
Unit DT

Decision Trees and Recursion

In many situations one needs to make a series of decisions. This leads naturally to
a structure called a “decision tree.” Decision trees provide a geometrical framework for
organizing the decisions. The important aspect is the decisions that are made. Everything
we do in this unit could be rewritten to avoid the use of trees; however, trees

• give us a powerful intuitive basis for viewing the problems of this chapter,

• provide a language for discussing the material,

• allow us to view the collection of all decisions in an organized manner.

We’ll begin with elementary examples of decision trees. We then show how decision trees
can be used to study recursive algorithms. Next we shall look at decision trees and
“Bayesian methods” in probability theory. Finally we relate decision trees to induction
and recursive equations.

Section 1: Basic Concepts of Decision Trees

One area of application for decision trees is systematically listing a variety of functions.
The simplest general class of functions to list is the entire set nk. We can create a typical
element in the list by choosing an element of n and writing it down, choosing another
element (possibly the same as before) of n and writing it down next, and so on until we
have made k decisions. This generates a function in one line form sequentially: First f(1)
is chosen, then f(2) is chosen and so on. We can represent all possible decisions pictorially
by writing down the decisions made so far and then some downward “edges” indicating the
possible choices for the next decision.

We begin this section by discussing the picture of a decision tree, illustrating this with
a variety of examples. Then we study how a tree is traversed, which is a way computers
deal with the trees.
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Decision Trees and Recursion

What is a Decision Tree?

Example 1 (Decision tree for 23) Here is an example of a decision tree for the
functions 23. We’ve omitted the commas; for example, 121 stands for the function 1,2,1 in
one-line form.
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The set

V = {R, 1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222}

is called the set of vertices of the decision tree. The vertex set for a decision tree can be
any set, but must be specified in describing the tree. You can see from the picture of the
decision tree that the places where the straight line segments (called edges) of the tree end
is where the vertices appear in the picture. Each vertex should appear exactly once in the
picture. The symbol R stands for the root of the decision tree. Various choices other than
R can be used as the symbol for the root.

The edges of a decision tree such as this one are specified by giving the pair of vertices
at the two ends of the edge, top vertex first, as follows: (R, 1), (21, 212), etc. The vertices at
the ends of an edge are said to be “incident” on that edge. The complete set of edges of this
decision tree is the set E = { (R,1), (R,2), (1,11), (1,12), (2,21),(2,22), (11,111), (11,112),
(12,121), (12,122), (21,211), (21,212), (22,221), (22,222)} . In addition to the edges, there
are “labels,” either a “1” or a “2,” shown on the line segments representing the edges in the
picture. This labeling of the edges can be thought of as a function from the set of edges,
E, to the set {1, 2}.

If e = (v,w) is an edge, the vertex w, is called a child of v, and v is the parent or w.
The children of 22 are 221 and 222. The parent of 22 is 2.

The degree of a vertex v is the number of edges incident on that vertex. The down

degree of v is the number of edges e = (v,w) incident on that vertex (and below it);
in other words, it is the number of children of v. The degree of 22 is 3 (counting edges
(2, 22), (22, 221), (22, 222)). The down degree of 22 is 2 (counting edges (22, 221), (22, 222)).
Vertices with down degree 0 are called leaves. All other vertices are called internal vertices.
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For any vertex v in a decision tree there is a unique list of edges (x1, x2), (x2, x3), . . . ,
(xk, xk+1) from the root x1 to v = xk+1. This sequence is called the path to a vertex in the
decision tree. The number of edges, k, is the length of this path and is called the height or
distance of vertex v to from the root. The path to 22 is (R, 2), (2, 22). The height of 22 is
2.

The decision tree of the previous example illustrates the various ways of generating
a function in 23 sequentially. It’s called a decision tree for generating the functions in

23. Each edge in the decision tree is labeled with the choice of function value to which
it corresponds. Note that the labeling does not completely describe the corresponding
decision — we should have used something like “Choose 1 for the value of f(2)” instead of
simply “1” on the line from 1 to 11.

In this terminology, a vertex v represents the partial function constructed so far, when
the vertex v has been reached by starting at the root, following the edges to v, and making
the decisions that label the edges on that unique path from the root to v. The edges
leading out of a vertex are labeled with all possible decisions that can be made next, given
the partial function at the vertex. We labeled the edges so that the labels on edges out of
each vertex are in order, 1,2, when read left to right. The leaves are the finished functions.
Notice that the leaves are in lexicographic order. In general, if we agree to label the edges
from each vertex in order, then any set of functions generated sequentially by specifying
f(i) at the ith step will be in lex order.

To create a single function we start at the root and choose downward edges (i.e., make
decisions) until we reach a leaf. This creates a path from the root to a leaf. We may
describe a path in any of the following ways:

• the sequence of vertices v0, v1, . . . , vm on the path from the root v0 to the leaf vm;

• the sequence of edges e1, e2, . . . , em, where ei = (vi−1, vi), i = 1, . . . ,m;

• the sequence of decisions D1,D1, . . . ,Dm, where ei is labeled with decision Di.

We illustrate with three descriptions of the path from the root R to the leaf 212 in Exam-
ple 1:

• the vertex sequence is R, 2, 21, 212;

• the edge sequence is (R, 2), (2, 21), (21, 212);

• the decision sequence is 2, 1, 2.

Decision trees are a part of a more general subject in discrete mathematics called
“graph theory,” which is studied in another unit.

It is now time to look at some more challenging examples so that we can put decision
trees to work for us. The next example involves counting words where the decisions are
based on patterns of consonants and vowels.
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Example 2 (Counting words) Using the 26 letters of the alphabet and considering the
letters AEIOUY to be vowels how many five letter “words” (i.e. five long lists of letters)
are there, subject to the following rules?

(a) No vowels are ever adjacent.

(b) There are never three consonants adjacent.

(c) Adjacent consonants are always different.

To start with, it would be useful to have a list of all the possible patterns of consonants
and vowels; e.g., CCVCV (with C for consonant and V for vowel) is possible but CVVCV
and CCCVC violate conditions (a) and (b) respectively and so are not possible. We’ll use
a decision tree to generate these patterns in lex order. Of course, a pattern CVCCV can
be thought of as a function f where f(1) = C, f(2) = V, . . ., f(5) = V.

We could simply try to list the patterns (functions) directly without using a deci-
sion tree. The decision tree approach is preferable because we are less likely to overlook
something. The resulting tree can be pictured as follows:

C V

CC CV

CCV CVC

CCVC CVCC CVCV

CCVCC CVCCVCCVCV CVCVC

VC


VCC VCV

VCCV

VCCVC

VCVC

VCVCC VCVCV

_

At each vertex there are potentially two choices, but at some vertices only one is possible
because of rules (a) and (b) above. Thus there are one or two decisions at each vertex. You
should verify that this tree lists all possibilities systematically.

We have used the dash “–” as the symbol for the root. This stands for the empty word
on the letters C and V. The set of labels for the vertices of this decision tree T is a set
of words of length 0 through 5. The vertex set is determined by the rules (or “syntax”)
associated with the problem (rules (a), (b), and (c) above).

Using the rules of construction, (a), (b), and (c), we can now easily count the number
of words associated with each leaf. The total number of words is the sum of these individual
counts. For CCVCC we obtain (20×19)2×6; for CCVCV, CVCCV, VCCVC, and VCVCC
we obtain (20 × 19) × 20 × 62; for CVCVC we obtain 203 × 62; for V CV CV we obtain
202 × 63.

Definition 1 (Rank of an element of a list) The rank of an element in a list is the
number of elements that appear before it in the list. The rank of a leaf of a decision tree is
the number of leaves that are to the left of it in the picture of the tree. The rank is denoted
by the function RANK.

In Example 1, RANK(212) = 5 and RANK(111) = 0.
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Section 1: Basic Concepts of Decision Trees

Rank can be used to store data in a computer. For example, suppose we want to store
information for each of the 10! ≈ 3.6 × 106 permutations of 10. The naive way to do this
is to have a 10 × 10 × · · · × 10 array and store information about the permutation f in
location f(1), . . . , f(10). This requires storage of size 1010. If we store information about
permutations in a one dimensional array with information about f stored at RANK(f),
we only need 10! storage locations, which is much less. We’ll discuss ranking permutations
soon.

The inverse of the rank function is also useful. Suppose we want to generate objects
at random from a set of n objects. Let RANK be a rank function for them. Generate a
number k between 0 and n− 1 inclusive at random. Then RANK−1(k) is a random object.

Example 3 (Permutations in lexicographic order) Recall that we can think of a
permutation on 3 as a bijection f : 3→ 3. Its one-line form is f(1), f(2), f(3). Here is an
example of a decision trees for this situation (omitting commas):

1

1 1

1 1

1

2

2 2

22

2

3

33

33

3

12 13 21 23 31 32

123 132 213 231 312 321

_

Because we first chose f(1), listing its values in increasing order, then did the same with
f(2) and finally with f(3), the leaves are listed lexicographically, that is, in “alphabetical”
order like a dictionary only with numbers instead of letters.

We could have abbreviated this decision tree a bit by shrinking the edges coming from
vertices with only one decision and omitting labels on nonleaf vertices. As you can see,
there is no “correct” way to label a decision tree. The intermediate labels are simply a
tool to help you correctly list the desired objects (functions in this case) at the leaves.
Sometimes one may even omit the function at the leaf and simply read it off the tree by
looking at the labels on the edges or vertices associated with the decisions that lead from
the root to the leaf. In this tree, the labels on an edge going down from vertex v tell us what
values to add to the end of v to get a “partial permutation” that is one longer than v.
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Permutations

We now look at two ways of ranking permutations. The method for generating random
permutations in Example 23 of Unit Fn can provide another method for ranking permu-
tations. If you’d like a challenge, you can think about how to do that. We won’t discuss
it.

Example 4 (Permutations in direct insertion order) Another way to create a per-
mutation is by direct insertion. (Often this is simply called “insertion.”) Suppose that we
have an ordered list of k items into which we want to insert a new item. It can be placed
in any of k + 1 places; namely, at the end of the list or immediately before the ith item
where 1 ≤ i ≤ k. By starting out with 1, choosing one of the two places to insert 2 in this
list, choosing one of the three places to insert 3 in the new list and, finally, choosing one of
the four places to insert 4 in the newest list, we will have produced a permutation of 4. To
do this, we need to have some convention as to how the places for insertion are numbered
when the list is written from left to right. The obvious choice is from left to right; however,
right to left is often preferred. We’ll use right to left. One reason for this choice is that the
leftmost leaf is 12 . . . n as it is for lex order.

If there are k + 1 possible positions to insert something, we number the positions
0, 1, . . . , k, starting with the rightmost position as number 0. We’ll use the notation ( )i to
stand for position i so that we can keep track of the positions when we write a list into
which something is to be inserted.

Here’s the derivation of the permutation of 4 associated with the insertions 1, 1 and 2.

• Start with ( )11( )0.

• Choose the insertion of the symbol 2 into position 1 (designated by ( )1) to get
21. With positions of possible insertions indicated, this is ( )22( )11( )0.

• Now insert symbol 3 into position 1 (designated by ( )1) to get 231 or, with possible
insertions indicated ( )32( )23( )11( )0.

• Finally, insert symbol 4 into position 2 to get 2431.

Here is the decision tree for permutations of 4 in direct insertion order. We’ve turned
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Section 1: Basic Concepts of Decision Trees

the vertices sideways so that rightmost becomes topmost in the insertion positions.
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The labels on the vertices are, of course, the partial permutations, with the full permutations
appearing on the leaves. The decision labels on the edges are the positions in which to insert
the next number. Notice that the labels on the leaves are no longer in lex order because we
constructed the permutations differently. Had we labeled the vertices with the positions
used for insertion, the leaves would then be labeled in lex order. For example, 2413 becomes
1,0,2, which is gotten by reading edge labels on the path from the root to the leaf labeled
2413. Similarly 4213 becomes, 1,0,3.

Like the method of lex order generation, the method of direct insertion generation
can be used for other things besides permutations. However, direct insertion cannot be
applied as widely as lex order. Lex order generation works with anything that can be
thought of as an (ordered) list, but direct insertion requires more structure. Note that
the RANK(3412) = 10 and RANK(4321) = 23. What would RANK(35412) be for the
permutations on 5 in direct insertion order?

Traversing Decision Trees

We conclude this section with an important class of search algorithms called back-

tracking algorithms. In many computer algorithms it is necessary either to systematically
inspect all the vertices of a decision tree or to find the leaves of the tree. An algorithm that
systematically inspects all the vertices (and so also finds the leaves) is called a traversal of

the tree. How can we create such an algorithm? To understand how to do this, we first
look at how a tree can be “traversed.”
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Example 5 (Traversals of a decision tree) Here is a sample decision tree T with
edges labeled A through J and vertices labeled 1 through 11.

E

A

C

1

FD

B

2 3

4 5 6 7

G H

8 9

I J

10 11

The arrows are not part of the decision tree, but will be helpful to us in describing certain
ideas about linear orderings of vertices and edges that are commonly associated with deci-
sion trees. Imagine going around (“traversing”) the decision tree following arrows. Start at
the root, 1, go down edge A to vertex 2, etc. Here is the sequence of vertices as encountered
in this process: 1, 2, 4, 2, 5, 2, 1, 3, 6, 8, 6, 9, 6, 10, 6, 11, 6, 3, 7, 3, 1. This sequence
of vertices is called the depth first vertex sequence, DFV(T ), of the decision tree T . The
number of times each vertex appears in DFV(T ) is one plus the down degree of that vertex.
For edges, the corresponding sequence is A, C, C, D, D, A, B, E, G, G, H, H, I, I, J, J, E,
F, F, B. This sequence is the depth first edge sequence, DFE(T ), of the tree. Every edge
appears exactly twice in DFE(T ). If the vertices of the tree are read left to right, top to
bottom, we obtain the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. This is called the breadth

first vertex sequence, BFV(T ). Similarly, the breadth first edge sequence, BFE(T ), is A, B,
C, D, E, F, G, H, I, J.

The sequences BFV(T ) and BFE(T ) are linear orderings of the vertices and edges of
the tree T (i.e., each vertex or edge appears exactly once in the sequence). We also associate
two linear orderings with DFV(T ):

• PREV(T ), called the preorder sequence of vertices of T , is the sequence of first occur-
rences of the vertices of T in DFV(T ).

• POSV(T ), called the postorder sequence of vertices of T , is the sequence of last occur-
rences of the vertices of T in DFV(T ).

For the present tree

PREV(T ) = 1, 2, 4, 5, 3, 6, 8, 9, 10, 11, 7 and POSV(T ) = 4, 5, 2, 8, 9, 10, 11, 6, 7, 3, 1.

