9).
The inverse of f is obtained by reading the cycles backwards because f−1(x) is the lefthand
neighbor of x in a cycle. Thus

f−1 = (4, 2, 1)(7, 8, 3)(9, 6) = (1, 4, 2)(3, 7, 8)(6, 9).

Cycle form is useful in certain aspects of the branch of mathematics called “finite group
theory.” Here’s an application.

3 If (a1, a2, . . . , ap) is a cycle of f , then

f(a1) = a2, f(a2) = a3, . . . , f(ap−1) = ap, f(ap) = a1.
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Example 8 (Powers of permutations) With a permutation in cycle form, it’s very easy
to calculate a power of the permutation. For example, suppose we want the tenth power
of the permutation whose cycle form (including cycles of length 1) is (1, 5, 3)(7)(2, 6). To
find the image of 1, we take ten steps: 1 → 5 → 3 → 1 · · ·. Where does it stop after ten
steps? Since three steps bring us back to where we started (because 1 is in a cycle of length
three), nine steps take us around the cycle three times and the tenth takes us to 5. Thus
1 → 5 in the tenth power. Similarly, 5 → 3 and 3 → 1. Clearly 7 → 7 regardless of the
power. Ten steps take us around the cycle (2, 6) exactly five times, so 2 → 2 and 6 → 6.
Thus the tenth power is (1, 5, 3)(7)(2)(6).

Suppose we have a permutation in cycle form whose cycle lengths all divide k. The
reasoning in the previous example shows that the kth power of that permutation will be the
identity permutation; that is, all the cycles will be 1-long and so every element is mapped to
itself (i.e., f(x) = x for all x). In particular, if we are considering permutations of an n-set,
every cycle has length at most n and so we can take k = n!, regardless of the permutation.
We have shown

Theorem 1 (A fixed power of n-permutations is the identity) Given a set S, there
are k > 0 depending on |S| such that fk is the identity permutation for every permutation
f of S. Furthermore, k = |S|! is one such k.

*Example 9 (Involutions) An involution is a permutation which is equal to its inverse.
Since f(x) = f−1(x), we have f2(x) = f(f−1(x)) = x. Thus involutions are those permu-
tations which have all their cycles of lengths one and two. How many involutions are there
on n? Let’s count the involutions with exactly k 2-cycles and use the Rule of Sum to add
up the results. We can build such an involution as follows:

• Select 2k elements for the 2-cycles AND

• partition these 2k elements into k blocks that are all of size 2 AND

• put the remaining n − 2k elements into 1-cycles.

Since there is just one 2-cycle on two given elements, we can interpret each block as
2-cycle. This specifies f . The number of ways to carry out the first step is

(

n
2k

)

. For the

second step, we might try the multinomial coefficient
(

2k
2,...,2

)

= (2k)!/2k. This is almost
right! In using the multinomial coefficient, we’re assuming an ordering on the pairs even
though they don’t have one. For example, with k = 3 and the set 6, there are just 15
possible partitions as follows.

{{1, 2}, {3, 4}, {5, 6}} {{1, 2}, {3, 5}, {4, 6}} {{1, 2}, {3, 6}, {4, 5}}
{{1, 3}, {2, 4}, {5, 6}} {{1, 3}, {2, 5}, {4, 6}} {{1, 3}, {2, 6}, {4, 5}}
{{1, 4}, {2, 3}, {5, 6}} {{1, 4}, {2, 5}, {3, 6}} {{1, 4}, {2, 6}, {3, 5}}
{{1, 5}, {2, 3}, {4, 6}} {{1, 5}, {2, 4}, {3, 6}} {{1, 5}, {2, 6}, {3, 4}}
{{1, 6}, {2, 3}, {4, 5}} {{1, 6}, {2, 4}, {3, 5}} {{1, 6}, {2, 5}, {3, 4}}

This is smaller than
(

6
2,2,2

)

= 6!/2!2!2! = 90 because all 3! ways to order the three blocks
in each partition are counted differently to obtain the number 90. This is because we’ve
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chosen a first, second and third block instead of simply dividing 6 into three blocks of size
two.

How can we solve the dilemma? Actually, the discussion of what went wrong contains
the key to the solution: The multinomial coefficient counts ordered collections of k blocks
and we want unordered collections. Since the blocks in a partition are all distinct, there
are k! ways to order the blocks and so the multinomial coefficient counts each unordered
collection k! times. Thus we must simply divide the multinomial coefficient by k!. If this
dividing by k! bothers you, try looking at it this way. Let f(k) be the number of ways to
carry out the second step, partition the 2k elements into k blocks that are all of size 2.
Since the k blocks can be permuted in k! ways, the Rule of Product tells us that there are
f(k) k! ways to select k ordered blocks of 2 elements each. Thus f(k) k! =

(

2k
2,...,2

)

.

Since there is just one way to carry out Step 3, the Rule of Product tells us that the
number of involutions with exactly k 2-cycles is

(

n

2k

)

1

k!

(

2k

2, . . . , 2

)

=
n!

(2k)!(n− 2k)!

1

k!

(2k)!

(2!)k
.

Simplifying and using the Rule of Sum to combine the various possible values of k, we
obtain a formula for involutions.

We have just proved: The number of involutions of n is

⌊n/2⌋
∑

k=0

n!

(n − 2k)!2kk!

where ⌊n/2⌋ denotes the largest integer less than or equal to n/2. Let’s use this to compute
the number of involutions when n = 6. Since ⌊6/2⌋ = 3, the sum has four terms:

6!

(6 − 0)! 200!
+

6!

(6 − 2)! 211!
+

6!

(6 − 4)! 222!
+

6!

(6 − 6)! 233!

= 1 +
6 × 5

2
+

6 × 5 × 4 × 3

4 × 2!
+

6 × 5 × 4

8

= 1 + 15 + 45 + 15 = 76.

The last term in the sum, namely k = 3 corresponds to those involutions with three 2-cycles
(and hence no 1-cycles). Thus it counts the 15 partitions listed earlier in this example.

If you’re familiar with the basic operations associated with matrices, the following
example gives a correspondence between matrix multiplication and composition of permu-
tations.

*Example 10 (Permutation matrices) Suppose f and g are permutations of n. We can
define an n× n matrix F to consist of zeroes except that the (i, j)th entry, Fi,j , equals one
whenever f(j) = i. Define G similarly. Then

(FG)i,j =

n
∑

k=1

Fi,kGk,j = Fi,g(j),
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since Gk,j = 0 except when g(j) = k. By the definition of F , this entry of F is zero unless
f(g(j)) = i. Thus (FG)i,j is zero unless (fg)(j) = i, in which case it is one. We’ve proven
that FG corresponds to fg. In other words:

Composition of permutations corresponds to multiplication of matrices.

It is also easy to prove that f−1 corresponds to F−1. Using this correspondence, we can
prove things such as (fg)−1 = g−1f−1 and (fk)−1 = (f−1)k by noting that they are true
for matrices F and G.

As an example, let f and g be the permutations

f =

(

1 2 3 4 5
2 1 4 5 3

)

g =

(

1 2 3 4 5
2 3 4 5 1

)

.

We computed fg in Example 6. We obtained

fg =

(

1 2 3 4 5
1 4 5 3 2

)

.

Using our correspondence, we obtain

F =











0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0











G =











0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0











You should multiply these two matrices together and verify that you get the matrix FG
corresponding to

fg =

(

1 2 3 4 5
1 4 5 3 2

)

.

*Example 11 (Derangements) A derangement is a permutation f with no fixed points;
i.e., f(x) 6= x for all x. We first show that the probability is 1/n that a permutation f ,
selected uniformly at random from all permutations of n, has f(k) = k. If f(k) = k, then
the elements of n−{k} can be permuted in any fashion. This can be done in (n−1)! ways.
Thus, (n − 1)! is the cardinality of the set of all permutations of n that satisfy f(k) = k.
Since there are n! permutations, the probability that f(k) = k is (n − 1)!/n! = 1/n.
Hence the probability that f(k) 6= k is 1 − 1/n. If we toss a coin with probability p of
heads for n tosses, the probability that no heads occurs in n tosses is (1 − p)n. This is
because each toss is “independent” of the prior tosses. If we, incorrectly, treat the n events
f(1) 6= 1, . . . , f(n) 6= n as independent in this same sense, the probability that f(k) 6= k for
k = 1, . . . , n, would be (1−1/n)n. One of the standard results in calculus is that (1−1/n)n

approaches 1/e as n → ∞. (You can prove it by writing (1−1/n)n = exp(ln(1−1/n)/(1/n)),
setting 1/n = x and using l’Hôpital’s Rule.) Thus, we might expect approximately n!/e
derangements of n for large n. Although our argument is wrong, the result is right! We
get partial credit for this example.
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Exercises for Section 2

2.1. This exercise lets you check your understanding of cycle form. A permutation is
given in one-line, two-line or cycle form. Convert it to the other two forms. Give
its inverse in all three forms.

(a) (1,5,7,8) (2,3) (4) (6).

(b)

(

1 2 3 4 5 6 7 8
8 3 7 2 6 4 5 1

)

.

(c) (5,4,3,2,1), which is in one-line form.

(d) (5,4,3,2,1), which is in cycle form.

2.2. A carnival barker has four cups upside down in a row in front of him. He places
a pea under the cup in the first position. He quickly interchanges the cups in the
first and third positions, then the cups in the first and fourth positions and then
the cups in the second and third positions. This entire set of interchanges is done
a total of five times. Where is the pea?
Hint : Write one entire set of interchanges as a permutation in cycle form.

2.3. Let f be a permutation of n. The cycle of f that contains 1 is call the cycle

generated by 1.

(a) Prove that the number of permutations in which the cycle generated by 1 has
length n is (n − 1)!.

(b) For how many permutations does the cycle generated by 1 have length k? (Re-
member that a permutation must be defined on all elements of its domain n.)

(c) If your answer to (b) is correct, when it is summed over 1 ≤ k ≤ n it should
equal n!, the total number of permutations of n. Why? Show that your answer
to (b) has the correct sum.

2.4. This exercise deals with powers of permutations. All our permutations will be
written in cycle form.

(a) Compute (1, 2, 3)300.

(b) Compute
(

(1, 3)(2, 5, 4)
)300

.

(c) Show that for every permutation f of 5, we have f60 is the identity permutation.
What is f61?
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Section 3: Other Combinatorial Aspects of Functions

This section contains two independent parts. The first deals with the concept of the inverse
of a general function. The second deals with functions related to computer storage of
unordered lists.

The Inverse of an Arbitrary Function

Again, let f :A → B be a function. The image of f is the set of values f actually takes on:
Image(f) = { f(a) | a ∈ A }. The definition of a surjection can be rewritten Image(f) = B
because a surjection was defined to be a function f : A → B such that, for every b ∈ B
there is an a ∈ A with f(a) = b.