With a little practice, you can quickly construct PREV(T ) and POSV(T ) directly from
the picture of the tree. For PREV(T ), follow the arrows and list each vertex the first time
you encounter it (and only then). For POSV(T ), follow the arrows and list each vertex the
last time you encounter it (and only then). Notice that the order in which the leaves of T
appear, 4, 5, 8, 9, 10, 11, is the same in both PREV(T ) and POSV(T ).
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We now return to the problem of creating a traversal algorithm. One way to imagine
doing this is to generate the depth first sequence of vertices and/or edges of the tree as
done in the preceding example. We can describe our traversal more precisely by giving an
algorithm. Here is one which traverses a tree whose leaves are associated with functions
and lists the functions in the order of PREV(T ).

Theorem 1 (Systematic Traversal Algorithm) The following procedure systemati-
cally visits the vertices of a tree T in depth-first order, DFV(T ), listing the leaves as they
occur in the list DFV(T ).

1. Start: Mark all edges as unused and position yourself at the root.

2. Leaf: If you are at a leaf, list the function.

3. Decide case: If there are no unused edges leading out from the vertex, go to
Step 4; otherwise, go to Step 5.

4. Backtrack: If you are at the root, STOP; otherwise, return to the vertex just
above this one and go to Step 3.

5. Decision: Select the leftmost unused edge out of this vertex, mark it used, follow
it to a new vertex and go to Step 2.

Step 4 is labeled Backtrack. What does this mean? If you follow the arrows in the tree
pictured in Example 5, backtracking corresponds to going toward the root on an edge that
has already been traversed in the opposite direction. In other words, backtracking refers
to the process of moving along an edge back toward the root of the tree. Thinking in
terms of the decision sequence, backtracking corresponds to undoing (i.e., backtracking on)
a decision previously made. Notice that the algorithm only needs to keep track of the
decisions from the root to the present vertex — when it backtracks, it can “forget” the
decision it is backtracking from. You should take the time now to apply the algorithm to
Example 1, noting which decisions you need to remember at each time.

So far in our use of decision trees, it has always been clear what decisions are reasonable;
i.e., are on a path to a solution. (In this case every leaf is a solution.) This is because we’ve
looked only at simple problems such as listing all permutations of n or listing all functions
in nk. We now look at a situation where that is not the case.

Example 6 (Restricted permutations) Consider the following problem.

List all permutations f of n such that

|f(i)− f(i + 1)| ≤ 3 for 1 ≤ i < n .

It’s not at all obvious what decisions are reasonable in this case. For instance, when n = 9,
the partially specified one line function 124586 cannot be completed to a permutation.

There is a simple cure for this problem: We will allow ourselves to make decisions
which lead to “dead ends,” situations where we cannot continue on to a solution. With this
expanded notion of a decision tree, there are often many possible decision trees that appear
reasonable for doing something. Suppose that we’re generating things in lex order and we’ve
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reached the vertex 12458. What do we do now? We’ll simply continue to generate more of
the permutation, making sure that |f(i)− f(i + 1)| ≤ 3 is satisfied for that portion of the
permutation we have generated so far. The resulting portion of the tree that starts with
the partial permutation 12458 is represented by the following decision tree. Because the
names the of the vertices are so long, we’ve omitted all of the name, except for the function
value just added, for all but the root. Thus the rightmost circled vertex is 124589763.

6

6 6

6

7

7

7 7

7

9

99

99 3 3

3
{7, 9}

{3}{3} {3}{3} {9} {7}

3

6

3

12458

Each vertex is labeled with an additional symbol of the permutation after the symbols
12458. The circled leaves represent solutions. Each solution is obtained by starting with
12458 and adding all symbols on vertices of the path from the root, 12458, to the circled
leaf. Thus the two solutions are 124587963 and 124589763. The leaves that are not circled
are places where there is no way to extend the partial permutation corresponding to that
leaf such that |f(i)− f(i + 1)| ≤ 3 is satisfied. Below each leaf that is not a solution, you
can see the set of values available for completing the partial permutation at that leaf. It is
clear in those cases that no completion satisfying |f(i)− f(i + 1)| ≤ 3 is possible.

Had we been smarter, we might have come up with a simple test that would have told
us that 124586 could not be extended to a solution. This would have lead to a different
decision tree in which the vertex corresponding to the partial permutation 124586 would
have been a leaf.

You should note here that the numbers 3, 6, 7, 9 are labels on the vertices of this tree.
A vertex of this tree is the partial permutation gotten by concatenating (attaching) the
labels on the path from the root to that vertex to the permutation 12458. Thus, 124586 is a
vertex with label 6. The path from the root to that vertex is 12458, 124586 (corresponding
to the edge (12458, 124586)). The vertices are not explicitly shown, but can be figured out
from the rules just mentioned. The labels on the vertices correspond to the decisions to be
made (how to extend the partial permutation created thus far).

Our tree traversal algorithm, Theorem 1, requires a slight modification to cover this
type of extended decision tree concept where a leaf need not be a solution: Change Step 2
to

2′. Leaf: If you are at a leaf, take appropriate action.

For the tree rooted at 12458 in this example, seven of the leaves are not solutions and two
are. For the two that are, the “appropriate action” is to print them out, jump and shout,
or, in some way, proclaim success. For the leaves that are not solutions, the appropriate
action is to note failure in some way (or just remain silent) and Backtrack (Step (4)
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of Theorem 1). This backtracking on leaves that are not solutions is where this type of
algorithm gets its name: “backtracking algorithm.”

How can there be more than one decision tree for generating solutions in a specified
order? Suppose someone who was not very clever wanted to generate all permutations of n
in lex order. He might program a computer to generate all functions in nn in lex order and
to then discard those functions which are not permutations. This leads to a much bigger
tree because nn is much bigger than n!, even when n is as small as 3. A somewhat cleverer
friend might suggest that he have the program check to see that f(k) 6= f(k − 1) for each
k > 1. This won’t slow down the program very much and will lead to only n(n − 1)n−1

functions. Thus the program should run faster. Someone else might suggest that the
programmer check at each step to see that the function produced so far is an injection. If
this is done, nothing but permutations will be produced, but the program may be much
slower.

The lesson to be learned from the previous paragraph is that there is often a trade
off between the size of the decision tree and the time that must be spent at each vertex
determining what decisions to allow. Because of this, different people may develop different
decision trees for the same problem. The differences between computer run times for
different decision trees can be truly enormous. By carefully defining the criteria that allow
one to decide that a vertex is a leaf, people have changed problems that were too long to
run on a supercomputer into problems that could be easily run on a personal computer.
We’ll conclude this section with two examples of backtracking of the type just discussed.

Example 7 (Domino coverings) We are going to consider the problem of covering a m
by n board (for example, m = n = 8 gives a chess board) with 1 by 2 rectangles (called
“dominoes”). A domino can be placed either horizontally or vertically so that it covers two
squares and does not overlap another domino. Here is a picture of the situation for m = 3,
n = 4. (The sequences of h’s and v’s under eleven covered boards will be explained below.)

h = horizontal domino v = vertical domino

vhvhhh

hhvvvvhhvvhhhhvhvhhhhvvhhhhhhh

hvvvvhhvvhhh

3 x 4 board

vvhhhh vvhvvh vvvvhh



If the squares of the board are numbered systematically, left to right, top to bottom,
from 1 to 12, we can describe any placement of dominoes by a sequence of 6 h’s and v’s:
Each of the domino placements in the above picture has such a description just below it.
Take as an example, hhvhvh (the third domino covering in the picture). We begin with no
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dominoes on the board. None of the squares, numbered 1 to 12 are covered. The list of
“unoccupied squares”is as follows:

1 2 3 4
5 6 7 8
9 10 11 12

Thus, the smallest unoccupied square is 1. The first symbol in hhvhvh is the h. That
means that we take a horizontal domino and cover the square 1 with it. That forces us to
cover square 2 also. The list of unoccupied squares is as follows:

3 4
5 6 7 8
9 10 11 12

Now the smallest unoccupied square is 3. The second symbol in hhvhhv is also an h. Cover
square 3 with a horizontal domino, forcing us to cover square 4 also. The list of unoccupied
squares is as follows:

5 6 7 8
9 10 11 12

At this point, the first row of the board is covered with two horizontal dominoes (check
the picture). Now the smallest unoccupied square is 5 (the first square in the second row).
The third symbol in hhvhvh is v. Thus we cover square 5 with a vertical domino, forcing
us to cover square 9 also. The list of unoccupied squares is as follows:

6 7 8
10 11 12

We leave it to you to continue this process to the bitter end and obtain the domino covering
shown in the picture.

Here is the general description of the process. Place dominoes sequentially as follows.
If the first unused element in the sequence is h, place a horizontal domino on the first
unoccupied square and the square to its right. If the first unused element in the sequence is
v, place a vertical domino on the first unoccupied square and the square just below it. Not
all sequences correspond to legal placements of dominoes (try hhhhhv). For a 2× 2 board,
the only legal sequences are hh and vv For a 2× 3 board, the legal sequences are hvh, vhh
and vvv. For a 3× 4 board, there are eleven legal sequences as shown in the picture at the
start of this example.

To find these sequences in lex order we used a decision tree for generating sequences
of h’s and v’s in lex order. Each decision is required to lead to a domino that lies entirely
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on the board and does not overlap another domino. Here is our decision tree:
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v v v v v
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h h
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h

h
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h

h

h

h

h

h hh

Note that in this tree, the decision (label) that led to a vertex is placed at the vertex rather
than on the edge. The actual vertices, not explicitly labeled, are the sequences of choices
from the root to that vertex (e.g., the vertex hvv has label v). The leaf vhvvv associated
with the path v,h, v, v, v does not correspond to a covering. It has been abandoned (i.e.,
declared a leaf but not a solution) because there is no way to place a domino on the lower
left square of the board, which is the first free square. Draw a picture of the board to see
what is happening. Our criterion for deciding if a vertex is a leaf is to check if that vertex
corresponds to a solution or to a placement that does not permit another domino to be
placed on the board. It is not hard to come up with a criterion that produces a smaller
decision tree. For example, vhvv leaves the lower left corner of the board isolated. That
means that vhvv cannot be extended to a solution, even though more dominoes can be
placed on the board. But, checking this more restrictive criterion is more time consuming.

Exercises for Section 1

1.1. List the nonroot vertices of the decision tree in Example 2 in PREV, POSV and
BFV orders.

1.2. Let RANKL denote the rank in lex order and let RANKI denote the rank in inser-
tion order on permutations of n. Answer the following questions and give reasons
for your answers:

(a) For n = 3 and n = 4 which permutations σ have RANKL(σ) = RANKI(σ)?

(b) What is RANKL(2314)? RANKL(45321)?

(c) What is RANKI(2314)? RANKI(45321)?

(d) What permutation σ of 4 has RANKL(σ) = 15?

(e) What permutation σ of 4 has RANKI(σ) = 15?
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(f) What permutation σ of 5 has RANKL(σ) = 15?

1.3. Draw the decision tree to list all sequences of length six of A’s and B’s that satisfy
the following conditions:

• There are no two adjacent A’s.

• There are never three B’s adjacent.

• If each leaf is thought of as a word, the leaves are in alphabetical order.

1.4. Draw a decision tree for D(64), the strictly decreasing functions from 4 to 6. You
should choose a decision tree so that the leaves are in lex order when read from left
to right

(a) What is the rank of 5431? of 6531?

(b) What function has rank 0? rank 7?

(c) Your decision tree should contain the decision tree for D(54). Indicate it and
use it to list those functions in lex order.

(d) Indicate how all of the parts of this exercise can be interpreted in terms of
subsets of a set.

1.5. Modify Theorem 1 to list all vertices in PREV order. Do the same for POSV order.

1.6. The president of Hardy Hibachi Corporation decided to design a series of differ-
ent grills for his square-topped hibachis. They were to be collectibles. He hoped
his customers would want one of each different design (and spend big bucks to
get them). Having studied combinatorics in college, his undergrad summer intern
suggested that these grills be modeled after the patterns associated with domino
arrangements on 4 × 4 boards. Their favorite grill was in the design which has
the code vvhvvhhh. The student, looking at some old class notes, suggested seven
other designs: vvhhvhvh, hhvvhvvh, vhvhhvvh, hvvhvhvh, hvvvvhhh, vhvhvvhh,
hhhvvvh. These eight grills were fabricated out of sturdy steel rods, put in a box,
and shipped to the boss. When he opened up the box, much to his disgust, he found
that all of the grills were the same. What went wrong? How should the collection
of different grills be designed? (This is called an isomorph rejection problem.)

The favorite grill: vvhvvhhh =
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Section 2: Recursive Algorithms

A recursive algorithm is an algorithm that refers to itself when it is executing. As with any
recursive situation, when an algorithm refers to itself, it must be with “simpler” parame-
ters so that it eventually reaches one of the “simplest” cases, which is then done without
recursion. Let’s look at a couple of examples before we try to formalize this idea.

Example 8 (A recursive algorithm for 0-1 sequences) Suppose you are interested
in listing all sequences of length eight, consisting of four zeroes and four ones. Suppose
that you have a friend who does this sort of thing, but will only make such lists if the
length of the sequence is seven or less. “Nope,” he says, “I can’t do it — the sequence is
too long.” There is a way to trick your friend into doing it. First give him the problem of
listing all sequences of length seven with three ones. He doesn’t mind, and gives you the
list 1110000, 1011000, 0101100, etc. that he has made. You thank him politely, sneak off,
and put a “1” in front of every sequence in the list he has given you to obtain 11110000,
11011000, 10101100, etc. Now, you return to him with the problem of listing all strings of
length seven with four ones. He returns with the list 1111000, 0110110, 0011101, etc. Now
you thank him and sneak off and put a “0” in front of every sequence in the list he has
given you to obtain 01111000, 00110110, 00011101, etc. Putting these two lists together,
you have obtained the list you originally wanted.

How did your friend produce these lists that he gave you? Perhaps he had a friend
that would only do lists of length 6 or less, and he tricked this friend in the same way you
tricked him! Perhaps the “6 or less” friend had a “5 or less friend” that he tricked, etc. If
you are sure that your friend gave you a correct list, it doesn’t really matter how he got
it.

Next we consider an example from sorting theory. We imagine we are given a set
of objects which have a linear order described on them (perhaps, but not necessarily,
lexicographic order of some sort). As a concrete example, we could imagine that we are
given a set of integers S, perhaps a large number of them. They are not in order as presented
to us, be we want to list them in order, smallest to largest. That problem of putting the
set S in order is called sorting S. On the other hand, if we are given two ordered lists,
like (25, 235, 2333, 4321) and (21, 222, 2378, 3421, 5432), and want to put the combined list
in order, in this case (21, 25, 222, 235, 2333, 2378, 3421, 4321, 5432), this process is called
merging the two lists. Our next example considers the relationship between sorting and
merging.

Example 9 (Sorting by recursive merging) Sorting by recursive merging, called merge

sorting, can be described as follows.

• The lists containing just one item are the simplest and they are already sorted.

• Given a list of n > 1 items, choose k with 1 ≤ k < n, sort the first k items, sort the
last n− k items and merge the two sorted lists.
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This algorithm builds up a way to sort an n-list out of procedures for sorting shorter lists.
Note that we have not specified how the first k or last n − k items are to be sorted, we
simply assume that it has been done. Of course, an obvious way to do this is to simply
apply our merge sorting algorithm to each of these sublists.

Let’s implement the algorithm using people rather than a computer. Imagine training
a large number of obedient people to carry out two tasks: (a) splitting a list for other
people to sort and (b) merging two lists. We give one person the unsorted list and tell him
to sort it using the algorithm and return the result to us. What happens?

• Anyone who has a list with only one item returns it unchanged to the person he received
it from.

• Anyone with a list having more than one item splits it and gives each piece to a person
who has not received a list, telling each person to sort it and return the result. When
the results have been returned, this person merges the two lists and returns the result
to whoever gave him the list.

If there are enough obedient people around, we’ll eventually get our answer back.

Notice that no one needs to pay any attention to what anyone else is doing to a list.
This is makes a local description possible; that is, we tell each person what to do and they
do not need to concern themselves with what other people are doing. This can also be seen
in the pseudocode for merge sorting a list L:

Sort(L)
If length is 1, return L
Else

Split L into two lists L1 and L2
S1 = Sort(L1)
S2 = Sort(L2)
S = Merge(L1, L2)
Return S

End if
End

The procedure is not concerned with what goes on when it calls itself recursively. This is
very much like proof by induction. (We discuss proof by induction in the last section of this
unit.) To see that, let’s prove that the algorithm sorts correctly. We assume that splitting
and merging have been shown to be correct — that’s a separate problem. We induct on
the length n of the list. The base case, n = 1 is handled correctly by the program since it
returns the list unchanged. Now for induction. Splitting L results in shorter lists and so,
by the induction hypothesis, S1 and S2 are sorted. Since merging is done correctly, S is
also sorted.

This algorithm is another case of divide and conquer since it splits the sorting problem
into two smaller sorting problems whose answers are combined (merged) to obtain the
solution to the original sorting problem.

Let’s summarize some of the above observations with two definitions.
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Definition 2 (Recursive approach) A recursive approach to a problem consists of two
parts:

1. The problem is reduced to one or more problems of the same kind which are simpler
in some sense.

2. There is a set of simplest problems to which all others are reduced after one or more
steps. Solutions to these simplest problems are given.

The preceding definition focuses on tearing down (reduction to simpler cases). Sometimes
it may be easier or better to think in terms of building up (construction of bigger cases):

Definition 3 (Recursive solution) We have a recursive solution to the problem (proof,
algorithm, data structure, etc.) if the following two conditions hold.

1. The set of simplest problems can be dealt with (proved, calculated, sorted, etc.).

2. The solution to any other problem can be built from solutions to simpler problems,
and this process eventually leads back to the original problem.

The recursion C(n, k) = C(n−1, k−1)+C(n−1, k) for computing binomial coefficients
can be viewed as a recursive algorithm. Such algorithms for computing can be turned into
algorithms for constructing the things we are counting. To do this, it helps to have a more
systematic way to think about recursive algorithms. In the next example we introduce a
tree to represent the local description of a recursive algorithm.

Example 10 (Permutations in lex order) The following figure represents the local

description of a decision tree for listing the permutations of an ordered set

S = {s1, s2, . . . , sn} with s1 < s2 < · · · < sn.

The permutations in the figure are listed in one-line form. The vertices of this decision tree
are of the form L(X) where X is some set. The simplest case, shown below, is where the
tree has one edge. The labels on the edges are of the form (t), where t is an element of the
set X associated with the uppermost vertex L(X) incident on that edge.

L({s})

(s)

L(S)

S = { }s1 sns2, , ,. . . 

. . . 

s1( ) s2( ) sn( )

S { }s2L( )S { }s1L( ) S L( ){ }sn

The leaves of the recursive tree tell us to construct permutations of the set S with the already
chosen element removed from the set. (This is because permutations are injections.)
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One way to think of the local description is to regard it as a rule for recursively
constructing an entire decision tree, once the set S is specified. Here this construction has
been carried out for S = {1, 2, 3, 4}.

(1)

(1)(1)(1)

(2)

(2)(2)(2)

(3)

(3)(3)(3)

(3)

(4)

(4)(4)(4)

(4) (2) (4) (2) (4)(2) (3) (2) (3)(3) (4) (1) (4) (1) (4) (1) (3)(1) (2) (1) (2)(1) (3)

L(1,2,3,4)

L(2,3,4)

L(3,4)L(3,4) L(2,4)L(2,4) L(2,3)L(2,3)

L(1,3,4)

L(1,3)L(1,3) L(1,4)L(1,4)

L(1,2,4) L(1,2,3)

L(1,2)L(1,2)

L(1)L(1)L(1)L(1)L(1)L(1) L(2)L(2)L(2)L(2)L(2)L(2)L(3) L(3)L(3)L(3)L(3)L(3) L(4)L(4)L(4)L(4)L(4)L(4)

To obtain a permutation of 4, read the labels (t) on the edges from the root to a particular
leaf. For example the if this is done for the preorder first leaf, one obtains (1)(2)(3)L(4).
L(4) is a “simplest case” and has the label (4), giving the permutation 1234 in one line no-
tation. Repeating this process for the leaves from left to right gives the list of permutations
of 4 in lex order. For example, the tenth leaf gives the permutation 2341.

We’ll use induction to prove that this is the correct tree. When n = 1, it is clear.
Suppose it is true for all S with cardinality less than n. The permutations of S in lex
order are those beginning with s1 followed by those beginning with s2 and so on. If sk

is removed from those permutations of S beginning with sk, what remains is the set of
permutations of S − {sk} listed in lex order. By the induction hypothesis, these are given
by L(S−{sk}). Note that the validity of our proof does not depend on how they are given
by L(S − {sk}).

No discussion of recursion would be complete without the entertaining example of the
Towers of Hanoi puzzle. We shall explore additional aspects of this problem in the exercises.
Our approach will be the same as the previous example. We shall give a local description
of the recursion. Having done so, we construct the trees for some examples and try to gain
insight into the sequence of moves associated with the general Towers of Hanoi problem.

Example 11 (Towers of Hanoi) The Towers of Hanoi puzzle consists of n different
sized washers (i.e., discs with holes in their centers) and three poles. Initially the washers

DT-18



Section 2: Recursive Algorithms

are stacked on one pole as shown below.

S E G

S E G

S E G

(a)

(b)

(c)

The object is to switch all of the washers from the pole S to G using pole E as a place
for temporary placement of discs. A legal move consists of taking the top washer from a
pole and placing on top of the pile on another pole, provided it is not placed on a smaller
washer. Configuration (a), above, is the starting configuration, (b) is an intermediate stage,
and (c) is illegal.

We want an algorithm H(n, S, E, G) that takes washers numbered 1, 2, . . . , n that are
stacked on the pole called S and moves them to the pole called G. The pole called E is also
available. A call of this procedure to move 7 washers might be H(7,“start”,“extra”,“goal”).

Here is a recursive description of how to solve the Towers of Hanoi. To move the
largest washer, we must move the other n− 1 to the spare peg. After moving the largest,
we can then move the other n− 1 on top of it. Let the washers be numbered 1 to n from
smallest to largest. When we are moving any of the washers 1 through k, we can ignore
the presence of all larger washers beneath them. Thus, moving washers 1 through n − 1
from one peg to another when washer n is present uses the same moves as moving them
when washer n is not present. Since the problem of moving washers 1 through n − 1 is
simpler, we practically have a recursive description of a solution. All that’s missing is the
observation that the simplest case, n = 1, is trivial. The following diagram gives the local
description of a decision tree that represents this recursive algorithm.

H(n, X, Y, Z) 

H(n-1, Y, X, Z) H(n-1, X, Z, Y) 

H(1, X, Y, Z) 

X Z1

X Zn

The “simplest case,” n equal 1 is shown on the left. The case for general n is designated
by H(n, X, Y, Z). You can think of the symbol H(n, X, Y, Z) as designating a vertex of
a decision tree. The local description tells you how to construct the rest of the decision
tree, down to and including the simplest cases. There is a simple rule for deciding how to
rearrange X, Y and Z:
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• for the left child: X is fixed, Y and Z are switched;

• for the right child: Z is fixed, X and Y are switched.

All leaves of the decision tree are designated by symbols of the form “U
k→ V .” This symbol

has the interpretation “move washer number k from pole U to pole V .” These leaves in
preorder (left to right order in the tree) give the sequence of moves needed to solve the
Towers of Hanoi puzzle. The local description tells us that, in order to list the leaves of
H(n, S, E, G), we

• list the leaves of H(n-1, S, G, E), moving the top n-1 washers from S to E using G

• move the largest washer from S to G

• list the leaves of H(n-1, E, S, G), moving the top n-1 washers from E to G using S

For example, the leaves of the tree with root H(2,S,E,G) are, in order,

S
1→ E, S

2→ G, E
1→ G.

The leaves of H(3,S,E,G) are gotten by concatenating (piecing together) the leaves of

the subtree rooted at H(2,S,G,E) with S
3→ G and the leaves of the subtree rooted at

H(2,E,S,G). This gives

S
1→ G, S

2→ E, G
1→ E, S

3→ G, E
1→ S, E

2→ G, S
1→ G.

Example 12 (The Towers of Hanoi decision tree for n = 4) Starting with the local
description of the general decision tree for the Towers of Hanoi and applying the rules of
construction specified by it, we obtain the decision tree for the Towers of Hanoi puzzle with
n = 4. For example, we start with n = 4, X = S, Y = E and Z = G at the root of the tree.
To match the H(n,X,Y,Z) pattern when we expand the rightmost son of the root (namely
H(3,E,S,G)), we have n = 3, X = E, Y = S and Z = G.

H(4, S, E, G) 

H(3, E, S, G) H(3, S, G, E) S G4

H(2, G, S, E) H(2, S, E, G)  S  E3 H(2, S, E, G) H(2, E, G, S)  E  G3

H(1, E, S, G) 

E  G
1

H(1, G, E, S) 

G  S
1

H(1, S, G, E) 

S  E
1

H(1, E, S, G) 

E  G
1

S  G
2

G  E
2

E  S
2

S  G
2

H(1, S, G, E) 

S  E
1

H(1, G, E, S) 

G  S
1

H(1, E, S, G) 

E  G
1

H(1, S, G, E) 

S  E
1
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There are fifteen leaves. You should apply sequentially the moves specified by these leaves
to the starting configuration ((a) of Example 11) to see that the rules are followed and the
washers are all transferred to G.

There are some observations we can make from this example. There are 24 − 1 = 15
leaves or, equivalently, “moves” in transferring all washers from S to G. If hn is the number
of moves required for n washers, then the local description of the decision tree implies that,
in general, hn = 2hn−1 + 1. Computing some numbers for the hn gives 1, 3, 7, 15, 31, etc.
It appears that hn = 2n − 1. This fact can be proved easily by induction.

Note that the washer number 1, the smallest washer moves every other time. It moves
in a consistent pattern. It starts on S, then E, then G, then S, then E, then G, etc. For
H(3, S, E, G), the pattern is S, G, E, S, G, E, etc. In fact, for n odd, the pattern is always
S, G, E, S, G, E, etc. For n even, the pattern is always S, E, G, S, E, G, etc. This means
that if someone shows you a configuration of washers on discs for the H(n, S, E, G) and
says to you, “It’s the smallest washer’s turn to move,” then you should be able to make
the move. If they tell you it is not the smallest washer’s turn, then you should also be able
to make the move. Why? Only one move not involving the smallest washer is legal!

Example 13 (The Towers of Hanoi, recursion, and stacks) One way to generate
the moves of H(n, S, E, G) is to use the local description to generate the depth first vertex
sequence (Example 5).

• The depth first vertex list for n = 4 would start as follows:

H(4, S, E, G), H(3, S, G, E), H(2, S, G, E), H(1, S, G, E), S
1→ E

At this point we have gotten to the first leaf. It should be printed out.

• The next vertex in the depth first vertex sequence is H(1, S, G, E) again. We represent

this by removing S
1→ E to get

H(4, S, E, G), H(3, S, G, E), H(2, S, G, E), H(1, S, G, E).

• Next we remove H(1, S, G E) to get

H(4, S, E, G), H(3, S, G, E), H(2, S, G, E).

• The next vertex in depth first order is S
2→ G. We add this to our list to get

H(4, S, E, G), H(3, S, G, E), H(2, S, G, E), S
2→ G.

Continuing in this manner we generate, for each vertex in the decision tree, the path from
the root to that vertex. The vertices occur in depth first order. Computer scientists refer
to the path from the root to a vertex v as the stack of v. Adding a vertex to the stack
is called pushing the vertex on the stack. Removing a vertex is popping the vertex from
the stack. Stack operations of this sort reflect how most computers carry out recursion.
This “one dimensional” view of recursion is computer friendly, but the geometric picture
provided by the local tree is more people friendly.
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Example 14 (The Towers of Hanoi configuration analysis) In the figure below, we
show the starting configuration for H(6, S, E, G) and a path,

H(6, S, E, G), H(5, E, S, G), H(4, E, G, S), H(3, G, E, S), G
3→ S.

This path goes from the root H(6, S, E, G) to the leaf G
3→ S. Given this path, we want to

construct the configuration of washers corresponding to that path, assuming that the move

G
3→ S has just been carried out. This is also shown in the figure and we now explain how

we obtained it.

H(6, S, E, G) 

H(5,E, S, G) 

H(4, E, G, S) 

H(3, G, E, S) 

G S3
5

3
4 6

1
2

S E G

5
6

34

1
2

4 5 6

S E G

3
1

2

6

S E G
5

34

1
2

6

S E G
5

34

1
2

S E G

MOVE  JUST  MADE

STARTING  CONFIGURATION 

ENDING  CONFIGURATION

1 Leaf

1 Leaf5h Leaves

RANK 43
NUMBER 44



3h Leaves

2h Leaves

The first part of the path shows what happens when we use the local tree for H(6,S,E,G).
Since we are going to H(5,E,S,G), the first edge of the path “slopes down to the right.”
At this point, the left edge, which led to H(5,S,G,E) moved washers 1 through 5 to pole E

using h5 = 25 − 1 = 31 moves and move S
6→ G has moved washer 6. This is all shown in

the figure and it has taken 31 + 1 = 32 moves.

Next, one replaces H(5,E,S,G) with the local tree (being careful with the S, E, G
labels!). This time the path “slopes to the left”. Continuing in this manner we complete
the entire path and have the configuration that is reached.