For each b ∈ B, the inverse image of b, written f−1(b) is the set of those elements in A
whose image is b; i.e.,

f−1(b) = { a | a ∈ A and f(a) = b }.
This extends our earlier definition of f−1 from bijections to all functions; however, such
an f−1 can’t be thought of as a function from B to A unless f is a bijection because it will
not give a unique a ∈ A for each b ∈ B.4

Suppose f is given by the functional relation R ⊂ A × B. Then f−1(b) is all those a
such that (a, b) ∈ R. Equivalently, f−1(b) is all those a such that (b, a) ∈ R−1.

Definition 4 (Coimage) Let f :A → B be a function. The collection of nonempty
inverse images of elements of B is called the coimage of f . In mathematical notation

Coimage(f) = {f−1(b) | b ∈ B, f−1(b) 6= ∅} = {f−1(b) | b ∈ Image(f)}.

We claim that the coimage of f is the partition of A whose blocks5 are the maximal
subsets of A on which f is constant. For example, if f ∈ {a, b, c}5 is given in one line form
as (a, c, a, a, c), then

Coimage(f) = {f−1(a), f−1(c)} =
{

{1, 3, 4}, {2, 5}
}

,

f is a on {1, 3, 4} and is c on {2, 5}.
We now prove the claim. If x ∈ A, let y = f(x). Then x ∈ f−1(y) and the set f−1(y)

is an element of Coimage(f). Hence the union of the nonempty inverse images contains
A. Clearly it does not contain anything which is not in A. If y1 6= y2, then we cannot
have x ∈ f−1(y1) and x ∈ f−1(y2) because this would imply f(x) = y1 and f(x) = y2, a
contradiction of the definition of a function. Thus Coimage(f) is a partition of A. Since
the value of f(x) determines the block to which x belongs, x1 and x2 belong to the same
block if and only if f(x1) = f(x2). Hence a block is a maximal set on which f is constant.

4 There is a slight abuse of notation here: If f :A → B is a bijection, our new notation
is f−1(b) = {a} and our old notation is f−1(b) = a.

5 Recall that a partition of a set S is an unordered collection of disjoint nonempty subsets
of S whose union is S. These subsets are called the blocks of the partition.
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Example 12 (f−1 as a function) Let f :A → B be a function. For each b ∈ B,

f−1(b) = { a | a ∈ A and f(a) = b }.

Thus, for each b ∈ B, f−1(b) ∈ P(A). Hence f−1 is a function with domain B and range
(codomain) P(A), the set of all subsets of A. This is true for any function f and does
not require f to be bijection. For example, if f ∈ {a, b, c}5 is given in one-line form as
(a, c, a, a, c), then, f−1, in two-line notation is

(

a b c
{1, 3, 4} ∅ {2, 5}

)

If, we take the domain of f−1 to be Image(f), instead of all of B, then f−1 is a bijection
from Image(f) to Coimage(f). In the case of our example (a, c, a, a, c), we get, in two-line
notation

(

a c
{1, 3, 4} {2, 5}

)

for the image–coimage bijection associated with f−1. If we are only given the coimage of
a function then we don’t have enough information to specify the function. For example,
suppose we are given only that {{1, 3, 4}, {2, 5}} is the coimage of some function g with
codomain {a, b, c}. We can see immediately that the domain of g is 5. But what is g? To
specify g we need to know the elements x and y in {a, b, c} that make

(

x y
{1, 3, 4} {2, 5}

)

the correct two-line description of g−1 (restricted to its image). There are (3)2 = 6 choices6

for xy, namely, ab, ac, bc, ba, ca, and cb. In general, suppose f :A → B and we are given
that a particular partition of A with k blocks is the coimage of f . Then, by comparison
with our example (A = 5, B = {a, b, c}), it is easy to see that there are exactly (|B|)k

choices for the function f .

We can describe the image and coimage of a function by the arrow pictures introduced
in Example 5. Image(f) is the set of those b ∈ B which appear as labels of arrowheads. A
block in Coimage(f) is the set of labels on the tails of those arrows that all have their heads
pointing to the same value; for example, the block of Coimage(f) arising from b ∈ Image(f)
is the set of labels on the tails of those arrows pointing to b.

Example 13 (Counting functions with specified image size) How many functions
in BA have an image with exactly k elements? You will need to recall that the symbol
S(n, k), stands for the number of partitions of set of size n into k blocks. (The S(n, k) are
called the Stirling numbers of the second kind and are discussed in Unit CL. See the index
for page numbers.) If f ∈ BA has k elements in its image, then this means that the coimage
of f is a partition of A having exactly k blocks. Suppose that |A| = a and |B| = b. There

6 Recall that (n)k = n(n−1) · · · (n−k+1) = n!/(n−k)! is the number of k-lists without
repeats that can be made from an n-set.
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are S(a, k) ways to choose the blocks of the coimage. The partition of A does not fully
specify a function f ∈ BA. To complete the specification, we must specify the image of the
elements in each block (Example 12). In other words, an injection from the set of k blocks
to B must be specified. This is an ordered selection of size k without replacement from B.
There are (b)k = b!/(b − k)! such injections, independent of which k block partition of A
we are considering. By the Rule of Product, there are S(a, k)(b)k functions f ∈ BA with
|Image(f)| = k. For example, when the domain is 5 and the range is {a, b, c}, the number
of functions with |Image(f)| = 2 is S(5, 2)(3)2 = 15 × 6 = 90, where the value of S(5, 2)
was obtained from the table in the discussion of Stirling numbers in Unit CL. Example 12
gave one of these 90 possibilities.

We consider some special cases.

• Suppose k = a.

− If b < a, there are no functions f with |Image(f)| = a because the size a of the
image is at most the size b of the codomain.

− If b ≥ a there are (b)a functions with |Image(f)| = a.

− If b = a, the previous formula, (b)a, reduces to a! and the functions are injections
from A to B.

• Suppose k = b.

− If b > a there are no functions f with |Image(f)| = b because the size of the image
is at most the size of the domain.

− If b ≤ a then there are S(a, b)(b)b = S(a, b) b! functions f ∈ BA with |Image(f)| =
b. These functions are exactly the surjections.

Monotonic Lists and Unordered Lists

In computers, all work with data structures requires that the parts of the data structure
be ordered. The most common orders are arrays and linked lists.

Sometimes the order relates directly to an order associated with the corresponding
mathematical objects. For example, the one-line notation for a function is simply an ordered
list, which is an array. Thus there is a simple correspondence (i.e., bijection) between lists
and functions: A k-list from S is a function f : k → S. Thus functions (mathematical
objects) are easily stored as ordered lists (computer objects).

Sometimes the order is just an artifact of the algorithm using the structures. In other
words, the order is imposed by the designer of the algorithm. Finding such a “canonical”
ordering7 is essential if one wants to work with unordered objects efficiently in a computer.

7 In mathematics, people refer to a unique thing (or process or whatever) that has been
selected as canonical.
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Since sets and multisets8 are basic unordered mathematical objects, it is important to
have ways of representing them in a computer. We’ll discuss a canonical ordering for k-sets
and k-multisets whose elements lie in an n-set.

We need to think of a unique way to order the set or multiset, say s1, s2, . . . , sk so that
we have an ordered list. (A mathematician would probably speak of a canonical ordering
of the multiset rather than a unique ordering; however, both terms are correct.)

Let’s look at a small example, the 3-element multisets whose elements are chosen from
5. Here are the

(

5+3−1
3

)

= 35 such multisets.9 An entry like 2,5,5 stands for the multiset
containing one 2 and two 5’s.

1,1,1 1,1,2 1,1,3 1,1,4 1,1,5 1,2,2 1,2,3 1,2,4 1,2,5 1,3,3
1,3,4 1,3,5 1,4,4 1,4,5 1,5,5 2,2,2 2,2,3 2,2,4 2,2,5 2,3,3
2,3,4 2,3,5 2,4,4 2,4,5 2,5,5 3,3,3 3,3,4 3,3,5 3,4,4 3,4,5
3,5,5 4,4,4 4,4,5 4,5,5 5,5,5

We’ve simply arranged the elements in each 3-multiset to be in “weakly increasing order.”
Let (b1, b2, . . . , bk) be an ordered list. We say the list is in weakly increasing order if the
values are not decreasing as we move from one element to the next; that is, if b1 ≤ b2 ≤
· · · ≤ bk. The list of lists we’ve created can be thought of as a bijection from

(i) the 3-multisets whose elements lie in 5 to

(ii) the weakly increasing functions in 53 written in one-line notation.

Thus, 3-multisets with elements in 5 correspond to weakly increasing functions in 53. For
example the multiset {2, 5, 5} corresponds to the weakly increasing function f = (2, 5, 5) in
1-line form.

Since we have seen that functions with domain k can be viewed as k-lists, we say that
f ∈ nk is a weakly increasing function if its one-line form is weakly increasing; that is,
f(1) ≤ f(2) ≤ · · · ≤ f(k). In a similar fashion we say that the list b1, b2, . . . , bk is in

weakly decreasing

strictly decreasing

strictly increasing

}

order if

{

b1 ≥b2 ≥· · · ≥bk;
b1 >b2 >· · · >bk;
b1 <b2 <· · · <bk.

Again, this leads to similar terminology for functions. All such functions are also called
monotone functions.

In the bijection we gave for our 35 lists, the lists without repetition correspond to the
strictly increasing functions. Thus 3-subsets of 5 correspond to strictly increasing functions.
From our previous list of multisets, we can read off these functions in 1-line form:

(1, 2, 3) (1, 2, 4) (1, 2, 5) (1, 3, 4) (1, 3, 5)
(1, 4, 5) (2, 3, 4) (2, 3, 5) (2, 4, 5) (3, 4, 5)

We can interchange the strings “decreas” and “increas” in the previous paragraphs
and read the functions in the list backwards. For example, the bijection between 3-subsets
of 5 and strictly decreasing functions is given by

3, 2, 1 4, 2, 1 4, 3, 1 4, 3, 2 5, 2, 1 5, 3, 1 5, 3, 2 5, 4, 1 5, 4, 2 5, 4, 3.

8 Recall that a multiset is like a set except that repeated elements are allowed.
9 A later example explains how we got this number.
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The function (4, 3, 1) corresponds to the 3-subset {4, 3, 1} = {1, 3, 4} of 5.

All these things are special cases of the following 2-in-1 theorem.

Theorem 2 (Sets, unordered lists and monotone functions) Read either the top
lines in all the braces or the bottom lines in all the braces. There are bijections between
each of the following:

•
{

k-multisets
k-sets

}

whose elements lie in n,

• the

{

weakly
strictly

}

increasing ordered k-lists made from n,

• the

{

weakly
strictly

}

increasing functions in nk.

In these correspondences, the items in the list are the elements of the (multi)-set and are
the values of the function.
In the correspondences, “increasing” can be replaced by “decreasing.”

For example, reading the top lines in the braces with k = 3 and n = 5 and, in the last
one, replacing “increasing” with “decreasing,” we have: There are bijections between

(a) 3-multisets whose elements lie in 5,

(b) the weakly increasing ordered 3-lists in 5 and

(c) the weakly decreasing functions in 53.

In these bijections, {2, 5, 5} corresponds to list (2, 5, 5) and the function f = (5, 5, 2).

Example 14 (Counting multisets) Earlier we said there were
(

5+3−1
3

)

= 35 different
3-element multisets whose elements come from 5 and gave the list

1,1,1 1,1,2 1,1,3 1,1,4 1,1,5 1,2,2 1,2,3 1,2,4 1,2,5 1,3,3
1,3,4 1,3,5 1,4,4 1,4,5 1,5,5 2,2,2 2,2,3 2,2,4 2,2,5 2,3,3
2,3,4 2,3,5 2,4,4 2,4,5 2,5,5 3,3,3 3,3,4 3,3,5 3,4,4 3,4,5
3,5,5 4,4,4 4,4,5 4,5,5 5,5,5

How did we know this? To see the trick, do the following to each 3-list:

• add 0 to the first item,

• add 1 to the second item, and

• add 2 to the third item.

Thus the first ten become

1,2,3 1,2,4 1,2,5 1,2,6 1,2,7 1,3,4 1,3,5 1,3,6 1,3,7 1,4,5

You should be able to see that you’ve created strictly increasing 3-lists from 7. In other
words, you have listed all subsets of 7 of size 3. We know there are

(

7
3

)

= 35 such subsets
and hence there were 35 multisets in the original list. In general, suppose we have listed
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all weakly increasing k-lists from n. Suppose each such k-list is in weakly increasing order.
If, as in the above example, we add the list 0, 1, . . . , k − 1 to each such k-list element by
element, we get the strictly increasing k-lists from n + k − 1. By Theorem 2, this is a list
of all k-subsets of n + k − 1. Thus, the number of weakly increasing k − lists from n is
(

n+k−1
k

)

. By Theorem 2, this is also the number of k-multisets from n.

Exercises for Section 3

3.1. This exercise lets you check your understanding of the definitions. In each case
below, some information about a function is given to you. Answer the following
questions and give reasons for your answers:

• Have you been given enough information to specify the function; i.e., would
this be enough data for a function envelope?

• Can you tell whether or not the function is an injection? a surjection? a
bijection? If so, what is it?

(a) f ∈ 45, Coimage(f) = {{1, 3, 5}, {2, 4}}.
(b) f ∈ 55, Coimage(f) = {{1}, {2}, {3}, {4}, {5}}.
(c) f ∈ 45, f−1(2) = {1, 3, 5}, f−1(4) = {2, 4}}.
(d) f ∈ 45,

∣

∣Image(f)
∣

∣ = 4.

(e) f ∈ 45,
∣

∣Image(f)
∣

∣ = 5.

(f) f ∈ 45,
∣

∣Coimage(f)
∣

∣ = 5.

3.2. Let A and B be finite sets and let f :A → B be a function. Prove the following
claims.

(a) |Image| = |Coimage(f)|.
(b) f is an injection if and only if |Image| = |A|.
(c) f is a surjection if and only if |Coimage(f)| = |B|.

3.3. In each case we regard the specified functions in one-line form. (As strings of
integers, such functions are ordered lexicographically.)

(a) List all strictly decreasing functions in 53 in lexicographic order. Note that
this lists all subsets of size 3 from 5 in lexicographic order.

(b) In the list for part (a), for each string x1 x2 x3 compute
(

x1−1
3

)

+
(

x2−1
2

)

+
(

x3−1
1

)

+ 1. What do these integers represent in terms of the list of part (a)?

(c) List all strictly increasing functions in 53 in lexicographic order. Note that this
also lists all subsets of size 3 from 5 in lexicographic order.
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(d) What is the analog, for part (c) of the formula of part (b)?
Hint : For each x1 x2 x3 in the list of part (c), form the list (6−x1)(6−x2)(6−
x3).

(e) In the lexicographic list of all strictly decreasing functions in 95, find the suc-
cessor and predecessor of 98321.

(f) How many elements are there before 98321 in this list?

3.4. We study the problem of listing all ways to put 5 balls (unlabeled) into 4 boxes
(labeled 1 to 4). Consider ten consecutive points, labeled 0 · · · 9. Some points are
to be converted to box boundaries, some to balls. Points 0 and 9 are always box
boundaries (call these exterior box boundaries). From the remaining points labeled
1 · · · 8, we can arbitrarily pick three points to convert to interior box boundaries,
four points to convert to balls. Here are two examples:

0 1 2 3 4 5 6 7 8 9
• • • • •

1 2 3 4

points
conversion
box no.

0 1 2 3 4 5 6 7 8 9
• • • • •
1 2 3 4

In this way, the placements of 5 balls into 4 boxes are made to correspond to subsets
of size 3 (the box boundaries we can select) from 8. Lexicographic order on subsets
of size 3 from 8, where the subsets are listed as strictly decreasing strings of length
3 from 8, correspondingly lex orders all placements of 5 balls into three boxes.

(a) Find the successor and predecessor of each of the above placements of balls
into boxes.

(b) In the lex order of 5 balls into 4 boxes, which placement of balls into boxes is
the last one in the first half of the list? The first one in the second half of the
list?
Hint : The formula p(x1, x2, x3) =

(

x1−1
3

)

+
(

x2−1
2

)

+
(

x3−1
1

)

+1 gives the position
of the string x1x2x3 in the list of decreasing strings of length three from 8. Try
to solve the equation p(x1, x2, x3) =

(

8
3

)

/2 = 28 for the variables x1, x2, x3.

3.5. Listing all of the partitions of an n set can be tricky and, of course, time consuming
as there are lots of them. This exercise shows you a useful trick for small n. We
define a class of functions called restricted growth functions that have the property
that their collection of coimages is exactly the set of all partitions of n.

(a) Call a function f ∈ nn a restricted growth function if f(1) = 1 and f(i)−1 is at
most the maximum of f(k) over all k < i. Which of the following functions in
one-line form are restricted growth functions? Give reasons for your answers.

2, 2, 3, 3 1, 2, 3, 3, 2, 1 1, 1, 1, 3, 3 1, 2, 3, 1.

(b) List, in lexicographic order, all restricted growth functions for n = 4. Use
one-line form and, for each one, list its coimage partition.
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(c) For n = 5, list in lexicographic order the first fifteen restricted growth func-
tions. Use one-line form. For the functions in positions 5, 10, and 15, list their
coimage partitions.

3.6. How many functions f are there from 6 to 5 with |Image(f)| = 3?

3.7. How many ways can 6 different balls be placed into 5 labeled cartons in such a way
that exactly 2 of the cartons contain no balls?

3.8. Count each of the following

(a) the number of multisets of size 6 whose elements lie in {a, b, c, d},

(b) the number of weakly increasing functions from 6 to 4,

(c) the number of weakly decreasing ordered 6-lists made from 4,

(d) the number of strictly increasing functions from 6 to 9.

Section 4: Functions and Probability

In this section we look at various types of functions that occur in elementary probability
theory. For the most part, we deal with finite sets. The functions we shall define are not
difficult to understand, but they do have special names and terminology common to the
subject of probability theory. We describe these various functions with a series of examples.

Probability functions have already been encountered in our studies. To review this
idea, let U be a finite sample space (that is, a finite set) and let P be a function from U
to R such that P (t) ≥ 0 for all t ∈ U and

∑

t∈U P (t) = 1. Then P is called a probability

function on U . For any event E ⊆ U , define P (E) =
∑

t∈E P (t). P (E) is called the
probability of the event E. The pair (U,P ) is called a probability space.
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Random Variables

Consider tossing a coin. The result is either heads or tails, which we denote by H and
T . Thus the sample space is {H,T}. Sometimes we want to associate numerical values
with elements of the sample space. Such functions are called “random variables.” The
function X : {H,T} → R, defined by X(H) = 1, X(T ) = 0, is a random variable. Likewise
the function Y (H) = 1, Y (T ) = −1, same domain and range, is a random variable.

As another example, consider the sample space U = ×4{H,T}, which contains the
possible results of four coin tosses. The random variable X(t1, t2, t3, t4) = |{i | ti = H}|
counts the number of times H appears in the sequence t1, t2, t3, t4. The function X has
Image(X) = {0, 1, 2, 3, 4}, which is a subset of the set of real numbers.

Definition 5 (Random variable) Let (U,P ) be a probability space, and let g : U → R

be a function with domain U and range (codomain) R, the real numbers. Such a function
g is called a random variable on (U,P ). The term “random variable” informs us that the
range is the set of real numbers and that, in addition to the domain U , we also have a
probability function P .

Random variables are usually denoted by capital letters near the end of the alphabet. Thus,
instead of g in the definition of random variable, most texts would use X.

By combining the two concepts, random variable and probability function, we obtain
one of the most important definitions in elementary probability theory, that of a distribution
function.

Definition 6 (Distribution function of a random variable) Let X : U → R be a
random variable on a sample space U with probability function P . For each real number
t ∈ Image(X), let X−1(t) be the inverse image of t. Define a function fX : Image(X) → R

by fX(t) = P (X−1(t)). The function fX is called the probability distribution function of

the random variable X. The distribution function is also called the density function.

Since P (X−1(t)) is the probability of the set of events E = {e | X(e) = t}, one often
writes P (X = t) instead of P (X−1(t)).

Example 15 (Some distribution functions) Suppose we roll a fair die. Then
U = {1, 2, 3, 4, 5, 6} and P (i) = 1/6 for all i.

• If X(t) = t, then fX(t) = P (X−1(t)) = P (t) = 1/6 for t = 1, 2, 3, 4, 5, 6.

• If X(t) = 0 when t is even and X(t) = 1 when t is odd, then
fX(0) = P (X−1(0)) = P ({2, 4, 6}) = 1/2 and fX(1) = 1/2.

• If X(t) = −1 when t ≤ 2 and X(t) = 1 when t > 2, then
fX(−1) = P ({1, 2}) = 1/3 and fX(1) = 2/3.

The function fX , in spite of its fancy sounding name, is nothing but a probability
function on the set Image(X). Why is that?
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• Since P is a nonnegative function with range R, so is fX .

• Since Coimage(X) = {X−1(t) | t ∈ Image(X)} is a partition of the set U ,

1 = P (U) =
∑

t∈Image(X)

P (X−1(t)) =
∑

t∈Image(X)

fX(t) .

Thus, fX is a nonnegative function from Image(X) to R such that

∑

t∈Image(X)

fX(t) = 1 .