We can compute the rank of this configuration by noticing how many moves were

made to reach it. Each move, except our final one G
3→ S, is a leaf to the left of the leaf

corresponding to the move G
3→ S at the end of the path. We can see from the figure that

there were

(h5 + 1) + 0 + (h3 + 1) + h2 = (31 + 1) + (7 + 1) + 3 = 43

such moves and so the rank of this configuration is 43.
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You should study this example carefully. It represents a very basic way of studying
recursions. In particular

(a) You should be able to do the same analysis for a different path.

(b) You should be able to start with an ending configuration and reconstruct the path.

(c) You should be able to start with a configuration and, by attempting to reconstruct
the path (and failing), be able to show that the configuration is illegal (can never
arise).

We’ve already discussed (a). When you know how to do (b), you should be able to do
(c). How can we reconstruct the path from the ending configuration? Look at the final
configuration in the previous figure and note where the largest washer is located. Since
it is on G, it must have been moved from S to G. This can only happen on the middle
edge leading out from the root. Hence we must take the rightmost branch and are on the
path that starts H(5,E,S,G). We are now dealing with a configuration where washers 1–5
start out stacked on E, washer 6 is on G and washer 6 will never move again. This takes
care of washer 6 and we ignore it from now on. We are now faced with a new problem:
There are 5 washers starting on E. In the final configuration shown in the figure, washer 5
is still on E, so it has not moved in this new problem. Therefore, we must take leftmost
branch from H(5,E,S,G). This is H(4,E,G,S). Again, we have a new problem with 4 washers
starting out on E. Since washer 4 must end up on S, we take the rightmost branch out of
the vertex H(4,E,G,S). We continue in this manner until we reach H(1,. . .). If washer 1
must move, that is the last move. Otherwise, the last move is the leaf to the left of the last
right-pointing branch that we took. In our particular case, from H(4,E,G,S) we go right to
H(3,G,E,S), right to H(2,E,G,S), left to H(1,E,S,G). Since washer 1 is on E, it has not yet
moved in doing H(1,E,S,G). (Of course, it may have moved several times earlier.) The last
right branch was H(2,E,G,S) from H(3,G,E,S) so that the last move was washer 3 from G
to S.

How could the previous process ever fail? Not all configurations arise. For example, if
washer 5 were on S, we would have decided to move it in H(5,E,S,G) since it is not on E.
But the only time H(5,E,S,G) moves washer 5 is from E to G so it cannot end up on S.

We conclude this section with another “canonical” example of recursive algorithm and
decision trees. We want to look at all subsets of n. It will be more convenient to work with
the representation of subsets by functions with domain n and range {0, 1}. For a subset S
of n, define

χS(i) =
{

1 if i ∈ S,
0 if i /∈ S.

This function is called the characteristic function of S. We have a characteristic function
for every subset S of n. In one line notation, these functions become n-strings of zeroes and
ones: The string a1 . . . an corresponds to the subset T where i ∈ T if and only if ai = 1.
Thus the all zeroes string corresponds to the empty set and the all ones string to n. This
correspondence is called the characteristic function interpretation of subsets of n.

Our goal is to make a list of all subsets of n such that subsets adjacent to each other in
the list are “close” to each other. Before we can begin to look for such a Gray code, we must
say what it means for two subsets (or, equivalently, two strings) to be close. Two strings
will be considered close if they differ in exactly one position. In set terms, this means one
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of the sets can be obtained from the other by removing or adding a single element. With
this notion of closeness, a Gray code for all subsets when n = 1 is 0, 1. A Gray code for
all subsets when n = 2 is 00, 01, 11, 10.

How can we produce a Gray code for all subsets for arbitrary n? There is a simple
recursive procedure. The following construction of the Gray code for n = 3 illustrates it.

0 00 1 10
0 01 1 11
0 11 1 01
0 10 1 00

You should read down the first column and then down the second. Notice that the sequences
in the first column begin with 0 and those in the second with 1. The rest of the first column
is simply the Gray code for n = 2 while the second column is the Gray code for n = 2, read
from the last sequence to the first.

We now prove that this two column procedure for building a Gray code for subsets of
an n-set from the Gray code for subsets of an (n− 1)-set always works. Our proof will be
by induction. For n = 1, we have already exhibited a Gray code. Suppose that n > 1 and
that we have a Gray code for n− 1. (This is the induction assumption.)

• Between the bottom of the first column and the top of the second, the only change
is in the first position since the remaining n − 1 positions are the last element of our
Gray code for n− 1.

• Within a column, there is never any change in the first position and there is only a
single change from line to line in the remaining positions because they are a Gray code
by the induction assumption.

This completes the proof.

As an extra benefit, we note that the last element of our Gray code differs in only one
position from the first element (Prove it!), so we can cycle around from the last element to
the first by a single change.

Example 15 (Decision tree for the subset Gray code) Here is another notation for

describing our subset Gray code. Let
−−−−→
GRAY(1) = 0, 1, and let

←−−−−
GRAY(1) = 1, 0. As the

arrows indicate,
−−−−→
GRAY(1) is the Gray code for n = 1 listed from first to last element, while←−−−−

GRAY(1) is this Gray code in reverse order. In general, if
−−−−→
GRAY(n) is the Gray code for

n-bit words, then
←−−−−
GRAY(n) is defined to be that list in reverse order.

We define −−−−→
GRAY(2) = 0

−−−−→
GRAY(1), 1

←−−−−
GRAY(1).

The meaning of 0
−−−−→
GRAY(1) is that 0 is put at the front of every string in

−−−−→
GRAY(1).

Juxtaposing the two lists (or “concatenation”) means just listing the second list after the

first. Thus, 0
−−−−→
GRAY(1) = 00, 01, and 1

←−−−−
GRAY(1) = 11, 10. Hence,

−−−−→
GRAY(2) = 0

−−−−→
GRAY(1), 1

←−−−−
GRAY(1) = 00, 01, 10, 11 .
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If we read
−−−−→
GRAY(2) in reverse order, we obtain

←−−−−
GRAY(2). You should verify the following

equality. ←−−−−
GRAY(2) = 1

−−−−→
GRAY(1), 0

←−−−−
GRAY(1).

What we did for n = 2 works in general: The following diagram gives the local de-
scription of a decision tree for constructing subset Gray codes:

   

GRAY(n)

0GRAY(n-1) 1GRAY(n-1)

10

0

GRAY(1)

1 0

0

GRAY(1)

1

1 1

0

1GRAY(n-1)

GRAY(n)

0GRAY(n-1)

1 0

The left side of the figure is a definition for
−−−−→
GRAY(n). We must verify two things:

• This definition gives us a Gray code.

• Given the left figure and the fact that
←−−−−
GRAY(n) is the reversal of

−−−−→
GRAY(n), the right

figure is correct.

The first part was already done because the figure simply describes the construction we
gave before we started this example. The second part is easy when we understand what

the tree means. Reading the
−−−−→
GRAY(n) tree from the right, we start with the reversal of

1
←−−−−
GRAY(n− 1). Since

←−−−−
GRAY and

−−−−→
GRAY are defined to be reversals of each other, we get

1
−−−−→
GRAY(n− 1). Similarly, reversing 0

−−−−→
GRAY(n− 1) gives 0

←−−−−
GRAY(n− 1).

If we apply the local description to the case n = 3, we obtain the following decision
tree:



  

00GRAY(1) 01GRAY(1)

10 

  

11GRAY(1) 10GRAY(1)

1 0

   

GRAY(3)

0GRAY(2) 1GRAY(2)

10

10 1 0 10 1 0

000 001 011 010 110 111 101 100

In the above decision tree for
−−−−→
GRAY(3), the elements of the Gray code for n = 3 are

obtained by listing the labels on the edges for each path that ends in a leaf. These paths
are listed in preorder of their corresponding leaves (left to right in the picture). This gives
000, 001, 011, 010, 110, 111, 101, 100. You should practice doing the configuration analysis
for this recursion, analogous to Example 14. In particular, given a sequence, 10011101 say,
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construct its path in the decision tree. What is the RANK of 10011101 in
−−−−→
GRAY(8)? What

is the element in
−−−−→
GRAY(8) just before 10011101; just after 10011101?

Note in the above decision tree for
−−−−→
GRAY(3) that every time an edge with label 1 is

encountered (after the first such edge), that edge changes direction from the edge just prior
to it in the path. By “changing direction,” we mean that if an edge is sloping downward
to the right (downward to the left) and the previous edge in the path sloped downward
to the left (downward to the right), then a change of direction has occurred. Conversely,
every time an edge with label 0 is encountered (after the first such edge), that edge does
not change direction from the edge just prior to it in the path. This is a general rule that
can be proved by induction.

Exercises for Section 2

2.1. Suppose the permutations on 8 are listed in lexicographic order.

(a) What is the RANK in the list of all such permutations of 87612345?

(b) What permutation has RANK 20,160?

2.2. Consider the Towers of Hanoi puzzle, H(8, S, E, G). Suppose that pole S has washers
6, 5, 2, 1; pole E has no washers; pole G has washers 8, 7, 4, 3. Call this the basic

configuration.

(a) What is the path in the decision tree that corresponds to the basic configura-
tion?

(b) What was the move that produced the basic configuration and what was the
configuration from which that move was made?

(c) What was the move just prior to the one that produced the basic configuration
and what was the configuration from which that move was made?

(d) What will be the move just after the one that produced the basic configuration?

(e) What is the RANK, in the list of all moves of H(8, S, E, G), of the move that
produced the basic configuration?

2.3. Consider
−−−−→
GRAY(9).

(a) What is the element just before 110010000? just after 110010000?

(b) What is the first element of the second half of the list?

(c) What is the RANK of 111111111?

(d) What is the element of RANK 372?

*2.4. Consider the Towers of Hanoi puzzle with four poles and n washers. The rules
are the same, except that there are two “extra” poles E and F. The problem is to
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transfer all of the n washers from S to G using the extra poles E and F as temporary
storage. Let h′

n denote the optimal number of moves needed to solve the three pole
problem. Let fn denote the optimal number of moves needed to solve the four pole
problem with n washers.

(a) Recall that hn = 2n − 1 is the number of moves in the recursive algorithm
H(n, S, E, G). Prove by induction that h′

n = hn.

(b) Compute fn for n = 1, 2, 3, describing, in the process, optimal sequences of
moves.

Let’s adopt a specific strategy for doing four poles and n washers. Choose integers
p ≥ 0 and q > 0 so that p + q = n. We now describe strategy G(p, q, S, E, F, G).
To execute G(p, q, S, E, F, G), proceed as follows:

(i) If p = 0, then q = n. Use H(n, S, E, G) to move washers 1, . . . , n to G.

(ii) If p > 0, choose integers i ≥ 0 and j > 0 such that i + j = p. Use
G(i, j, S, E, G, F) to move washers 1, 2, . . . , p to pole F (the washers are num-
bered in order of size). Next, use H(q, S, E, G) to move washers q, . . . ,n to G.
Finally, use G(i, j, F, S, E, G) to move 1, 2, . . . , p to pole G, completing the
transfer. For all possible choices of i and j, choose the one that minimizes the
number of moves.

Finally, to move the n washers, choose that G(p, q, S, E, F, G) with n = p + q
which has the minimum number of moves. Call this number sn.

(c) What are the simplest cases in this recursive algorithm? How can you compute
the values of i and j to minimize the number of moves? Use your method to
solve the problem for n ≤ 6.

(d) What is the recursion for sn?

(e) Prove that fn ≤ 2 min(fn−q + hq), where the minimum is over q > 0 and
f0 = 0. recursion.

Section 3: Decision Trees and Conditional Probability

We conclude our discussion of decision trees by giving examples of the use of decision trees
in elementary probability theory. In particular, we focus on what are called conditional

probabilities and Bayesian methods in probability.

Definition 4 (Conditional probability) Let U be a sample space with probability
function P . If A ⊆ U and B ⊆ U are events (subsets) of U then the conditional probability

of B given A, denoted by P (B|A), is

P (B|A) =

{

P (A ∩B)/P (A), if P (A) 6= 0,
undefined, if P (A) = 0.
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How should we interpret P (B|A)? If an experiment is performed n times and b of those
times B occurs, then b/n is nearly P (B). Furthermore, as n increases, the ratio b/n almost
surely approaches P (B) as a limit.* Now suppose an experiment is performed n times
but we are only interested in those times when A occurs. Furthermore, suppose we would
like to know the chances that B occurs, given that A has occurred. Let the count for A
be a and that for A ∩ B be c. Since we are interested only in the cases when A occurs,
only a of the experiments matter. In these a experiments, B occurred c times. Hence the
probability that B occurs given that A has occurred is approximately c/a = (c/n)/(a/n),
which is approximately P (A∩B)/P (A), which is the definition of P (B|A). As n increases,
the approximations almost surely approach P (B|A). Hence

P (B|A) should be thought of as the probability that B occurred,
given that we know A occurred.

Another way you can think of this is that we are changing to a new sample space A. To
define a probability function PA on this sample space, we rescale P so that

∑

a∈A PA(a) = 1.
Since

∑

a∈A P (a) = P (A), we must set PA(a) = P (a)/P (A). Then, the probability that B
occurs is the sum of PA(a) over all a ∈ B that are in our new sample space A. Thus

PA(B) =
∑

a∈A∩B

PA(a) =
∑

a∈A∩B

P (a)/P (A) = P (A ∩ B)/P (A),

which is our definition of P (B|A).

The following theorem contains some simple but important properties of conditional
probability.

Theorem 2 (Properties of conditional probability) Let (U,P ) be a probability
space. All events in the following statements are subsets of U and the conditional proba-
bilities are assumed to be defined. (Recall that P (C|D) is undefined when P (D) = 0.)

(a) P (B|U) = P (B) and P (B|A) = P (A ∩B | A).

(b) A and B are independent events if and only if P (B|A) = P (B).

(c) (Bayes’ Theorem) P (A|B) = P (B|A)P (A)/P (B).

(d) P (A1 ∩ · · · ∩An) = P (A1) P (A2 | A1) P (A3 | A1 ∩A2) · · ·P (An | A1 ∩ · · · ∩An−1).

You can think of (b) as a justification for the terminology “independent” since P (B|A) =
P (B) says that the probability of B having occurred is unchanged even if we know that A
occurred; in other words, A does not influence B’s chances. We will encounter other forms
of Bayes’ Theorem. All of them involve reversing the order in conditional probabilities.
(Here, A|B and B|A.)

Proof: All the proofs are simple applications of the definition of conditional probability,
so we prove just (b) and (d) and leave (a) and (c) as exercises.