This is exactly the definition of a probability function on the set Image(X).

Example 16 (Distribution of six cards with replacement) First one card and then
a second card are selected at random, with replacement, from 6 cards numbered 1 to 6.
The basic sample space is S × S = {(i, j) : 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}. Every point (i, j) in
this sample space is viewed as equally likely: P (i, j) = 1/36. Define a random variable X
on S × S by X(i, j) = i + j. S × S can be visualized as a 6 × 6 rectangular array and X
can be represented by inserting X(i, j) in the position represented by row i and column j.
This can be done as follows:

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

2 3

3

4

4

4

5

5

5

5

6

6

6

6

6

7

7

7

7

7

7

11

11

8

8

8

8

8

9

9

9

9

10

10

10 12

It is evident that Image(X) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The blocks of the Coimage(X)
are the sets of pairs (i, j) for which i + j is constant. Thus,

X−1(5) = {(1, 4), (2, 3), (3, 2), (4, 1)}

and
X−1(8) = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} .

Since every point in S × S has probability 1/36, P (X−1(i)) = |X−1(i)|/36. Thus, with a
little counting in the previous figure, the distribution function of X, fX = |X−1(i)|/36, in
two-line form is

fX =

(

2 3 4 5 6 7 8 9 10 11 12
1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

)

.

Suppose we have two random variables X and Y defined on the same sample space U .
Since the range of both X and Y is the real numbers, it makes sense to add the two random
variables to get a new random variable: Z = X + Y ; that is, Z(t) = X(t) + Y (t) for all
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t ∈ U . Likewise, if r is a real number, then W = rX is a random variable, W (t) = rX(t)
for all t ∈ U . Thus we can do basic arithmetic with random variables.

For any random variable, X on U , we have the following important definition:

Definition 7 (Expectation of a random variable) Let X be a random variable on a
sample space U with probability function P . The expectation E(X), or expected value of

X, is defined by

E(X) =
∑

t∈U

X(t)P (t) .

The E(X) is often denoted by µX and referred to as the mean of X.

If we collect terms in preceding sum according to the value of X(t), we obtain another
formula for the expectation:

E(X) =
∑

t∈U

X(t)P (t) =
∑

r

r

(

∑

t∈U
X(t)=r

P (t)

)

=
∑

r

rfX(r) .

The expectation E is a function whose arguments are functions. Another example of
such a function is differentiation in calculus. Such functions, those whose arguments are
themselves functions, are sometimes called “operators.” Sometimes you will see a statement
such as E(2) = 2. Since the arguments of the expectation operator E are functions, the
“2” inside the parentheses is interpreted as the constant function whose value is 2 on all of
U . The second 2 in E(2) = 2 is the number 2.

If X and Y are two random variables on a sample space U with probability function
P , and Z = X + Y , then

E(Z) =
∑

t∈U

Z(t)P (t)

=
∑

t∈U

(X(t) + Y (t))P (t)

=
∑

t∈U

X(t)P (t) +
∑

t∈U

Y (t)P (t) = E(X) + E(Y ) .

Similarly, for any real number r, E(rX) = rE(X). Putting these observations together, we
have proved the following theorem:

Theorem 3 (Linearity of expectation) If X and Y are two random variables on
a sample space U with probability function P and if a and b are real numbers, then
E(aX + bY ) = aE(X) + bE(Y ).

We now introduce some additional functions defined on random variables, the covari-
ance, variance, standard deviation, and correlation.

Definition 8 (Covariance, variance, standard deviation, correlation) Let U be
a sample space with probability function P , and let X and Y be random variables on U .
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• Then the covariance of X and Y , Cov(X,Y ), is defined by
Cov(X,Y ) = E(XY ) − E(X)E(Y ).

• The variance of X, Var(X) (also denoted by σ2
X), is defined by

Var(X) = Cov(X,X) = E(X2) − (E(X))2.

• The standard deviation of X is σX = (Var(X))1/2.

• Finally, the correlation, ρ(X,Y ) of X and Y is ρ(X,Y ) = Cov(X,Y )/σXσY ,
provided σX 6= 0 and σY 6= 0.

Example 17 (Sampling from a probability space) Consider the probability space
(U,P ) consisting of all possible outcomes from tossing a fair coin three times. Let the
random variable X be the number of heads. Suppose we now actually toss a fair coin three
times and record the result. This is called “sampling from the distribution.” Given our
sample e ∈ U , we can compute X(e). Suppose we sample many times and average the
values of X(e) that we compute. As we increase the number of samples, our average moves
around; e.g., if our values of X(e) are 1, 2, 0, 1, 2, 3, . . . our averages of the first one, first
two, first three, etc., are 1, 3/2, 3/3, 4/4, 6/5, 9/6, . . ., which reduce to 1, 1.5, 1, 1, 1.2, 1.5, . . ..
What can we say about the average? When we take a large number of samples the average
will tend to be close to µX , which is 1.5 in this case. Thus without knowing P we can
estimate µx by sampling many times computing X and averaging the results.

The same idea applies to other functions of random variables: Sample many times,
compute the function of the random variable(s) for each sample and average the results. In
this way, we can estimate E(X2). In the previous paragraph, we estimated E(X). Combin-
ing these estimates, we obtain an estimate for Var(X) = E(X2) − (E(X))2. Refinements
of this procedure are discussed in statistics classes.

Theorem 4 (General properties of covariance and variance) Let X, Y and Z be
random variables on a probability space (U,P ) and let a, b and c be real numbers. The
covariance and variance satisfy the following properties:

(1) (symmetry) Cov(X,Y ) = Cov(Y,X)

(2) (bilinearity) Cov(aX + bY,Z) = aCov(X,Z) + bCov(Y,Z) and
Cov(X,aY + bZ) = aCov(X,Y ) + bCov(X,Z).

Thinking of a as the constant function equal to a and likewise for b, we have

(3) Cov(a,X) = 0 and Cov(X + a, Y + b) = Cov(X,Y ).

In particular, Cov(X,Y ) = E((X − µX)(Y − µY )) and Var(X) = E((X − µX)2).

(4) Var(aX + bY + c) = Var(aX + bY )
= a2Var(X) + 2abCov(X,Y ) + b2Var(Y ).

The last two formulas in (3) are sometimes taken as the definition of the covariance and
variance. In that case, the formulas for them in Definition 8 would be proved as a theorem.
Note that the formula Var(X) = E((X −µX)2) says that Var(X) tells us something about
how far X is likely to be from its mean.
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Proof: Property (1) follows immediately from the fact that XY = Y X and E(X)E(Y ) =
E(Y )E(X). The following calculations prove (2).

Cov(aX + bY,Z) = E((aX + bY )Z) − E(aX + bY )E(Z) by definition

= aE(XZ) + bE(Y Z) −
(

aE(X)E(Z) + bE(Y )E(Z)
)

by Theorem 3

= a
(

E(XZ) − E(X)E(Z)
)

+ b
(

E(Y Z) − E(Y )E(Z)
)

= aCov(X,Z) + bCov(Y,Z) by definition.

We now turn to (3). By definition, Cov(a,X) = E(aX) − E(a)E(X). Since E(aX) =
aE(X) and E(a) = a, Cov(a,X) = 0. Using the various parts of the theorem,

Cov(X + a, Y + b) = Cov(X,Y + b) + Cov(a, Y + b) = Cov(X,Y + b)

= Cov(X,Y ) + Cov(X, b) = Cov(X,Y ).

The particular results follow when we set a = −µX and b = −µY .

You should be able to prove (4) by using (1), (2), (3) and the definition Var(Z) =
Cov(Z,Z).

Example 18 (General properties of correlation) Recall that the correlation of X
and Y is ρ(X,Y ) = Cov(X,Y )/σXσY , provided σx 6= 0 and σY 6= 0. Since

Cov(X + c, Y + d) = Cov(X,Y ) and Var(X + c) = Var(X)

for any constant functions c and d, we have ρ(X + c, Y + d) = ρ(X,Y ) for any constant
functions c and d. Suppose that X and Y both have mean zero. Note that

0 ≤ E((X + tY )2) = E(X2) + 2E(XY )t + E(Y 2)t2 = f(t)

defines a nonnegative polynomial of degree 2 in t. From high school math or from calculus,
the minimum value of a polynomial of the form A + 2Bt + Ct2 (C > 0) is

A − B2/C = E(X2) − (E(XY ))2/E(Y 2).

Since for all t, f(t) ≥ 0, we have E(X2) − (E(XY ))2/E(Y 2) ≥ 0. Since X and Y have
mean zero,

Cov(X,Y ) = E(XY ), Var(X) = E(X2), and Var(Y ) = E(Y 2).

Thus,
(E(XY ))2/E(X2)E(Y 2) = (ρ(X,Y ))2 ≤ 1

or, equivalently, −1 ≤ ρ(X,Y ) ≤ +1. If the means of X and Y are not zero then replace
X and Y by X − µX and Y − µY respectively, to obtain −1 ≤ ρ(X,Y ) ≤ +1.

We have just proved the following theorem about the correlation of random variables.

Theorem 5 (Bounds on the correlation of two random variables) Let X and
Y be random variables on a sample space U and let ρ(X,Y ) be their correlation. Then
−1 ≤ ρ(X,Y ) ≤ +1.
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The intuitive interpretation of the correlation ρ(X,Y ) is that values close to 1 mean
points in U where X is large also tend to have Y large. Values close to −1 mean the
opposite. As extreme examples, take Y=X. Then ρ(X,Y ) = 1. If we take Y = −X then
ρ(X,Y ) = −1.

Tchebycheff’s inequality10 is another easily proved inequality for random variables. It
relates the tendency of a random variable to be far from its mean to the size of its variance.
Such results are said to be “measures of central tendency.”

Theorem 6 (Tchebycheff’s inequality) Let X be a random variable on a probability
space (U,P ). Suppose that E(X) = µ and Var(X) = σ2. Let ǫ > 0 be a real number. Then

P
(

{u | |X(u) − µ| ≥ ǫ}
)

≤ σ2

ǫ2
.

The left side of the inequality contains the set of all u for which |X(u) − µ| ≥ ǫ. Thus it
can be thought of as the probability that the random variable X satisfies |X − µ| ≥ ǫ.

The most important aspect of Tchebycheff’s inequality is the universality of its applicability:
the random variable X is arbitrary.

Proof: Let’s look carefully at the computation of the variance:

Var(X) = E[(X − µ)2] =
∑

{u | |X−µ|≥ǫ}
(X(u)− µ)2P (u) +

∑

{u | |X−µ|<ǫ}
(X(u) − µ)2P (u) .

In breaking down the variance into these two sums, we have partitioned U into two disjoint
sets {u | |X − µ| ≥ ǫ} and {u | |X − µ| < ǫ}. Since all terms are positive, Var(X) is
greater than or equal to either one of the above sums. In particular,

Var(X) = E[(X − µ)2] ≥
∑

{u | |X−µ|≥ǫ}
(X(u)− µ)2P (u) .

Note that

∑

{u| |X−µ|≥ǫ}
(X(u) − µ)2P (u) ≥ ǫ2

(

∑

{u | |X−µ|≥ǫ}
P (u)

)

= ǫ2P
(

{u | |X − µ| ≥ ǫ}
)

.

Putting all of this together proves the theorem.

10 Tchebycheff is also spelled Chebyshev, depending on the system used for transliterating
Russian.
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Joint Distributions

A useful concept for working with pairs of random variables is the joint distribution function:

Definition 9 (Joint distribution function) Let X and Y be random variables on
a sample space U with probability function P . For each (i, j) ∈ Image(X) × Image(Y ),
define hX,Y (i, j) = P (X−1(i) ∩ Y −1(j)). The function hX,Y is called the joint distribution

function of X and Y .

Recalling the meaning of the distribution functions fX and fY (Definition 6) you should
be able to see that

fX(i) =
∑

j∈Image(Y )

hX,Y (i, j) and fY (j) =
∑

i∈Image(X)

hX,Y (i, j).

Example 19 (A joint distribution for coin tosses) A fair coin is tossed three times,
recording H if heads, T if tails. The sample space is

U = {HHH,HHT,HTH,HTT, THH,THT, TTH,TTT} .

Let X be the random variable defined by X(t1t2t3) = 0 if t1 = T , X(t1t2t3) = 1 if
t1 = H. Let Y be the random variable that counts the number of times T occurs in
the three tosses. Image(X) × Image(Y ) = {0, 1} × {0, 1, 2, 3}. We compute hX,Y (0, 2).
X−1(0) = {THH,THT, TTH,TTT}. Y −1(2) = {HTT, THT, TTH}. X−1(0)∩Y −1(2) =
{THT, TTH}. Thus, hX,Y (0, 2) = 2/8. Computing the rest of the values of hX,Y , we can
represent the results in the following table:

hX,Y Y=0 Y=1 Y=2 Y=3 fX

X=0 0 1/8 2/8 1/8 1/2

X=1 1/8 2/8 1/8 0 1/2

fY 1/8 3/8 3/8 1/8

In this table, the values of hX,Y (i, j) are contained in the submatrix

0 1/8 2/8 1/8
1/8 2/8 1/8 0

The last column gives the distribution function fX and the last row gives the distribu-
tion function fY . These distributions are called the marginal distributions of the joint
distribution hX,Y . You should check that E(X) = 1/2, E(Y ) = 3/2, Var(X) = 1/4,
Var(Y ) = 3/4. Compute also that E(XY ) =

∑

ijhX,Y (i, j) = 1/2, where the sum is
over (i, j) ∈ {0, 1} × {0, 1, 2, 3}. Thus, Cov(X,Y ) = −1/4. Putting this all together gives
ρ(X,Y ) = −3−1/2. It should be no surprise that the correlation is negative. If X is “large”
(i.e., 1) then Y should be “small,” since the first toss came up H, making the total number
of T ’s at most 2.
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Example 20 (Another joint distribution for coin tosses) As before, a fair coin is
tossed three times, recording H if heads, T if tails. The sample space is

U = {HHH,HHT,HTH,HTT, THH,THT, TTH,TTT} .

Again, let X be the random variable defined by X(t1t2t3) = 0 if t1 = T , X(t1t2t3) = 1
if t1 = H. However, now let Y be the random variable that counts the number of times
T occurs in the last two tosses. Image(X) × Image(Y ) = {0, 1} × {0, 1, 2}. We compute
hX,Y (0, 2). X−1(0) = {THH,THT, TTH,TTT}. Y −1(2) = {HTT, TTT}. X−1(0) ∩
Y −1(2) = {TTT}. Thus, hX,Y (0, 2) = 1/8. Computing the rest of the values of hX,Y , we
can represent the results in the following table:

hX,Y Y=0 Y=1 Y=2 fX

X=0 1/8 2/8 1/8 1/2

X=1 1/8 2/8 1/8 1/2

fY 1/4 1/2 1/4

You should compute that E(X) = 1/2, E(Y ) = 1, Var(X) = 1/4, Var(Y ) = 1/2 and
Cov(X,Y ) = 0. Since all the previous numbers were nonzero, it is rather surprising that
the covariance is zero. This is a consequence of “independence,” which we will study
next.

Independence

If the expectation of the sum of random variables is the sum of the expectations, then
maybe the expectation of the product is the product of the expectations? Not so. We’ll
look a simple example with Y (T ) = X(T ). Let U = {H,T} and P (H) = P (T ) = 1/2 and
let X(T ) = 0 and X(H) = 1 be a random variable on (U,P ). Then E(X) = X(T )(1/2) +
X(H)(1/2) = 1/2. Since X2 = X, we have E(XX) = E(X2) = E(X) = 1/2. This does
not equal E(X)2. In order to give some general sufficient conditions for when E(XY ) =
E(X)E(Y ) we need the following definition.

Definition 10 (Independence) Let (U,P ) be a probability space.

• If A ⊆ U and B ⊆ U are events (subsets) of U such that P (A ∩ B) = P (A)P (B).
Then A and B are said to be a pair of independent events.

• If X and Y are random variables on U such that

for all s ∈ Image(X) and all t ∈ Image(Y ),

X−1(s) and Y −1(t) are a pair of independent events,

then X and Y are said to be a pair of independent random variables.
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The definition of independence for events and random variables sounds a bit technical.
In practice we will use independence in a very intuitive way.

Recall the definitions of the marginal and joint distributions fX , fY and hX,Y in
Definition 9. Using that notation, the definition of independence can be rephrased as

X and Y are independent random variables
if and only if

hX,Y (i, j) = fX(i)fY (j) for all (i, j) ∈ Image(X) × Image(Y ).

You should verify that X and Y are independent in Example 20. Intuitively, knowing what
happens on the first toss gives us no information about the second and third tosses. We
explore this a bit in the next example.

Example 21 (Independent coin tosses) Suppose a fair coin is tossed twice, one after
the other. In everyday language, we think of the tosses as being independent. We’ll see
that this agrees with our mathematical definition of independence.

The sample space is U = {(H,H), (H,T ), (T,H), (T, T )}. Note that U = {H,T} ×
{H,T} and p is the uniform probability function on U ; i.e., P (e) = 1/4 for each e ∈ U .

Let A be the event that the first toss is H and let B be the event that the second is H.
Thus A = {HH,HT} and B = {HH,TH}. You should be able to see that P (A) = 1/2,
P (B) = 1/2 and

P (A ∩ B) = P (HH) = 1/4 = (1/2)(1/2)

and so A and B are independent.

What about independent random variables? Let

X(t1, t2) =

{

0, if t1 = T ,
1, if t1 = H.

and

Y (t1, t2) =

{

0, if t2 = T ,
1, if t2 = H.

Thus X “looks at” just the first toss and Y “looks at” just the second. You should be able
to verify that X−1(1) = A, X−1(0) = Ac, Y −1(1) = B and Y −1(0) = Bc. To see that
X and Y are independent, we must verify that each of the following 4 pairs of events is
independent

A and B A and Bc Ac and B Ac and Bc.

In the previous paragraph, we saw that A and B are independent. You should be able to
do the other 3.

This seems like a lot of work to verify the mathematical notion of independence,
compared with the obvious intuitive notion. Why bother? There are two reasons. First,
we want to see that the two notions of independence are the same. Second, we can’t do
any calculations with an intuitive notion, but the mathematical definition will allow us to
obtain useful results.

The preceding example can be generalized considerably. The result is an important
method for building up new probability spaces from old ones.
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*Example 22 (Product spaces and independence) Let (U1, P1) and (U2, P2) be
probability spaces. Define the product space (U,P ) by

U = U1 × U2 (Cartesian product)

P (e1, e2) = P1(e1) × P2(e2) (multiplication of numbers)

Suppose A = A1 × U2 and B = U1 × B2. We claim that A and B are independent events.
Before proving this, let’s see how it relates to the previous example.

Suppose U1 = U2 = {H,T} and that P1 and P2 are the uniform probability functions.
Then (U1, P1) describes the first toss and (U2, P2) describes the second. Also, you should
check that (U,P ) is the same probability space as in the previous example. Check that, if
A1 = {H} and B2 = {H}, then A and B are the same as in the previous example.

We now prove that A and B are independent in our general setting. We have

P (A) =
∑

e∈A

P (e) definition of P (A)

=
∑

e∈A1×U2

P (e) definition of A

=
∑

e1∈A1

e2∈U2

P (e1, e2) definition of Cartesian product

=
∑

e1∈A1

e2∈U2

P1(e1)P2(e2) definition of P

=

(

∑

e1∈A1

P1(e1)

)

×
(

∑

e2∈U2

P2(e2)

)

algebra

=
∑

e1∈A1

P1(e1) × 1 definition of probability

= P1(A1) definition of P1(A1).

Similarly, P (B) = P2(B2). You should verify that A∩B = A1 ×B2. By doing calculations
similar to what we did for P (A), you should show that P (A1 ×B2) = P1(A1)P2(B2). This
proves independence.

Suppose X is a random variable such that X(e1, e2) depends only on e1. What does
X−1(r) look like? Suppose X(e1, e2) = r so that (e1, e2) ∈ X−1(r). Since X does not
depend on e2, X(e1, u2) = r for all u2 ∈ U2. Thus {e1}×U2 ⊆ X−1(r). Proceeding in this
way, one can show that X−1(r) = A1 × U2 for some A1 ⊆ U1.

Suppose Y is a random variable such that Y (e1, e2) depends only on e2. We then have
Y −1 = U1 × B2 for some B2 ⊆ U2. By our earlier work in this example, it follows that
X−1(r) and Y −1(s) are independent events and so X and Y are independent.

What made this work? X “looked at” just the first component and Y “looked at” just
the second.

This can be generalized to the product of any number of probability spaces. Random
variables X and Y will be independent if the components that X “looks at” are disjoint
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from the set of components that Y “looks at.” For example, suppose a coin is tossed
“independently” 20 times. Let X count the number of heads in the first 10 tosses and let
Y count the number of tails in the last 5 tosses.

We now return to E(XY ), with the assumption that X and Y are independent random
variables on a sample space U with probability function P . We also look at variance,
covariance, and correlation.

Theorem 7 (Properties of independent random variables) Suppose that U is
a sample space with probability function P and that X and Y are independent random
variables on U . Then the following are true

• E(XY ) = E(X)E(Y ),

• Cov(X,Y ) = 0 and ρ(X,Y ) = 0,

• Var(X + Y ) = Var(X) + Var(Y ),

• if f, g : R → R, then f(X) and g(Y ) are independent random variables.