* For example, we might toss fair coin 100 times and obtain 55 heads, so a/n; = 55/100 is
nearly 1/2 = P (head). With 10,000 tosses, we might obtain 4,930 heads and 4,930/10,000
is even closer to 1/2 than 55/100. (This is the sort of accuracy one might realistically
expect.)
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We prove (b). Suppose A and B are independent. By the definition of independence,
this means that P (A ∩ B) = P (A)P (B). Dividing both sides by P (A) and using the
definition of conditional probability, we obtain P (B|A) = P (B). For the converse, suppose
P (B|A) = P (B). Using the definition of conditional probability and multiplying by P (A),
we obtain P (A ∩B) = P (A)P (B), which is the definition of independence.

We prove (d) simply by using the definition of conditional probability and doing a lot
of cancellation of adjacent numerators and denominators:

P (A1) P (A2 | A1) P (A3 | A1 ∩A2) · · ·P (An | A1 ∩ · · · ∩An−1)

= P (A1)
P (A2 ∩A1)

P (A1)

P (A1 ∩A2 ∩A3)

P (A1 ∩A2)
· · · P (A1 ∩ · · · ∩ An)

P (A1 ∩ · · · ∩An−1)

= P (A1 ∩ · · · ∩An).

This completes the proof.

An alternative proof of (d) can be given by induction on n. For n = 1, (d) becomes
P (A1) = P (A1), which is obviously true. For n > 1 we have

P (A1) P (A2 | A1) · · ·P (An−1 | A1 ∩ · · · ∩An−2) P (An | A1 ∩ · · · ∩An−1)

=
(

P (A1) P (A2 | A1) · · ·P (An−1 | A1 ∩ · · · ∩An−2)
)

P (An | A1 ∩ · · · ∩An−1)

= P (A1 ∩ · · · ∩An−1)P (An | A1 ∩ · · · ∩ An−1) by induction

= P (A1 ∩ · · · ∩An) Definition 4.

This completes the proof.

Example 16 (Diagnosis and Bayes’ Theorem) Suppose we are developing a test to
see if a person has a disease, say the dreaded wurfles. It’s known that 1 person in about
500 has the wurfles. To measure the effectiveness of the test, we tried it on a lot of people.
Of the 87 people with wurfles, the test always detected it, so we decide it is 100% effective
at detection. We also tried the test on a large number of people who do not have wurfles
and found that the test incorrectly told us that they have wurfles 3% of the time. (These
are called “false positives.”)

If the test is released for general use, what is the probability that a person who tests
positive actually has wurfles?

Let’s represent our information mathematically. Our probability space will be the
general population with the uniform distribution. The event W will correspond to having
wurfles and the event T will correspond to the test being positive. Our information can be
written

P (W ) = 1/500 = 0.002 P (T |W ) = 1 P (T |W c) = 0.03,

and we are asked to find P (W |T ). Bayes’ formula (Theorem 2(c)) tells us

P (W |T ) =
P (T |W ) P (W )

P (T )
.
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Everything on the right is known except P (T ). How can we compute it? The idea is to
partition T using W and then convert to known conditional probabilities:

P (T ) = P (T ∩W ) + P (T ∩W c) partition T

= P (T |W )P (W ) + P (T |W c)P (W c) convert to conditional

= 1× 0.002 + 0.03× (1− 0.002) ≈ 0.032,

where we have rounded off. Thus P (W |T ) ≈ 1× 0.002/0.032 ≈ 6%. In other words, even if
the test is positive, you only have a 6% chance of having wurfles. This shows how misleading
a rather accurate test can be when it is used to detect a rare condition.

Example 17 (Decision trees and conditional probability) We can picture the
previous example using a decision tree. We start out with the sample space U at the root.
Since we have information about how the test behaves when wurfles are present and when
they are absent, the first decision partitions U into W (has wurfles) and W c (does not have
wurfles). Each of these is then partitioned according to the test result, T (test positive)
and T c (test negative). Each edge has the form (A,B) and is labeled with the conditional
probability P (B|A). The labels P (W ) and P (W c) are equal to P (W |U) and P (W c|U)
respectively (by Theorem 2(a)). Here is the decision tree for our wurfles test.

 

U

W

TT

Wc

Tc
Tc

P(W
) W c

P(       )

WT Tc W WcTc
WcT

W
c

T c
P

(     |       )

W


T c
P

(      |    )P
(T

| W
 )

W
c

P
(T

|  
   

  )

If you follow the path (U,W,T ), your choices were first W (has wurfles) then T (tests
positive). In terms of sets, these choices correspond to the event (i.e., set) T ∩W of all
people who both test positive and have wurfles. Accordingly, the leaf that is at the end of
this path is labeled with the event T ∩W . Similar “event” labels are placed at the other
leaves.

Using the definition of conditional probability, you should be able to see that the
probability of the event label at a vertex is simply the product of the probabilities on the
edges along the path from the root to the vertex. For example, to compute P (T ∩W c)
we multiply P (W c) and P (T |W c) = P (T ∩ W c)/P (W c). Numerically this is 0.998 ×
0.03 ≈ 0.03. To compute P (T ∩W ) we multiply P (W ) and P (T |W ). Numerically this is
0.002× 1.0 = 0.002. Here is the tree with the various numerical values of the probabilities
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shown.

 

U

W

TT

Wc

Tc
Tc

0.002 0.998

0.03 0.971 0

WT Tc W WcTc
WcT

Using the above tree and the computational rules described in the previous paragraph,
we can compute P (W |T ) = P (W ∩ T )/P (T ) = P (T ∩W )/P (T ) as follows.

1. Compute P (T ) by adding up the probabilities of the event labels of all leaves

that are associated with the decision T . (These are the event labels T ∩W and
T ∩W c.) Thus, P (T ) = P (T ∩W ) + P (T ∩W c). Using the actual probabilities
on the edges of the decision tree we get P (T ) = 0.002×1.0+0.998×0.03 ≈ 0.032.

2. Compute P (W |T ) using P (W |T ) = P (T ∩W )/P (T ). Using the computation in
step (1), we get P (W |T ) = P (T ∩W )/P (T ) = (0.002× 1.0)/0.032 ≈ 0.06 These
are the same calculations we did in the previous example, so why go to the extra
trouble of drawing the tree? The tree gives us a systematic method for recording
data and carrying out the calculations.

In the previous example, each vertex was specifically labeled with the event, such as
W ∩ T c, associated with it. In the next example, we simply keep track of the information
we need to compute our answer.

Example 18 (Another decision tree with probabilities) We are given an urn with
one red ball and one white ball. A fair die is thrown. If the number is 1, then 1 red ball
and 2 white balls are added to the urn. If the number is 2 or 3, then 2 red balls and 3
white balls are added to the urn. If the number is 4, 5, or 6, then 3 red balls and 4 white
balls are added to the urn. A ball is then selected uniformly at random from the urn. We
represent the situation in the following decision tree.

[1R, 1W]

[2R, 3W]

[3R, 3W] [3R, 5W] [4R, 4W][2R, 4W][2R, 2W][1R, 3W]

[3R, 4W] [4R, 5W]

RRR WWW

1/6 1/3 1/2

2/5

1/15 1/10 1/7 4/21 5/182/9

3/5 3/7 4/7 4/9 5/9

{1} {2,3} {4,5,6}
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The root is represented by the initial composition of the urn. The children of the root
[1R, 1W] are [2R, 3W], [3R, 4W], and [4R, 5W]. Beside each of these children of the root
is the outcome set of the roll of the die that produces that urn composition: {1}, {2, 3},
{4, 5, 6}. The probabilities on the edges incident on the root are the probabilities of the
outcome sets of the die. The probabilities on the edges incident on the leaves are the con-
ditional probabilities as discussed in Example 17. Thus, 3/7 is the conditional probability
that the final outcome is R, given that the outcome of the die was in the set {2, 3}.

Here is a typical sort of question asked about this type of probabilistic decision tree:
“Given that the ball drawn was red, what is the probability that the outcome of the die was
in the set {2, 3}.” We could write this mathematically as P ({2, 3} | R), where {2, 3} repre-
sents the result of rolling the die and R represents the result of the draw. Note in this process
that the basic data given are conditional probabilities of the form P (drawing is R | die in S).
We are computing conditional probabilities of the form P (die roll in S | drawing is R). This
is exactly the same situation as in Example 17. Thus our question is answered by carrying
out the two steps in Example 17:

1. Add up the probabilities of all leaves resulting from the drawing of a red ball to
obtain P (R) = 1/15 + 1/7 + 2/9 = 136/315. (The probabilities of the leaves were
computed by multiplying along the paths from the root. The results for all leaves
are shown in the picture of the decision tree.)

2. Compute the conditional probability P ({2, 3} | R) by dividing P ({2, 3} ∩ R) =
1/7 by P (R). Divide this by the answer from part (1). In this case, we get
(1/7)/(136/315) = 0.331.

If you wish, you can think of this problem in terms of a new sample space. The
elements of the sample space are the leaves. Step 1 (multiplying probabilities along paths)
computes the probability function for this sample space. Since an event is a subset of the
sample space, an event is a set of leaves and its probability is the sum of the probabilities
of the leaves it contains. Can we interpret the nonleaf vertices? Yes. Each such vertex
represents an event that consists of the set of leaves below it. Many people prefer this
alternative way of thinking about the decision tree.

The procedure we used to compute conditional probabilities in Steps 1 to 3 of two
previous examples can be stated as a formula, which is another form of Bayes’ Theorem:

Theorem 3 (Bayes’ Theorem) Let (U,P ) be a probability space, let
{Ai : i = 1, 2, . . . , n} be a partition of U , and let B ⊂ U . Then

P (Ai|B) =
P (Ai)P (B|Ai)

∑n
t=1 P (At)P (B|At)

.

Most students find decision trees much easier to work with than trying to apply the formal
statement of Bayes’ theorem. Our proof will closely follow the terminology of Example 17.

Proof: We can draw a decision tree like the ones in the previous examples, but now there
are n edges of the decision tree coming down from the root and 2 edges coming down from
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each child of the root. Here is a decision tree for this generalization:

A1 A2 A i A n

A
i

P(     )
A n

P(      )A 2
P(   

   )A1P(      )



U

    

A
i

P
(B

|  
   

)

A
i

P(~B|     )

 B1A

B B B B

P
(B

|  
   

)
1A

P(~B|     )1
A

1A ~B 2A  B

P(~B|     )2
A

P
(B

|  
   

)
2

A

2A ~B

~B ~B ~B~B

nA  B

P
(B

|  
   

)
n

A

P(~B|     )n
A

nA ~B BiA iA ~B

We follow the two step process of Example 17. In doing this, we need to compute, for
1 ≤ t ≤ n, the products of the probabilities along the path passing through the vertex At

and leading to the leaves labeled by the events At ∩B = B ∩At.

1. Add up the probabilities of all leaves contained in B, i.e., add up P (At)P (B|At)
over 1 ≤ t ≤ n to obtain P (B).

2. Compute P (Ai|B) = P (Ai ∩ B)/P (B). Since P (Ai ∩ B) = P (Ai)P (B|Ai), this
quotient is the formula in the theorem.

This process gives the formula in the theorem.

All of our probabilistic decision trees discussed thus far have had height two. However,
probabilistic decision trees can have leaves at any distance from the root and different
leaves may be at different distances. The two step procedure in Example 17 contains no
assumptions about the height of leaves and, in fact, will work for all trees. The next
example illustrates this.

Example 19 (Tossing coins) Suppose you have two coins. One has heads on both sides
and the other is a normal coin. You select a coin randomly and toss it. If the result is
heads, you switch coins; otherwise you keep the coin you just tossed. Now toss the coin
you’re holding. What is the probability that the result of the toss is heads? Here is the
decision tree.

hh

H:ht

H T

ht


H:hh T:ht

H H T

1

1

1/2 1/2

1/2 1/2

1/21/2 1/2 1/2

1/4 1/4 1/4 1/8 1/8

The labels hh and ht indicate which coin you’re holding — two headed or normal. The
labels H and T indicate the result of the toss. A label like H:ht means the toss was H and
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so I am now holding the ht coin. The conditional probabilities are on the edges and the leaf
probabilities were computed by multiplying the probabilities along the paths, as required
by Step 1. Adding up, we find that the probability of heads is 1/4 + 1/4 + 1/8 = 5/8.

Given that the final toss is heads, what is the probability that you’re holding the
double-headed coin? The leaf where you’re holding the double headed coin and tossed a
head is the middle leaf, which has probability 1/4, so the answer is (1/4)/(5/8) = 2/5.

Given that the final toss is heads, what is the probability that the coin you picked up
at the start was not double headed? This is a bit different than what we’ve done before
because there are two leaves associated with this event. Since the formula for conditional
probability is

P ((chose ht) ∩ (second toss was H))

P (second toss was H)
,

we simply add up the probability of those two leaves to get the numerator and so our
answer is (1/4 + 1/8)/(5/8) = 3/5.

In the last paragraph we introduced a generalization of our two step procedure: If an
event corresponds to more than one leaf, we add up the probability of those leaves.

*Generating Objects at Random

To test complicated algorithms, we may want to run the algorithm on a lot of random
problems. Even if we know the algorithm works, we may want to do this to study the speed
of the algorithm. Computer languages include routines for generating random numbers.
What can we do if we want something more complicated?

In Section 4 of Unit Fn, we gave an algorithm for generating random permutations.
Here we show how to generate random objects using a decision tree.

Let (U,P ) be a probability space. Suppose we want to choose elements of U at random
according to the probability function P . In other words, u ∈ U will have a probability P (u)
of being chosen each time we choose an element. This is easy to do if we have a decision tree
whose leaves correspond to the elements of U . The process is best understood by looking
at an example

Example 20 (Generating random words) In Example 2 we looked at the problem of
counting certain types of “words.” Go back and review that example before continuing.

• • •

We want to generate those words at random.

We’ll use a two step approach. First, we’ll select a CV-pattern corresponding to one
of the leaves in the tree from Example 2. (We’ve reproduced the figure below. For the
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present, ignore the numbers in the figure.) Second, we’ll generate a word at random that
fits the pattern.

C V

CC CV

CCV CVC

CCVC CVCC CVCV

CCVCC CVCCVCCVCV CVCVC

VC


VCC VCV

VCCV

VCCVC

VCVC

VCVCC VCVCV

_1.00

0.73

0.27

0.24

0.49 0.15

0.3710 0.1172 0.1172 0.1233 0.1172 0.1172 0.0370

Generating a random word to fit the pattern is simple. To illustrate, suppose the
pattern is CCVCV. Since there are 20 choices for the first C, use the computer software to
generate a random number between 1 and 21 to decide what consonant to choose for C.
The second C has 19 choices since adjacent consonants must be different and so on. Here’s
the result of some random choices

position number random letter
& type of choices number chosen comments

1 C 20 5 G 5th among consonants (BCDFG. . .)
2 C 19 11 P 11th among consonants except G
3 V 6 2 E 2nd among vowels (AEIOUY)
4 C 20 11 N 11th among consonants (BCDFG. . .)
5 V 6 3 I 3rd among vowels (AEIOUY)

How should we choose a pattern? We discovered in Example 2 that some patterns fit
more words than other patterns fit. Each pattern should be chosen in proportion to the
number of words it fits so that each word will have an equal chance. Using the counts in
Example 2, we computed the probabilities of the leaves in the preceding figure. Thus

P (leaf) =
number of words with leaf pattern

total number of words

You should compute those values yourself. We have constructed a probability space where
U is the set of leaves in the tree and P has the values shown at the leaves. Each vertex in
the tree corresponds to an event, namely the set of leaves that are below it in the tree. Thus
we can compute the probability of each vertex in the tree by adding up the probabilities of
the leaves below that vertex. Many of those probabilities are shown in the previous figure.