Proof: First note that there are two ways to compute E(Z) for a random variable Z:

E(Z) =
∑

u∈U

Z(u)P (u) (the first way)

=
∑

k∈Image(Z)

kP (Z−1(k)) =
∑

k∈Image(Z)

kfZ(k) (the second way).

For Z = XY , we use the second way. If Z = k, then X = i and Y = j for some i and j
with ij = k. Thus

E(Z) =
∑

k∈Image(Z)

kP (Z−1(k))

=
∑

i∈Image(X)
j∈Image(Y )

ijP (X−1(i) ∩ Y −1(j)).

From the definition of independence, P (X−1(i) ∩ Y −1(j)) = P (X−1(i))P (Y −1(j)), and
hence

∑

i∈Image(X)
j∈Image(Y )

ijP (X−1(i) ∩ Y −1(j)) =
∑

i∈Image(X)
j∈Image(Y )

ijP (X−1(i)) P (Y −1(j))

=

(

∑

i∈Image(X)

iP (X−1(i))

)

×
(

∑

j∈Image(Y )

jP (Y −1(j))

)

.

The right hand side of the above equation is just E(X)E(Y ). This proves the first part of
the theorem.

By Definition 8 and the fact that we have just proved E(XY ) = E(X)E(Y ), it follows
that Cov(X,Y ) = 0. It then follows from Definition 8 that ρ(X,Y ) = 0. You should use
some of the results in Theorem 4 to show that Var(X + Y ) = Var(X) + Var(Y ).

We omit the proof of the last part of the theorem; however, you should note that f(X)
is a function on U because, for u ∈ U , f(X)(u) = f(X(u)).
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*Example 23 (Generating random permutations) Suppose we want to generate per-
mutations of n randomly so that each permutation is equally likely to occur. How can we
do so? We now look at a simple, efficient method for doing this. The procedure is based
on a bijection between two sets:

• Seqn, the set of all sequences a2, a3, . . . , an of integers with 1 ≤ ak ≤ k for all k and

• Permn, the set of all permutations of n = {1, 2, . . . , n}.
We can tell there must be such a bijection even without giving one! Why is this? Since
there are k choices for ak, the number of sequences a2, a3, . . . , an is 2×3×· · ·×n = n!. We
know that there are n! permutations. Thus |Seqn| = |Permn|. Because Seqn and Permn

have the same size, there must be a bijection between them. Since there’s a bijection,
what’s the problem? The problem is to find one that is easy to use.

Before providing the bijection, let’s look at how to use it to generate permutations
uniformly at random. It is easy to generate the sequences uniformly at random: Choose ak

uniformly at random from k and choose each of the ak independently. This makes Seqn into
a probability space with the uniform probability distribution. Once we have a sequence,
we use the bijection to construct the permutation that corresponds to the sequence. This
makes Permn into a probability space with the uniform probability distribution.

Now we want to specify a bijection. There are lots of choices. (You should be able to
show that there are (n!)! bijections.) Here’s one that is easy to use:

Step 1. Write out the sequence 1, 2, . . . , n and set k = 2

Step 2. If ak 6= k, swap the elements in positions k and ak in the sequence. If ak = k, do
nothing.

Step 3. If k < n, increase k by 1 and go to Step 2. If k = n, stop.

The result is a permutation in one-line form.

For example, suppose n = 5 and the sequence of ak’s is 2,1,3,3. Here’s what happens,
where “next step” tells which step to use to produce the permutation on the next line:

action permutation information next step

the start (Step 1) 1,2,3,4,5 k = 2, ak = 2 Step 3
do nothing 1,2,3,4,5 k = 3, ak = 1 Step 2

swap at 3 and 1 3,2,1,4,5 k = 4, ak = 3 Step 2
swap at 4 and 3 3,2,4,1,5 k = 5, ak = 3 Step 2
swap at 5 and 3 3,2,5,1,4 all done

Thus, the sequence 2, 1, 3, 3 corresponds to the permutation 3, 2, 5, 1, 4.

How can we prove that this is a bijection? We’ve described a function F from Seqn

to Permn. Since |Seqn| = |Permn|, we can prove that F is a bijection if we can show that
it is a surjection. (This is just Exercise 1.2(c).) In other words, we want to show that, for
every permutation p in Permn, there is a sequence a in Seqn such that F (a) = p.

Let’s try an example. Suppose we have the permutation 4, 1, 3, 2, 6, 5. What sequence
does it come from? This is a permutation of 6. The only way 6 could move from the last
place is because a6 6= 6. In fact, since 6 is in the fifth place, we must have had a6 = 5.
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Which caused us to swap the fifth and sixth positions. So, just before we used a6 = 5,
we had the permutation 4, 1, 3, 2, 5, 6. None of a2, . . . , a5 can move what’s in position 6
since they are all less than 6, so a2, . . . , a5 must have rearranged 1, 2, 3, 4, 5, (6) to give
4, 1, 3, 2, 5, (6). (We’ve put 6 in parentheses to remember that it’s there and that none of
a2, . . . , a5 can move it.) How did this happen? Well, only a5 could have affected position
5. Since 5 is there, it didn’t move and so a5 = 5. Now we’re back to 4, 1, 3, 2, (5, 6) and
trying to find a4. Since 4 is in the first position, a4 = 1. So, just before using, a4 we
had 2, 1, 3, (4, 5, 6). Thus a3 = 3 and we’re back to 2, 1, (3, 4, 5, 6). Finally a2 = 1. We’ve
found that the sequence 1, 3, 1, 5, 5 gives the permutation 4, 1, 3, 4, 6, 5. You should apply
the algorithm described earlier in Steps 1, 2, and 3 and so see for yourself that the sequence
gives the permutation.

The idea in the previous paragraph can be used to give a proof by induction on n. For
those of you who would like to see it, here’s the proof. The fact that F is a surjection is
easily checked for n = 2: There are two sequences, namely 1 and 2. These correspond to the
two permutations 2, 1 and 1, 2, respectively. Suppose n > 2 and p1, . . . , pn is a permutation
of n. We need to find the position of n in the permutation. The position is that k for which
pk = n. So we set an = k and define a new permutation q1, . . . , qn−1 of {1, 2, . . . , n− 1} to
correspond to the situation just before using an = k:

• If k = n, then qi = pi for 1 ≤ i ≤ n − 1.

• If k 6= n, the qk = pn and qi = pi for 1 ≤ i < k and for k < i ≤ n − 1.

You should be able to see that q1, . . . , qn−1 is a permutation of n − 1. By induction, there
is a sequence a2, . . . , an−1 that gives q1, . . . , qn−1 when we apply our 3-step procedure to
1, 2, 3, . . . , (n − 1). After that, we must apply an = k to q1, . . . , qn−1, n. What happens?
You should be able to see that it gives us p1, . . . , pn. This completes the proof.

Some Standard Distributions

We now take a look at some examples of random variables and their distributions that
occur often in applications. The first such distribution is the binomial distribution.

Example 24 (Binomial distribution) Suppose we toss a coin, sequentially and inde-
pendently, n times, recording H for heads and T for tails. Suppose the probability of H in
a single toss of the coin is p. Define

P ∗(t) =

{

p, if t = H,
q = 1 − p, if t = T .

Our sample space is U = ×n{H,T} and the probability function P is given by P (t1, . . . , tn) =
P ∗(t1) · · ·P ∗(tn) because of independence. This is an example of a product space. We dis-
cussed product spaces in Example 22.

Define the random variable X(t1, . . . , tn) to be the number of H’s in the sequence
(t1, . . . , tn). This is a standard example of a binomial random variable.
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We want to compute P (X = k) for k ∈ R. Note that Image(X) = {0, . . . , n}.
Hence P (x = k) = 0 if k is not in {0, . . . , n}. Note that (t1, . . . , tn) ∈ X−1(k) if and
only if (t1, . . . , tn) contains exactly k heads (H’s). In this case, P (t1, . . . , tn) = pkqn−k.
Since all elements of X−1(k) have the same probability pkqn−k, it follows that fX(k) =
|X−1(k)| pkqn−k. What is the value of |X−1(k)|. It is the number of sequences with ex-
actly k heads. Since the positions for k heads must be chosen from among the n tosses,
|X−1(k)| =

(

n
k

)

. Thus fX(k) =
(

n
k

)

pkqn−k. This is the binomial distribution function. A
common alternative notation for this distribution function is b(k;n, p). This notation has
the advantage of explicitly referencing the parameters, n and p.

An alternative way of thinking about the random variable X is to write it as a sum,
X = X1 + · · ·+Xn, of n independent random variables. The random variable Xi is defined
on the sample space U = ×n{H,T} by the rule

Xi(t1, . . . , tn) =

{

1, if ti = H,
0, if ti = T .

Using this representation of X, we can compute E(X) = E(X1) + · · · + E(Xn), and
Var(X) = Var(X1) + · · · + Var(Xn). Computation gives

E(Xi) = 1 × P (Xi = 1) + 0 × P (Xi = 0) = p

and

Var(Xi) = E(X2
i ) − E(Xi)

2 = p − p2 = p(1 − p),

where we have used X2
i = Xi because Xi must be 0 or 1. Thus, we obtain E(X) = np and

Var(X) = np(1 − p) = npq.

Of course, the binomial distribution is not restricted to coin tosses, but is defined for
any series of outcomes that

• are restricted to two possibilities,

• are independent, and

• have a fixed probability p of one outcome, 1 − p of the other outcome.

Our next example is a random variable X that is defined on a countably infinite sample
space U . This distribution, the Poisson, is associated with random distributions of objects.

Example 25 (Poisson distribution and its properties) Suppose a 500 page book
has 2,000 misprints. If the misprints are distributed randomly, what is the probability of
exactly k misprints appearing on page 95? (We want the answers for k = 0, 1, 2, . . ..)

Imagine that the misprints are all in a bag. When we take out a misprint, it appears
on page 95 with probability 1/500. Call the case in which a misprint appears on page 95 a
“success” and the case when it does not a “failure.” We have just seen that, for a randomly
selected misprint, the probability of success is p = 1/500. Since we have assumed the
misprints are independent, we can use the binomial distribution. Our answer is therefore
that the probability of exactly k misprints on page 95 is b(k; 2000, 1/500).
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Thus we have our answer: b(k; 2000, 1/500) =
(

2000
k

)

(1/500)k(1−1/500)2000−k. Unfor-
tunately, its hard to use: for large numbers the binomial distribution is awkward to work
with because there is a lot of calculation involved and numbers can be very large or very
small. Can we get a more convenient answer? Yes. There is a nice approximation which
we will now discuss.

The function fX(k) = e−λ λk

k!
is also denoted by p(k;λ) and is called the Poisson

distribution. Clearly the p(k;λ) are positive. Also, they sum to one:

∞
∑

k=0

e−λ λk

k!
= e−λ

∞
∑

k=0

λk

k!
= e−λeλ = 1 .

We have used the Taylor Series expansion, obtained in calculus courses,
∑∞

k=0
λk

k!
= eλ. In

a similar manner, it can be shown that

E(X) = λ and Var(X) = λ.

Thus, a Poisson distributed random variable X has the remarkable property that E(X) = λ
and Var(X) = λ where λ > 0 is the parameter in the distribution function
P (X = k) = p(k;λ) = e−λλk/k!.

We now return to our binomial distribution b(k; 2000, 1/500). The Poisson is a good
approximation to b(k;n, p) when n is large and np is not large. In this case, take λ = np,
the mean of the binomial distribution. For our problem, λ = 2000(1/500) = 4, which is not
large when compared to the other numbers in the problem, namely 2,000 and 500. Let’s
compute some estimates for Pk, the probability of exactly k errors on page 95.

P0 = e−4 = 0.0183, P1 = 4e−4 = 0.0733, P3 = 43e−4/3! = 0.1954,

and so on.

Our final example of a random variable X has its underlying sample space U = R,
the real numbers. Rather than starting with a description of X itself, we start with the
distribution function fX(x) = φµ,σ(x), called the normal distribution function with mean

µ and standard deviation σ.

φµ,σ(x) =
1

σ
√

2π
e−

1

2
( x−µ

σ
)2 .

For computations concerning the normal distribution, it suffices in most problems, to work
with the special case when µ = 0 and σ = 1. In this case, we use the notation

φ(x) =
1√
2π

e−
1

2
x2

where φ(x) = φ0,1(x) is called the standard normal distribution.

The function φ(x) is defined for −∞ < x < ∞ and is symmetric about x = 0. The
maximum of φ(x) occurs at x = 0 and is about 0.4. Here is a graph of φ(x) for −2 ≤ x ≤ t:

-1-2 1 t0
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In this graph of φ(x) shown above, the area between the curve and the interval from 0 to
t on the x-axis is shaded. This area, as we shall discuss below, represents the probability
that a random variable with distribution function φ lies between 0 and t. For t = 1 the
probability is about 0.34, for t = 1.5 the probability is about 0.43, and for t = 2, the
probability is about 0.48. Since this is a probability distribution, the area under the whole
curve is 1. Also, since the curve is symmetric, the area for x < 0 is 1/2. We’ll use these
values in the examples and problems, so you will want to refer back to them.

Example 26 (The normal distribution and probabilities) The way the normal
curve relates to probability is more subtle than in the finite or discrete case. If a random

variable X has φµ,σ(x) = 1√
2π

e−
1

2
( x−µ

σ
)2 as its distribution function then we compute the

probability of any event of the form [a, b] = {x | a ≤ x ≤ b} by computing the area under
the curve φµ,σ(x) and above the interval [a, b].

How can we compute this area? Tables and computer programs for areas below y =
φ(x) are available. Unfortunately φµ,sigma and φ are different functions unless µ = 0
and σ = 1. Fortunately, there is a simple recipe for converting one to the other. Let
h(t) = (t − µ)/σ. The area below φµ,σ(x) above the interval [a, b] equals the area below φ
above the interval [h(a), h(b)].

A farmer weighs some oranges from his crop and comes to you for help. From his data
you notice that the mean weight is 8 ounces and the standard deviation is 0.67 ounces.
You’ve read somewhere (Was it here?) that for such things a normal distribution is a good
approximation to the weight. The farmer can sell oranges that weigh at least 9 ounces at
a higher price per ounce, so he wants to estimate what fraction of his crop weighs at least
9 ounces. Using our recipe, h(9) = (9 − 8)/0.67 = 1.5. We know that the area under φ(x)
for the interval [0, 1.5] is 0.43. Since the area under φ(x) for x < 0 is 1/2, the area for
x ≤ 1.5 is 0.43 + 0.5 = 0.93. Since these are the “underweight” oranges, the farmer can
expect about 7% of his crop to be at least 9 ounces.

Example 27 (Approximating the binomial distribution) Recall the binomial dis-
tribution from Example 24: b(k;n, p) is the probability of exactly k heads in n tosses and
p is the probability of a head on one toss. We derived the formula b(k;n, p) =

(

n
k

)

pkqn−k,
where q = 1 − p. We also found, that for a binomial random variable X, E(X) = np and
Var(X) = npq. How does the random variable behave when n is large? We already saw in
Example 25 how to use the Poisson approximation when E(X) is not large. When E(X)
and Var(X) are large, a better approximation is given by the normal distribution φµ,σ with
µ = np and σ =

√
npq.

Suppose that our book in Example 25 is a lot worse: About one word in ten is wrong.
How can we estimate the probability of at most 30 errors on page 95? If the errors are
independent, the distribution is a binomial with p = 0.1 and n equal to the number of words
on page 95. We estimate that n is about 400. Thus we are dealing with b(k; 400, 0.1). We
have

µ = 400 × 0.1 = 40 and σ =
√

400 × 0.1 × 0.9 =
√

36 = 6.

Thus we want the area under φ(x) for x < h(30) = (30 − 40)/6 ≈ −1.5. By the symmetry
of φ, this is the area under φ(x) for x > 1.5, which is 0.5 − 0.43 = 7%.
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We’ve done some rounding off here, which is okay since our estimates are rather crude.
There are ways to improve the estimates, but we will not discuss them.

Approximations like those in the preceding example are referred to as “limit theorems”
in probability theory. The next example discusses the use of an important limit theorem,
the Central Limit Theorem, for estimating how close an average of measurements is to
the true value of a number. This is often used in experimental science when estimating a
physical constant.

*Example 28 (The Central Limit Theorem and the normal distribution) Suppose
a student must estimate a quantity, say the distance between two buildings on campus. The
student makes a number n of measurements. Each measurement can be thought of as a
sample of a random variable. Call the random variable for measurement i Xi. If the student
is not influenced by the previous measurements, we can think of the random variables as
being independent and identically distributed. The obvious thing to do is average these
measurements. How accurate is the result?

Let’s phrase this in probabilistic terms. We have a new random variable given by
X = (X1 + · · ·+Xn)/n and our average is a sample of the value of the random variable X.
What can we say about X?

We can approximate X with a normal distribution. This approximation is a conse-
quence of the Central Limit Theorem. Let A1 be the average of the n measurements and let
A2 the average of the squares of the n measurements. Then we estimate µ and σ by A1 and
√

(A2 − (A1)2)/(n − 1), respectively.11 We could now use φµ,σ to estimate the distribution
of the random variable X.

This can be turned around, φµ,σ can also be used to estimate the true mean of the
random variable X. You might have thought that A1 was the mean. No. It is just
the average of some observed values. Thus, the probability that the mean of X lies in
[µ − σ, µ + σ] equals 0.34 + 0.34 = 0.68.

We’ve looked at several different distributions: binomial, normal, Poisson and marginal.
What do we use when? How are they related?

The binomial distribution occurs when you have a sequence of repeated independent
events and want to know how many times a certain event occurred. For example, the
probability of k heads in n tosses of a coin. The coin tosses are the repeated independent
events and the heads are the events we are interested in.

The normal distribution is usually an approximation for estimating a number whose
value is the sum of a lot of (nearly) independent random variables. For example, let Xi be
1 or 0 according as the i-th coin toss is a head or tail. We want to know the probability
that X1 + X2 + ... + Xn equals k. The exact answer is the binomial distribution. The
normal distribution gives an approximation.

The Poisson distribution is associated with rare events. For example, if light bulbs fail
at random (we’re not being precise here) and have an average lifetime L, then the number

11 The estimate for σ is a result from statistics. We cannot derive it here.
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of failures in a time interval T is roughly Poisson if λ = T/L is not too big or too small.
Another example is errors in a text, which are rare and have a distribution associated with
them that is like the binomial.

Unlike the previous three distributions, which exist by themselves, a marginal distri-
bution is always derived from some given distribution. In our coin toss experiment, let X
be the number of heads and let Y be the number of times two or more tails occur together.
We could ask for the distribution given by P (X = k and Y = j). This is called a “joint dis-
tribution” for the random variables X and Y . Given the joint distribution, we could ask for
the distribution of just one of the random variables. These are “marginal distributions” as-
sociated with the joint distribution. In this example, P (X = k) and P (Y = j) are marginal
distributions. The first one (the probability of k heads) is the sum of P (X = k and Y = j)
over all j and the second (the probability of two or more tails together happening j times)
is the sum of P (X = k and Y = j) over all k.

Exercises for Section 4

4.1. A fair coin is tossed four times, recording H if heads, T if tails. Let X be the
random variable defined by X(t1t2t3t4) = |{i | ti = H}|. Let Y be the random
variable defined by

Y (t1t2t3t4) =

{

0, if ti = T for all i = 1, 2, 3, 4;
max{k | H = ti = ti+1 = · · · = ti+k−1, i = 1, 2, 3, 4}, otherwise.

The random variable X equals the number of H’s. The random variable Y equals
the length of the longest consecutive string of H’s. Compute

(a) the joint distribution function hX,Y ,

(b) the marginal distributions fX and fY ,

(c) the covariance Cov(X,Y ), and

(d) the correlation ρ(X,Y ).

Give an intuitive explanation of the value of ρ(X,Y ).

4.2. Let X and Y be random variables on a sample space U and let a and b be real
numbers.

(a) Show that Cov(aX + bY, aX − bY ) is a2Var(X) − b2Var(Y ).

(b) What is Var((aX − bY )(aX + bY ))?

4.3. Let X be random variable on a sample space U and let a and b be real numbers.
What is E((aX + b)2) if

(a) X has the binomial distribution b(k;n, p)?
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(b) X has the Poisson distribution e−λλk/k!?

4.4. An 100 page book has 200 misprints. If the misprints are distributed uniformly
throughout the book, show how to use the Poisson approximation to the binomial
distribution to calculate the probability of there being less than 4 misprints on
page 8.

4.5. Let X and Y be independent random variables and let a and b be real numbers.
Let Z = aX + bY . Then, for all ǫ > 0, Tchebycheff’s inequality gives an upper
bound for P (|Z − E(Z)| ≥ ǫ). Give this upper bound for the cases where

(a) X and Y have Poisson distribution p(k; γ) and p(k; δ) respectively.

(b) X and Y have binomial distribution p(k;n, r) and p(k;n, s) respectively.

4.6. Each time a customer checks out at Super Save Groceries, a wheel with nine white
and one black dot, symmetrically placed around the wheel, is spun. If the black
dot is uppermost, the customer gets the least expensive item in their grocery cart
for free. Assuming the probability of any dot being uppermost is 1/10, what is the
probability that out of the first 1000 customers, between 85 and 115 customers get
a free item? Write the formula for the exact solution and show how the normal
distribution can be used to approximate this solution. You need not compute the
values of the normal distribution.