How do we generate a leaf at random using the probabilities we’ve computed? We start
at the root of the tree and choose a path randomly as follows. If we are at a vertex v that has
edges (v,w), (v, x) and (v, y), we simply choose among w, x and y by using the conditional
probabilities P (w|v) = P (w)/P (v), P (x|v) = P (x)/P (v) and P (y|v) = P (y)/P (v). In
other words, choose w with probability P (w|v) and so on. (This can be done using random
number generators on computers.)
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Someone might say:

All that work with the tree is not necessary since we can use the following
“direct” method: Using the leaf probabilities, generate a random pattern.

That approach is not always feasible. For example, suppose we wanted to generate a
random strictly decreasing function from 200 to 100. We learned in Section 3 of Unit Fn
that there are

(

200
100

)

of these functions. This number is about 3 × 1058. Many random
number generators cannot reliably generate random integers between 1 and a number this
large. Thus we need a different method. One way is to use a decision tree that lists the
functions. It’s a much bigger tree than we’ve looked at, but we don’t need to construct the
tree. All we need to know is how to compute the conditional probabilities so that each leaf
will have probability 1/

(

200
100

)

. It turns out that this can be done rather easily. In summary,
the tree method can be used when the “direct” method is not practical.

*The First Moment Method and the SAT Problem

We now review briefly the concept of conjunctive normal form. Suppose p, q, r, . . . are
Boolean variables (that is, variables that can be 0 or 1). The operations ∼, ∨, and ∧ stand
for “negation”, “or”, and “and”, respectively. A disjunctive clause is a list of Boolean vari-
ables and negations of Boolean variables joined by ∨. Here are four examples of disjunctive
clauses:

q ∨ r, p ∨ (∼ q) ∨ r, (∼ p) ∨ (∼ q) ∨ (∼ r), (∼ r) ∨ q.

Conjunctive normal form is a statement form consisting of disjunctive clauses joined by ∧;
for example

(q ∨ r) ∧ (p ∨ (∼ q) ∨ (∼ r)) ∧ ((∼ p) ∨ (∼ q) ∨ r) ∧ ((∼ r) ∨ q).

(Disjunctive normal form is the same as conjunctive normal form except that ∧ and ∨
are switched.) The satisfiability problem is the following. Given a statement in conjunc-
tive normal form, is there some choice of values for the Boolean variables that make the
statement equal to 1? One may also want to know what choice of variables does this. The
satisfiability problem is also called the SAT problem. The SAT problem is known to be
hard in general. (The technical term is “NP-complete”.)

Given a statement in conjunctive normal form, how might we try to solve the satis-
fiability problem? One way is with the following backtracking algorithm for a statement
involving p1, p2, . . . , pn

Step 1. Set k = 1.

Step 2. Set pk = 0.

Step 3. (Test) Check to see if any of the clauses that contain only p1, . . . , pk are 0. If so,
go to Step 40; if not, go to Step 41.

Step 40. (Failure) If pk = 0, set pk = 1 and go to Step 3. If pk = 1, replace k with k − 1
and go to Step 40.
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Step 41. (Partial success) If k = n, stop because the current values of the variables make
the statement 1. If k < n, replace k with k + 1 and go to Step 2.

You should use the algorithm on the conjunctive normal form statement given earlier.

The following example shows that we can sometimes guarantee that the algorithm
will succeed if there are not too many clauses. However, it does not give us values of the
variables that will make the statement 1. In the example after that, we will see how to use
the idea from the next example to find those values without backtracking.

Example 21 (SAT with just a few clauses) Suppose we have a conjunctive normal
form statement S = C1 ∧ C2 ∧ · · · ∧ Ck, where the Ci are clauses in the Boolean variables
p1, . . . , pn. Make the set ×n{0, 1}, the possible values for p1, . . . , pn, into a probability
space by letting each n-tuple have probability 1/2n.

Let Xi be a random variable whose value is 1 if Ci has the value 0, and let Xi = 0 if
Ci has the value 1. (Be careful: note the reversal — Xi is the opposite of Ci.) The number
of clauses which are 0 is X = X1 + · · · + Xk. If we can show that P (X = 0) = 0, we will
have shown that there is some choice of p1, . . . , pn for which all clauses are 1 and so S will
be 1 as well. How can we do this? Here is one tool:

Theorem 4 (First Moment Method) Suppose that X is an integer-valued random
variable and E(X) < m + 1, then P (X ≤ m) is greater than 0.

This is easy to prove:

m + 1 > E(X) =
∑

k

kP (X = k) ≥
∑

k≥m+1

(m + 1)P (X = k) = (m + 1)P (X ≥ m + 1).

Thus P (X ≥ m + 1) < 1 and so P (X ≤ m) = 1− P (X ≥ m + 1) > 0.

To apply this, we need to compute E(X) = E(X1)+ · · ·+E(Xk). Let vi be the number
of variables and their negations appearing in Ci. We claim that E(Xi) = 2−vi . Why is
this? Note that E(Xi) equals the probability that Ci has the value 0. To make Ci have
the value 0, each variable in Ci must be chosen correctly: 0 if it appears without being
negated and 1 if it appears negated. The variables not appearing in Ci can have any values
whatsoever.

We have shown that E(X) = 2−v1 + · · ·+ 2−vk . By the First Moment Method, we are
done if this is less than 1. We have proved:

Theorem 5 (SAT for few clauses) Suppose we have a conjunctive normal form
statement S = C1 ∧ C2 ∧ · · · ∧ Ck, where the Ci are clauses in the Boolean variables
p1, . . . , pn. Let vi be the number of variables (and negations of variables) that appear in
Ci. If 2−v1 + · · · + 2−vk < 1, then there is a choice of values for p1, . . . , pn which gives S
the value 1.

Let’s apply the theorem to

S = (q ∨ r) ∧ (p ∨ (∼ q) ∨ (∼ r)) ∧ ((∼ p) ∨ (∼ q) ∨ r) ∧ ((∼ r) ∨ q).
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We have v1 = 2, v2 = 3, v3 = 3, and v4 = 2. Thus

E(X) = 2−2 + 2−3 + 2−3 + 2−2 = 3/4 < 1.

Thus there is a choice of variables that give S the value 1. If you carried out the backtracking
algorithm as you were asked to earlier, you found such an assignment. Of course, you may
find the assignment rather easily without backtracking. However, the theorem tells us a lot
more: It doesn’t look at the structure of the clauses, so you could change p to ∼ p and so
on in any of the clauses you wish and the statement would still be satisfiable.

Example 22 (Satisfiability without backtracking) Suppose the situation in the pre-
ceding example holds; that is, E(X) < 1. We want to find values for p1, . . . , pn that satisfy
S (give it the value 1). We have

E(X) = P (pn = 0) E(X | pn = 0) + P (pn = 1) E(X | pn = 1)

= 1
2E(X | pn = 0) + 1

2E(X | pn = 1).

Since E(X) < 1 at least one of E(X | pn = 0) and E(X | pn = 1) must be less than 1.
Suppose that E(X | pn = 0) < 1. Set pn = 0 and simplify S to get a new statement S′ in
p1, . . . , pn−1. To get this new statement S′ from S when pn = 0:

• any clause not containing pn or ∼ pn is unchanged;

• any clause containing ∼ pn will have the value 1 regardless of the remaining variables
and so is dropped;

• any clause containing pn depends on the remaining variables for its value and so is
kept, with pn removed.

When pn = 1, the last two cases are reversed to produce S′. This method will be illustrated
soon.

Let X ′ be for S′ what X is for S. You should show that

E(X ′) = E(X | pn = 0) < 1.

We can now repeat the above procedure for S′, which will give us a value for pn−1. Con-
tinuing in this way, we find values for pn, pn−1, . . . , p1.

Let’s apply this to

S = (q ∨ r) ∧ (p ∨ (∼ q) ∨ (∼ r)) ∧ ((∼ p) ∨ (∼ q) ∨ r) ∧ ((∼ r) ∨ q).

When p = 0, this reduces to

(q ∨ r) ∧ ((∼ q) ∨ (∼ r)) ∧ ((∼ r) ∨ q),

and so E(X | p = 0) = 2−2 + 2−2 + 2−2 < 1. Thus we can take the previous statement to
be S′. Suppose we try q = 0. Then

(q ∨ r) ∧ ((∼ q) ∨ (∼ r)) ∧ ((∼ r) ∨ q)

reduces to r∧(∼ r) because the middle clause disappears. The expectation is 2−1+2−1 = 1,
so this is a bad choice. (Of course this is obviously a bad choice, but we’re applying the
method blindly like a computer program would.) Thus we must choose q = 1. The
statement reduces to ∼ r, and we choose r = 0.
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Exercises for Section 3

3.1. A box contains 3 white and 4 green balls.

(a) Two balls are sampled with replacement, what is the probability that the
second is white if the first is green? If the first is white?

(b) Two balls are sampled without replacement, what is the probability that the
second is white if the first is green? If the first is white?

3.2. Two dice are rolled and the total is six.

(a) What is the probability that at least one die is three?

(b) What is the probability that at least one die is four?

(c) What is the probability that at least one die is odd?

3.3. In a certain college, 10 percent of the students are physical science majors, 40
percent are engineering majors, 20 percent are biology majors and 30 percent are
humanities majors. Of the physical science majors, 10 percent have read Hamlet,
of the engineering majors, 50 percent have read Hamlet, of the biology majors,
30 percent have read Hamlet, and of the humanities majors, 20 percent have read
Hamlet.

(a) Given that a student selected at random has read Hamlet, what is the proba-
bility that that student is a humanities major?

(b) Given that a student selected at random has not read Hamlet, what is the
probability that that student is an engineering or physical science major?

3.4. We are given an urn that has one red ball and one white ball. A fair die is thrown.
If the number is a 1 or 2, one red ball is added to the urn. Otherwise three red
balls are added to the urn. A ball is then drawn at random from the urn.

(a) Given that a red ball was drawn, what is the probability that a 1 or 2 appeared
when the die was thrown?

(b) Given that the final composition of the urn contained more than one red ball,
what is the probability that a 1 or 2 appeared when the die was thrown?

3.5. A man starts with one dollar in a pot. A “play” consists of flipping a fair coin and,
if heads occurs, a dollar is added to the pot, if tails occurs, a dollar is removed from
the pot. The game ends if the man has zero dollars or if he has played four times.
Let X denote the random variable which, for each outcome of the game, specifies
the maximum amount of money that was ever in the pot, from (and including) the
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start of the game to (and including) that final outcome. What is the expected value
E(X)?

3.6. The probability of team A winning any game is 1/3, of B winning 2/3 (no ties in
game play). Team A plays team B in a tournament. If either team wins two games
in a row, that team is declared the winner. At most four games are played in the
tournament and, if no team has won the tournament at the end of four games,
the tournament is declared a draw. What is the expected number of games in the
tournament?

3.7. The platoon commander knows:

• If the air strike is successful, there is a 60% probability that the ground forces
will not encounter enemy fire.

• If the air strike is not successful, there is a 80% probability that the ground
forces will encounter enemy fire.

• There is a 70% probability that the air strike will be successful.

Answer the following questions.

(a) What is the probability that the ground forces will not encounter enemy fire?

(b) The ground forces did not encounter enemy fire. What is the probability that
the air strike was successful?

Section 4: Inductive Proofs and Recursive Equations

Proof by induction, familiar from prior courses and used occasionally in earlier sections, is
central to the study of recursive equations. We’ll begin by reviewing proof by induction.
Then we’ll look at recursions (another name for recursive equations). The two subjects
are related since induction proofs use smaller cases to prove larger cases and recursions
use previous values in a sequence to compute later values. A “solution” to a recursion is
a formula that tells us how to compute any term in the sequence without first computing
the previous terms. We will find that it is usually easy to verify a solution to a recursion
if someone gives it to us; however, it can be quite difficult to find the solution on our own
— in fact there may not even be a simple solution even when the recursion looks simple.
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Induction

Suppose A(n) is an assertion that depends on n. We use induction to prove that A(n) is
true when we show that

• it’s true for the smallest value of n and

• if it’s true for everything less than n, then it’s true for n.

Closely related to proof by induction is the notion of a recursion. A recursion describes how
to calculate a value from previously calculated values. For example, n! can be calculated
by using n! = 1 if n = 0, n! = n(n− 1)! if n > 0.

Notice the similarity between the two ideas: There is something to get us started
and then each new thing depends on similar previous things. Because of this similarity,
recursions often appear in inductively proved theorems. We’ll study inductive proofs and
recursive equations in this section.

Inductive proofs and recursive equations are special cases of the general concept of a
recursive approach to a problem. Thinking recursively is often fairly easy when one has
mastered it. Unfortunately, people are sometimes defeated before reaching this level. In
Section 3 we look at some concepts related to recursive thinking and recursive algorithms.

We recall the theorem on induction and some related definitions:

Theorem 6 (Induction) Let A(m) be an assertion, the nature of which is dependent
on the integer m. Suppose that n0 ≤ n1. If we have proved the two statements

(a) “A(n) is true for n0 ≤ n ≤ n1” and

(b) “If n > n1 and A(k) is true for all k such that n0 ≤ k < n, then A(n) is true.”

Then A(m) is true for all m ≥ n0.

Let’s look at a common special case: n0 = n1 and, in proving (b) we use only
A(n− 1). Then the theorem becomes

Let A(m) be an assertion, the nature of which is dependent on the integer m. If
we have proved the two statements

(a) “A(n0) is true” and

(b) “If n > n0 and A(n− 1) is true, then A(n) is true.”

Then A(m) is true for all m ≥ n0.

Some people use terms like “weak induction”, “simple induction” and “strong induction”
to distinguish the various types of induction.
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Definition 5 (Induction hypothesis) The statement “A(k) is true for all k such that
n0 ≤ k < n” is called the induction assumption or induction hypothesis and proving that
this implies A(n) is called the inductive step. A(n0), . . . ,A(n1) are called the base cases or
simplest cases.

Proof: We now prove the theorem. Suppose that A(n) is false for some n ≥ n0. Let
m be the least such n. We cannot have m ≤ n1 because (a) says that A(n) is true for
n0 ≤ n ≤ n1. Thus m > n1.