4.7. Let X1, . . . ,Xn be independent random variables each having mean µ and variance
σ2. (These could arise by having one person repeat n times an experiment that
produces an estimate of a number whose value is µ. See Example 28.) Let X =
(X1 + · · · + Xn)/n.

(a) Compute the mean and variance of X.

(b) Explain why an observed value of X could be used as an estimate of µ.

(c) It turns out that the error we can expect in approximating µ with X is pro-
portional to the value of σX . Suppose we want to reduce this expected error
by a factor of 10. How much would we have to increase n. (In other words,
how many more measurements would be needed.)
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Multiple Choice Questions for Review

1. In each case some information is given about a function. In which case is the informa-
tion not sufficient to define a function?

(a) f ∈ 43, 2 → 3, 1 → 4, 3 → 2.

(b) f ∈ {>,<,+, ?}3, f = (?, <,+).

(c) f ∈ 3{>,<,+,?}, f = (3, 1, 2, 3).

(d) f ∈ 3{>,<,+,?}, f = (3, 1, 2, 3). Domain ordered as follows: >, <, +, ?.

(e) f ∈ {>,<,+, ?}3
, f = (?, <,+). Domain ordered as follows: 3, 2, 1.

2. The following function is in two line form:

(

1 2 3 4 5 6 7 8 9
9 3 7 2 6 4 5 1 8

)

. Which

of the following is a correct cycle form for this function?

(a) (1, 8, 9)(2, 3, 7, 5, 6, 4)

(b) (1, 9, 8)(2, 3, 5, 7, 6, 4)

(c) (1, 9, 8)(2, 3, 7, 5, 4, 6)

(d) (1, 9, 8)(2, 3, 7, 5, 6, 4).

(e) (1, 9, 8)(3, 2, 7, 5, 6, 4)

3. In each case some information about a function is given to you. Based on this infor-
mation, which function is an injection?

(a) f ∈ 65, Coimage(f) = {{1}, {2}, {3}, {4}, {5}}
(b) f ∈ 66, Coimage(f) = {{1}, {2}, {3}, {4}, {5, 6}}
(c) f ∈ 55, f−1(2) = {1, 3, 5}, f−1(4) = {2, 4}}
(d) f ∈ 45,

∣

∣Image(f)
∣

∣ = 4

(e) f ∈ 55, Coimage(f) = {{1, 3, 5}, {2, 4}}

4. The following function is in two line form: f =

(

1 2 3 4 5 6 7 8 9
8 5 9 2 4 1 3 6 7

)

.

Which of the following is a correct cycle form for h = f3 ◦ f−1?

(a) (1, 6, 8)(2, 3, 7)(5, 6, 4)

(b) (1, 6, 8)(2, 4, 5)(3, 7, 9)

(c) (1, 8, 6)(2, 3, 7)(5, 9, 4)

(d) (1, 9, 8)(2, 3, 5)(7, 6, 4)

(e) (8, 5, 9, 2, 4, 1, 3, 6, 7)

5. The following permutation is in two line form: f =

(

1 2 3 4 5 6 7 8 9
8 6 4 7 2 9 1 3 5

)

.

The permutation g = (1, 2, 3) is in cycle form. Let h = f ◦ g be the composition of f
and g. Which of the following is a correct cycle form for h?
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(a) (1, 6, 9, 5, 2, 4, 7)(3, 8)

(b) (1, 8, 3, 4, 7, 2, 6)(5, 9)

(c) (1, 8, 3, 7, 4, 2, 6)(9, 5)

(d) (1, 8, 4, 3, 7, 2, 6)(9, 5)

(e) (8, 6, 4, 7, 9, 1, 2)(3, 5)

6. We want to find the smallest integer n > 0 such that, for every permutation f on 4,
the function fn is the identity function on 4. What is the value of n?

(a) 4 (b) 6 (c) 12 (d) 24 (e) It is impossible.

7. In the lexicographic list of all strictly decreasing functions in 95, find the successor of
98432.

(a) 98431 (b) 98435 (c) 98521 (d) 98532 (e) 98543

8. The 16 consecutive points 0, 1, . . . , 14, 15 have 0 and 15 converted to exterior box
boundaries. The interior box boundaries correspond to points 1, 5, 7, 9. This configu-
ration corresponds to

(a) 9 balls into 5 boxes

(b) 9 balls into 6 boxes

(c) 10 balls into 5 boxes

(d) 10 balls into 6 boxes

(e) 11 balls into 4 boxes

9. The 16 consecutive points 0, 1, . . . , 14, 15 have 0 and 15 converted to exterior box
boundaries. The interior box boundaries correspond to the strictly increasing functions
1 ≤ x1 < x2 < x3 < x4 ≤ 14 in lex order. How many configurations of balls into boxes
come before the configuration •| | | | • • • • • • • • • ? (Exterior box boundaries are not
shown.)

(a)
(

13
3

)

(b)
(

13
4

)

(c)
(

14
3

)

(d)
(

14
4

)

(e)
(

15
3

)

10. Suppose f ∈ 76. How many such functions have |Image(f)| = 4?

(a) S(7, 4) (b) S(7, 4)(6)4 (c) S(6, 4)(7)4 (d) S(4, 7)(6)4 (e) S(7, 4) 6!

11. Let X be a random variable with distribution b(k;n, p), q = 1 − p. Let Y = (X + 1)2.
Then E(Y ) =?

(a) npq + (np + 1)2

(b) 2npq + (np + 1)2

(c) npq + 2(np + 1)2

(d) (npq)2 + (np + 1)2

(e) 2npq(np + 1)2

12. Let X and Y be independent random variables with distribution b(k;n, a) and b(k;n, b)
respectively. Let Z = X +2Y . Then, for all ǫ > 0, Tchebycheff’s inequality guarantees
that P (|Z − na − 2nb| ≥ ǫ) is always less than or equal to what?
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(a) (na(1 − a) + nb(1 − b))/ǫ2

(b) (na(1 − a) + 2nb(1 − b))/ǫ2

(c) (na(1 − a) + 4nb(1 − b))/ǫ2

(d) (na(1 − a) + 2nb(1 − b))/ǫ3

(e) (na(1 − a) + 4nb(1 − b))/ǫ3

13. An 800 page book has 400 misprints. If the misprints are distributed uniformly
throughout the book, and the Poisson approximation to the binomial distribution
is used to calculate the probability of exactly 2 misprints on page 16, which of the
following represents the correct use of the Poisson approximation?

(a) e0.5/8 (b) e−0.5/8 (c) e0.5/16 (d) e−0.5/16 (e) e−0.5/32

14. For 40 weeks, once per hour during the 40 hour work week, an employee of Best Cars
draws a ball from an urn that contains 1 black and 9 white balls. If black is drawn, a
$10 bill is tacked to a bulletin board. At the end of the 40 weeks, the money is given
to charity. What is the expected amount of money given?

(a) 1000 (b) 1200 (c) 1400 (d) 1600 (e) 1800

15. For 40 weeks, once per hour during the 40 hour work week, an employee of Best Cars
draws a ball from an urn that contains 1 black and 9 white balls. If black is drawn,
$10 is tacked to a bulletin board. At the end of the 40 weeks, the money is given to
charity. Using the normal approximation, what interval under the standard normal
curve should be used to get the area which equals the probability that $1800 or more
is given?

(a) from 1.67 to ∞
(b) from 0 to 1.67

(c) from 0.6 to ∞
(d) from 0 to 0.6

(e) from 0.6 to 1.67

16. A fair coin is tossed three times. Let X be the random variable which is one if the
first throw is T (for tails) and the third throw is H (for heads), zero otherwise. Let
Y denote the random variable that is one if the second and third throws are both H,
zero otherwise. The covariance, Cov(X,Y ) is

(a) 1/8 (b) −1/8 (c) 1/16 (d) −1/16 (e) 1/32

17. A fair coin is tossed three times. Let X be the random variable which is one if the
first throw is T (for tails) and the third throw is H (for heads), zero otherwise. Let
Y denote the random variable that is one if the second and third throws are both H,
zero otherwise. The correlation, ρ(X,Y ) is

(a) 0 (b) 1/3 (c) −1/3 (d) 1/8 (e) −1/8

18. A fair coin is tossed three times and a T (for tails) or H (for heads) is recorded, giving
us a 3-long list. Let X be the random variable which is zero if no T has another T
adjacent to it, and is one otherwise. Let Y denote the random variable that counts
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the number of T’s in the three tosses. Let hX,Y denote the joint distribution of X and
Y . hX,Y (1, 2) equals

(a) 5/8 (b) 4/8 (c) 3/8 (d) 2/8 (e) 1/8

19. Which of the following is equal to Cov(X + Y,X − Y ), where X and Y are random
variables on a sample space S?

(a) Var(X) − Var(Y )

(b) Var(X2) − Var(Y 2)

(c) Var(X2) + 2Cov(X,Y ) + Var(Y 2)

(d) Var(X2) − 2Cov(X,Y ) + Var(Y 2)

(e) (Var(X))2 − (Var(Y ))2

20. Which of the following is equal to Var(2X−3Y ), where X and Y are random variables
on S?

(a) 4Var(X) + 12Cov(X,Y ) + 9Var(Y )

(b) 2Var(X) − 3Var(Y )

(c) 2Var(X) + 6Cov(X,Y ) + 3Var(Y )

(d) 4Var(X) − 12Cov(X,Y ) + 9Var(Y )

(e) 2Var(X) − 6Cov(X,Y ) + 3Var(Y )

21. The strictly decreasing functions in 1003 are listed in lex order. How many are there
before the function (9,5,4)?

(a) 18 (b) 23 (c) 65 (d) 98 (e) 180

22. All but one of the following have the same answer. Which one is different?

(a) The number of multisets of size 20 whose elements lie in 5.

(b) The number of strictly increasing functions from 20 to 24.

(c) The number of subsets of size 20 whose elements lie in 24.

(d) The number of weakly decreasing 4-lists made from 21.

(e) The number of strictly decreasing functions from 5 to 24.

23. Let X be a random variable with Poisson distribution p(k;λ) Let Y = (X +2)(X +1).
What is the value of E(Y )?

(a) λ2 + 3λ + 1

(b) λ2 + 3λ + 2

(c) λ2 + 4λ + 2

(d) 3λ2 + 3λ + 2

(e) 4λ2 + 4λ + 2

Answers: 1 (c), 2 (d), 3 (a), 4 (b), 5 (a), 6 (c), 7 (c), 8 (c), 9 (a), 10 (c), 11 (a),
12 (c), 13 (b), 14 (d), 15 (a), 16 (c), 17 (b), 18 (d), 19 (a), 20 (d), 21 (c), 22 (e),
23 (c).
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