Since m is as small as possible, A(k) is true for n0 ≤ k < m. By (b), the inductive
step, A(m) is also true. This contradicts our assumption that A(n) is false for some n ≥ n0.
Hence the assumption is false; in other words, A(n) is never false for n ≥ n0. This completes
the proof.

Example 23 (Every integer is a product of primes) A positive integer n > 1 is
called a prime if its only divisors are 1 and n. The first few primes are 2, 3, 5, 7, 11, 13,
17, 19, 23. If a number is not a prime, such as 12, it can be written as a product of primes
(prime factorization: 12 = 2× 2 × 3). We adopt the terminology that a single prime p is
a product of one prime, itself. We shall prove A(n) that “every integer n ≥ 2 is a product
of primes.” Our proof will be by induction. We start with n0 = n1 = 2, which is a prime
and hence a product of primes. The induction hypothesis is the following:

“Suppose that for some n > 2, A(k) is true for all k such that 2 ≤ k < n.”

Assume the induction hypothesis and consider n. If n is a prime, then it is a product of
primes (itself). Otherwise, n = st where 1 < s < n and 1 < t < n. By the induction
hypothesis, s and t are each a product of primes, hence n = st is a product of primes.

In the example just given, we needed the induction hypothesis “for all k such that
2 ≤ k < n.” In the next example we have the more common situation where we only need
to assume “for k = n − 1.” We can still make the stronger assumption and the proof is
valid, but the stronger assumption is not used; in fact, we are using the simpler form of
induction described after the theorem.

Example 24 (Sum of first n integers) We would like a formula for the sum of the
first n integers. Let us write S(n) = 1 + 2 + . . . + n for the value of the sum. By a little
calculation,

S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, S(5) = 15, S(6) = 21.

What is the general pattern? It turns out that S(n) = n(n+1)
2 is correct for 1 ≤ n ≤ 6. Is

it true in general? This is a perfect candidate for an induction proof with

n0 = n1 = 1 and A(n) : “S(n) = n(n+1)
2 .”
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Let’s prove it. We have shown that A(1) is true. In this case we need only the restricted
induction hypothesis; that is, we will prove the formula for S(n) by assuming the formula
for k = n− 1. Thus, we assume only A(n− 1) is true. Here it is (the inductive step):

S(n) = 1 + 2 + · · · + n by the definition of S(n)

=
(

1 + 2 + · · · + (n− 1)
)

+ n

= S(n− 1) + n by definition of S(n− 1),

=
(n− 1)

(

(n− 1) + 1
)

2
+ n by A(n− 1),

=
n(n + 1)

2
by algebra.

This completes the proof. We call your attention to the fact that, in the third line we
proved S(n) = S(n− 1) + n.

Recursive Equations

The equation S(n) = S(n− 1) + n (for n > 1) that arose in the inductive proof in the pre-
ceding example is called a recurrence relation, recursion, or recursive equation. A recursion
is not complete unless there is information on how to get started. In this case the infor-
mation was S(1) = 1. This information is called the initial condition or, if there is more
than one, initial conditions. Many examples of such recurrence relations occur in computer
science and mathematics. We discussed recurrence relations in Section 3 of Unit CL (Basic
Counting and Listing) for binomial coefficients C(n, k) and Stirling numbers S(n, k).

In the preceding example, we found that S(n) = n(n + 1)/2. This is a solution to the
recursion because it tells us how to compute S(n) without having to compute S(k) for any
other values of k. If we had used the recursion S(n) = S(n− 1) + n, we would have had to
compute S(n− 1), which requires S(n− 2), and so on all the way back to S(1).

A recursion tells us how to compute values in a sequence an from earlier values
an−1, an−2, . . . and n. We can denote this symbolically by writing an = G(n, an−1, an−2, . . .).
For example, in the case of the sum of the first n integers, which we called S(n), we would
have

an = S(n) and G = an−1 + n since S(n) = S(n− 1) + n.

Induction proofs deduce the truth of A(n) from earlier statements. Thus it’s natural
to use induction to prove that a formula for the solution to a recursion is correct. That’s
what we did in the previous example. There’s a way to avoid giving an inductive proof
each time we have such a problem: It turns out that the induction proofs for solutions to
recursions all have the same form. A general pattern often means there’s a general theorem.
If we can find and prove the theorem, then we could use it to avoid giving an inductive
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proof in each special case. That’s what the following theorem is about. (The an and f(n)

of the theorem are generalizations of Sn and n(n+1)
2 from the previous example.)

Theorem 7 (Verifying the solution of a recursion) Suppose we have initial con-
ditions that give an for n0 ≤ n ≤ n1 and a recursion that allows us to compute an when
n > n1. To verify that an = f(n), it suffices to do two things:

Step 1. Verify that f satisfies the initial conditions.

Step 2. Verify that f satisfies the recursion.

Proof: The goal of this theorem is to take care of the inductive part of proving that a
formula is the solution to a recursion. Thus we will have to prove it by induction. We must
verify (a) and (b) in Theorem 6. Let A(n) be the assertion “an = f(n).” By Step 1, A(n) is
true for n0 ≤ n ≤ n1, which proves (a). Suppose the recursion is an = G(n, an−1, an−2, . . .)
for some formula G. We have

f(n) = G
(

n, f(n− 1), f(n− 2), . . .
)

by Step 2,

= G(n, an−1, an−2, . . .) by A(k) for k < n,

= an by the recursion for an.

This proves (b) and so completes the proof.

Example 25 (Proving a formula for the solution of a recursion) Let S(n) be
the sum of the first n integers. The initial condition S(1) = 1 and the recursion S(n) =

n + S(n − 1) allow us to compute S(n) for all n ≥ 1. It is claimed that f(n) = n(n+1)
2

equals S(n).

The initial condition is for n = 1. Thus n0 = n1 = 1. Since f(1) = 1, f satisfies the
initial condition. (This is Step 1.) For n > 1 we have

n + f(n− 1) = n +
n(n− 1)

2
=

n(n + 1)

2
= f(n)

and so f satisfies the recursion. (This is Step 2.)

We now consider a different problem. Suppose we are given that

a0 = 2, a1 = 7, and an = 3an−1 − 2an−2 when n > 1

and we are asked to prove that an = 5× 2n − 3 for n ≥ 0.

Let’s verify that the formula is correct for n = 0 and n = 1 (the initial conditions —
Step 1 in our theorem):

n = 0 : a0 = 2 = 50 − 3 n = 1 : a1 = 7 = 51 − 3.

Now for Step 2, the recursion. Let f(x) = 5× 2x− 3 and assume that n > 1. We have

3f(n− 1)− 2f(n− 2) = 3(5× 2n−1 − 3)− 2(5× 2n−2 − 3)

= (3× 5× 2− 2× 5)2n−2 − 3

= 5× 2n − 3 = f(n).
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This completes the proof.

As a final example, suppose b0 = b1 = 1 and bn+1 = n(bn + bn−1) for n ≥ 1. We
want to prove that bn = n!. Since our theorem stated the recursion for an, let’s rewrite our
recursion to avoid confusion. Let n+1 = k in the recursion to get bk = (k−1)(bk−1+bk−2).
The initial conditions are b0 = 1 = 0! and b1 = 1 = 1!, so we’ve done Step 1. Now for
Step 2:

Is k! = (k − 1)((k− 1)! + (k − 2)!) true?

Yes because (k−1)! = (k−1)×(k−2)! and so (k−1)!+(k−2)! = ((k−1)+1)(k−2)! =
k × (k − 2)!. We could have done this without changing the subscripts in the recursion:
Just check that (n + 1)! = n(n! + (n− 1)!). We’ll let you do that.

So far we have a method for checking the solution to a recursion, which we just used
in the previous example. How can we find a solution in the first place? If we’re lucky,
someone will tell us. If we’re unlucky, we need a clever guess or some tools. Let’s look at
how we might guess.

Example 26 (Guessing solutions to recurrence relations)

(1) Let rk = −rk−1/k for k ≥ 1, with r0 = 1. Writing out the first few terms gives
1,−1, 1/2,−1/6, 1/24, . . .. Guessing, it looks like rk = (−1)k/k! is a solution.

(2) Let tk = 2tk−1 + 1 for k > 0, t0 = 0. Writing out some terms gives 0, 1, 3, 7, 15, . . .. It
looks like tk = 2k − 1, for k ≥ 0.

(3) What is the solution to a0 = 0, a1 = 1 and an = 4an−1 − 4an−2 for n ≥ 2? Let’s
compute some values

n : 0 1 2 3 4 5 6 7
an : 0 1 4 12 32 80 192 448

These numbers factor nicely: 4 = 22, 12 = 22 × 3, 32 = 25, 80 = 24 × 5, 192 = 26 × 3,
448 = 26 × 7. Can we see a pattern here? We can pull out a factor of 2n−1 from an:

n : 0 1 2 3 4 5 6 7
an : 0 1 4 12 32 80 192 448

an/2n−1 : 0 1 2 3 4 5 6 7

Now the pattern is clear: an = n2n−1. That was a lot of work, but we’re not done
yet — this is just a guess. We have to prove it. You can use the theorem to do that.
We’ll do it a different way in a little while.

(4) Let bn = b1bn−1 + b2bn−2 + · · · + bn−1b1 for n ≥ 2, with b1 = 1. Here are the first few
terms: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .. Each term is around 3 or 4 times the
preceding one. Let’s compute the ratio exactly

n 2 3 4 5 6 7 8 9 10
bn/bn−1 1 2 5/2 14/5 3 22/7 13/4 10/3 17/5
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These ratios have surprisingly small numerators and denominators. Can we find a
pattern? The large primes 13 and 17 in the numerators for n = 8 and 10 suggest that
maybe we should look for 2n−3 in the numerator.1 Let’s adjust our ratios accordingly:

n 2 3 4 5 6 7 8 9 10
bn/(2n− 3)bn−1 1 2/3 1/2 2/5 1/3 2/7 1/4 2/9 1/5

Aha! These numbers are just 2/n. Our table leads us to guess bn = 2(2n− 3)bn−1/n,
a much simpler recursion than the one we started with.

This recursion is so simple we can “unroll” it:

bn =
2(2n− 3)

n
bn−1 =

2(2n− 3)

n

2(2n− 5)

n− 1
bn−2 = · · · = 2n−1(2n− 3)(2n− 5) · · · 1

n!
.

This is a fairly simple formula. Of course, it is still only a conjecture and it is not easy
to prove that it is the solution to the original recursion because the computations in
Theorem 7 using this formula and the recursion bn = b1bn−1 + b2bn−2 + · · · + bn−1b1

would be very messy.

(5) Let dn = (n− 1)dn−1 +(n− 1)dn−2 for n ≥ 2, with d0 = 1 and d1 = 0. In the previous
example, we looked at a recursion that was almost like this: The only difference was
that d1 = 1. In that case we were told that the answer was n!, so maybe these numbers
look like n!. If this were like n!, we’d expect ndn−1 to equal dn. Here are the first few
values of dn together with ndn−1:

n 0 1 2 3 4 5 6
dn 1 0 1 2 9 44 265

ndn−1 − 1 0 3 8 45 264

We’re close! The values of dn and ndn−1 only differ by 1. Thus we are led to guess that
dn = ndn−1 +(−1)n. This is not a solution—it’s another recursion. Nevertheless, we
might prefer it because it’s a bit simpler than the one we started with.

As you can see from the previous example, guessing solutions to recursions can be
difficult. Now we’ll look at a couple of theorems that tell us the solutions without any
guessing.

Theorem 8 (Solutions to Some Recursions) Let a0, a1, . . . , an, . . . be a sequence of
numbers. Suppose there are constants b and c such that b is not 0 or 1 and an = ban−1 + c
for n ≥ 1. Then

an = Abn + K where K =
c

1− b
and A = a0 −K = a0 −

c

1− b
.

1 “Why look at large primes?” you ask. Because they are less likely to have come from
a larger number that has lost a factor due to reduction of the fraction.
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This gives us the solution to the recursion tk = 2tk−1 +1 (with t0 = 0) of the previous
example: K = 1

1−2 = −1 and A = 0 − (−1) = 1. That gives the solution tk = 2k − 1, no
guessing needed!

Proof: (of Theorem 8) We’ll use Theorem 7. The initial condition is simple:

Ab0 + K = A + K = (a0 −K) + K = a0.

That’s Step 1: For Step 2 we want to show that an = Abn +K satisfies the recursion. We
have

b(Abn−1 + K) + c = Abn + bK + c = Abn +
bc

1− b
+ c

= Abn +
bc + (1− b)c

1− b
= Abn +

c

1− b
= Abn + K.

We’re done.

Example 27 (I forgot the formulas for A and K!) If you remember the bn, you
can still solve the recursion even if the initial condition is not at a0. Let’s do the example

a1 = 3 and an = 4an−1 − 7 for n > 1.

The solution will be an = A4n + K for some A and K. If we know an for two values of n,
then we can solve for A and K. We’re given a1 = 3 and we compute a2 = 4× 3− 7 = 5.
Thus

a1 gives us 3 = A41 + K and a2 gives us 5 = A42 + K.

Subtracting the first equation from the second: 12A = 2 so A = 1/6. From a1, 3 = 4/6+K
and so K = 7/3.

Now let’s look at recursions where an depends on an−1 and an−2 in a simple way.

Theorem 9 (Solutions to Some Recursions) Let a0, a1, . . . , an, . . . be a sequence of
numbers. Suppose there are constants b and c such that an = ban−1 + can−2 for n ≥ 2.
Let r1 and r2 be the roots of the polynomial x2 − bx− c.

• If r1 6= r2, then an = K1r
n
1 + K2r

n
2 for n ≥ 0, where K1 and K2 are solutions to the

equations
K1 + K2 = a0 and r1K1 + r2K2 = a1.

• If r1 = r2, then an = K1r
n
1 + K2nrn

1 for n ≥ 0, where K1 and K2 are solutions to the
equations

K1 = a0 and r1K1 + r2K2 = r1K1 + r1K2 = a1.

The equation x2 − bx− c = 0 is called the characteristic equation of the recursion.

Before proving the theorem, we give some examples. In all cases, the roots of x2−bx−c
can be found either by factoring it or by using the quadratic formula

r1, r2 =
b±
√

b2 + 4c

2
.
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Example 28 (Applying Theorem 9) Let’s redo the recursion

a0 = 2, a1 = 7, and an = 3an−1 − 2an−2 when n > 1

from Example 25. We have b = 3 and c = −2. The characteristic equation is x2−3x+2 = 0.
The roots of x2 − 3x + 2 are r1 = 2 and r2 = 1, which you can get by using the quadratic
formula or by factoring x2 − 3x + 2 into (x − 2)(x− 1). Since r1 6= r2, we are in the first
case in the theorem. Thus we have to solve

K1 + K2 = 2 and 2K1 + K2 = 7.

The solution is K1 = 5 and K2 = −3 and so an = 5× 2n − 3× 1n = 5× 2n − 3.

• As another example, we’ll solve the recursion a0 = 0, a1 = 1, and an = 4an−1 − 4an−2

for n ≥ 2. Applying the theorem, r1 = r2 = 2 and so an = K12
n + K2n2n where K1 = 0

and 2K1 + 2K2 = 1. Thus K1 = 0, K2 = 1/2, and an = (1/2)n2n = n2n−1.

• As a final example, consider the recursion

F0 = F1 = 1 and Fk = Fk−1 + Fk−2 when k ≥ 2.

This is called the Fibonacci recursion. We want to find an explicit formula for Fk.

The characteristic equation is x2 − x− 1 = 0. By the quadratic formula, its roots are

r1 = 1+
√

5
2 and r2 = 1−

√
5

2 . Thus, we need to solve the equations

K1 + K2 = 1 and r1K1 + r2K2 = 1.

High school math gives

K1 =
1− r2

r1 − r2
=

1 +
√

5

2
√

5
=

r1√
5

K2 =
1− r1

r2 − r1
=

1−
√

5

−2
√

5
= − r2√

5
.

Thus

Fn =
1√
5

(

1 +
√

5

2

)n+1

− 1√
5

(

1−
√

5

2

)n+1

.

It would be difficult to guess this solution from a few values of Fn!
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Example 29 (A shifted index) Let’s solve the recursion

a1 = 0, a2 = 1 and an = 5an−1 + 6an−2 for n ≥ 3.

This doesn’t quite fit the theorem since it starts with a1 instead of a0. What can we do?
The same thing we did in Example 27: Use values of an to get two equations in the two
unknowns K1 and K2.

Let’s do this. The characteristic equation x2−5x−6 = 0 gives us r1 = 6 and r2 = −1
and so an = K16

n + K2(−1)n. Using a1 and a2:

a1 gives us 0 = 6K1 −K2 and a2 gives us 1 = 62K1 + K2.

Adding the two equations: 1 = 42K1. Thus K1 = 1/42. a1 gives us 0 = 6/42 −K2 and
so K2 = 1/7. Thus an = (1/42)6n + (1/7)(−1)n.

We conclude this section with a proof of Theorem 9.

Proof: (of Theorem 9) We apply Theorem 7 with n0 = 0 and n1 = 1.

We first assume that r1 6= r2 and we set f(n) = K1r
n
1 + K2r

n
2 where K1 and K2 are

as given by the theorem. Step 1 is simple because the equations for K1 and K2 are simply
the equations f(0) = a0 and f(1) = a1. Here’s Step 2

bf(n− 1) + cf(n− 2) = b(K1r
n−1
1 + K2r

n−1
2 ) + c(K1r

n−2
1 + K2r

n−2
2 )

= K1r
n−2
1 (br1 + c) + K2r

n−2
2 (br2 + c)

= K1r
n−2
1 r2

1 + K2r
n−2
2 r2

2

= f(n).

Wait! Something must be wrong — the theorem says r1 6= r2 and we never use that
fact! What happened? We assumed that the equations could be solved for K1 and K2.
How do we know that they have a solution? One way is to actually solve them using high
school algebra. We find that

K1 =
a0r2 − a1

r2 − r1
and K2 =

a0r1 − a1

r1 − r2
.

Now we can see where r1 6= r2 is needed: The denominators in these formulas must be
nonzero.

We now consider the case r1 = r2. This is similar to r1 6= r2. We sketch the ideas
and leave it to you to fill in the details of the proof. Here it’s clear that we can solve the
equations for K1 and K2. Step 1 in Theorem 7 is checked as it was for the r1 6= r2 case.
Step 2 requires algebra similar to that needed for r1 6= r2. The only difference is that we
end up needing to show that

K2r
n−2
2 ((n− 1)br2 + (n− 2)c) = K2nrn

2 .

You should be able to see that this is the same as showing −br2 − 2c = 0. This follows
from the fact that the only way we can have r1 = r2 is to have

√
b2 + 4c = 0. In this case

r2 = b/2.
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Exercises for Section 4

4.1. Compute a0, a1, a3 and a4 for the following recursions. (Recall that ⌊x⌋ is the
greatest integer not exceeding x. For example ⌊5.4⌋ = 5 and ⌊−5.4⌋ = −6.)

(a) a0 = 1, an = 3an−1 − 2 for n ≥ 1.

(b) a0 = 0, an = ⌊n/2⌋+ an−1 for n > 0.

(c) a0 = 1, an = n + a⌊n/2⌋ for n > 0.

(d) a0 = 0, a1 = 1, an = 1 + min(a1an−1, . . . , akan−k, . . . , an−1a1) for n > 1.

4.2. We computed the first few values of some sequences that were defined by recursions.
A table of values is given below. Guess simple formulas for each sequence.

n : 0 1 2 3 4 5 . . .
an : 0 0 1 1 2 2 . . .
bn : 1 −1 2 −2 3 −3 . . .
cn : 1 2 5 10 17 26 . . .
dn : 1 1 2 6 24 120 . . .

4.3. What are the characteristic equations for the recursions an = 6an−1 − 5an−2,
an = an−1 + 2an−2 and an = 5(an−1 + an−2)?
What are the roots of these equations?

4.4. Solve the recursion a0 = 0, a1 = 3 and an = 6an−1 − 9an−2 for n > 2.

4.5. Solve the recursion a2 = 1, a3 = 3 and an = 3an−1 + 2an−2 for n > 3.

4.6. Solve the recursion ak = 2ak−1 − ak−2, k ≥ 2, a0 = 2, a1 = 1.

4.7. Suppose A 6= 1. Let G(n) = 1 + A + A2 + . . . + An−1 for n ≥ 1.

(a) Using induction, prove that G(n) = (1− An)/(1 − A) for n ≥ 1. (This is the
formula for the sum of a geometric series.)

(b) Obtain a simple recursion for G(n) from G(n) = 1 + A + A2 + . . . + An−1,
including initial conditions.

(c) Use the recursion in (b) and Theorem 7 to prove that G(n) = (1−An)/(1−A)
for n ≥ 1.

(d) By setting A = y/x and doing some algebra, prove that

xk+1 − yk+1

x− y
= xky0 + xk−1y1 + · · · + x0yk−1 when x 6= y.
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4.8. In each of the following, find an explicit formula for ak that satisfies the given
recursion. Prove your formula.

(a) ak = ak−1/(1 + ak−1) for k ≥ 1, a0 = A > 0.

(b) ak = Aak−1 + B, k ≥ 1, a0 = C.

4.9. Consider ak = ak−1 +Bk(k−1), k ≥ 1, a0 = A. Prove that ak = A+Bk(k2−1)/3,
k ≥ 0, is the solution to this recursion.

4.10. Consider ak = A2k − ak−1, k ≥ 1, a0 = C.

(a) Prove that

ak = A(2k(−1)0 + 2k−1(−1)1 + · · · + 21(−1)k−1) + (−1)kC, k ≥ 1,

is the solution to this recursion.

(b) Write the formula for ak more compactly using Exercise 4.7.

4.11. A gambler has t ≥ 0 dollars to start with. He bets one dollar each time a fair
coin is tossed. If he wins Q, Q ≥ t, dollars, he quits, a happy man. If he loses all
his money he quits, a sad man. What is the probability qt that he wins Q dollars
instead of losing all his money and quits a happy man? What is the probability
pt that he loses all his money and quits a sad man (i.e., ruined)? This problem is
called the Gambler’s Ruin problem.
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Multiple Choice Questions for Review

1. In each case, two permutations on 6 are listed. In which case is the first permutation
less than the second in direct insertion order?

(a) 2, 3, 1, 4, 5, 6 1, 3, 2, 4, 5, 6

(b) 2, 3, 1, 4, 5, 6 2, 1, 3, 4, 5, 6

(c) 2, 3, 1, 4, 5, 6 4, 5, 6, 1, 3, 2

(d) 6, 1, 2, 3, 4, 5 2, 1, 3, 4, 5, 6

(e) 6, 2, 3, 1, 4, 5 2, 3, 1, 4, 5, 6

2. What is the rank, in direct insertion order, of the permutation 5, 4, 6, 3, 2, 1?

(a) 3 (b) 4 (c) 715 (d) 716 (e) 717

3. What is the rank, in lex order, of the permutation 6, 1, 2, 3, 4, 5?

(a) 20 (b) 30 (c) 480 (d) 600 (e) 619

4. Consider the list of all sequences of length six of A’s and B’s that satisfy the following
conditions:

(i) There are no two adjacent A’s.

(ii) There are never three B’s adjacent.

What is the next sequence after ABBABB in lex order?

(a) ABABAB

(b) ABBABA

(c) BABABA

(d) BABBAB

(e) BBABBA

5. Which of the following 4× 4 domino covers represent two distinct hibachi grills?

(a) hhhhhvvh and hvvhhhhh

(b) hvvhvvhh and vvhhvvhh

(c) vhvvvhvh and hhvhvhvv

(d) vvhhvvhh and hhhhvvvv

(e) vvvvvvvv and hhhhhhhh

6. Given that a0 = 1, an = n + (−1)nan−1 for n ≥ 2 What is the value of a4?

(a) 1 (b) 4 (c) 5 (d) 8 (e) 11

7. Given that ak = ak−1/(1 + ak−1) for k ≥ 1, a0 = 1. Which of the following gives an
explicit formula for ak?

(a) 1/3k, k = 0, 1, 2, 3, . . .
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(b) 1/2k, k = 0, 1, 2, 3, . . .

(c) 1/(3k+1 − 2), k = 0, 1, 2, 3, . . .

(d) 1/(k + 1), k = 0, 1, 2, 3, . . .

(e) 2/(k + 2), k = 0, 1, 2, 3, . . .

8. Consider the recurrence relation ak = −8ak−1 − 15ak−2 with initial conditions a0 = 0
and a1 = 2. Which of the following is an explicit solution to this recurrence relation?

(a) ak = (−3)k − (−5)k

(b) ak = k(−3)k − k(−5)k

(c) ak = k(−3)k − (−5)k

(d) ak = (−5)k − (−3)k

(e) ak = k(−5)k − k(−3)k

9. Consider the recurrence relation ak = 6ak−1 − 9ak−2 with initial conditions a0 = 0
and a1 = 2. Which of the following is an explicit solution to this recurrence relation,
provided the constants A and B are chosen correctly?

(a) an = A3n + B3n

(b) an = A3n + B(−3)n

(c) an = A3n + nB3n

(d) an = A(−3)n + nB(−3)n

(e) an = nA3n + nB3n

10. In the Towers of Hanoi puzzle H(8, S, E, G), the configuration is

Pole S: 6, 5; Pole E: 1; Pole G: 8,7,4,3,2.

What move was just made to create this configuration?

(a) washer 1 from S to E

(b) washer 1 from G to E

(c) washer 2 from S to G

(d) washer 2 from E to G

(e) washer 5 from G to S

11. In the Towers of Hanoi puzzle H(8, S, E, G), the configuration is

Pole S: 6, 5; Pole E: empty; Pole G: 8, 7, 4 ,3 ,2, 1 .

What are the next two moves?

(a) washer 1 from G to E followed by washer 2 from G to S

(b) washer 1 from G to S followed by washer 2 from G to E

(c) washer 5 from S to E followed by washer 1 from G to E
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(d) washer 5 from S to E followed by washer 1 from G to S

(e) washer 5 from S to E followed by washer 2 from G to S

12. In the Towers of Hanoi puzzle H(8, S, E, G), the configuration is

Pole S: 6, 5, 2; Pole E: 1; Pole G: 8, 7, 4 ,3.

The next move is washer 2 from S to G. What is the RANK of this move in the list of
all moves for H(8, S, E, G)?

(a) 205 (b) 206 (c) 214 (d) 215 (e) 216

13. In the subset Gray code for n = 6, what is the next element after 111000?

(a) 000111

(b) 101000

(c) 111001

(d) 111100

(e) 101100

14. In the subset Gray code for n = 6, what is the element just before 110000?

(a) 010000

(b) 100000

(c) 110001

(d) 110100

(e) 111000

15. In the subset Gray code for n = 6, what is the RANK of 110000?

(a) 8 (b) 16 (c) 32 (d) 48 (e) 63

16. In the subset Gray code for n = 6, what is the element of RANK 52?

(a) 101011

(b) 101110

(c) 101101

(d) 110000

(e) 111000

17. The probability of team A winning any game is 1/3. Team A plays team B in a tour-
nament. If either team wins two games in a row, that team is declared the winner.
At most three games are played in the tournament and, if no team has won the tour-
nament at the end of three games, the tournament is declared a draw. What is the
expected number of games in the tournament?

(a) 3 (b) 19/9 (c) 22/9 (d) 25/9 (e) 61/27

18. The probability of team A winning any game is 1/2. Team A plays team B in a tour-
nament. If either team wins two games in a row, that team is declared the winner. At
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most four games are played in the tournament and, if no team has won the tournament
at the end of four games, the tournament is declared a draw. What is the expected
number of games in the tournament?

(a) 4 (b) 11/4 (c) 13/4 (d) 19/4 (e) 21/8

19. A man starts with one dollar in a pot. A “play” consists of flipping a fair coin and,

• if heads occurs, doubling the amount in the pot,

• if tails occurs, losing one dollar from the pot. The game ends if the man has zero
dollars or if he has played three times. Let Y denote the random variable which,
for each outcome of the game, specifies the amount of money in the pot. What is
the value of Var(Y )?

(a) 9/8 (b) 10/8 (c) 12/8 (d) 14/8 (e) 447/64

20. We are given an urn that has one red ball and one white ball. A fair die is thrown. If
the number is a 1 or 2, one red ball is added to the urn. Otherwise two red balls are
added to the urn. A ball is then drawn at random from the urn. Given that a red ball
was drawn, what is the probability that a 1 or 2 appeared when the die was thrown?

(a) 4/13 (b) 5/13 (c) 6/13 (d) 7/13 (e) 8/13

21. In a certain college,

• 10 percent of the students are science majors.

• 10 percent are engineering majors.

• 80 percent are humanities majors.

• Of the science majors, 20 percent have read Newsweek.

• Of the engineering majors, 10 percent have read Newsweek.

• Of the humanities majors, 20 percent have read Newsweek.

Given that a student selected at random has read Newsweek, what is the probability
that that student is an engineering major?

(a) 1/19 (b) 2/19 (c) 5/19 (d) 9/19 (e) 10/19

22. The probability of team A winning any game is 1/3. Team A plays team B in a
tournament. If either team wins two games in a row, that team is declared the winner.
At most four games are played and, if no team has won the tournament at the end of
four games, a draw is declared. Given that the tournament lasts more than two games,
what is the probability that A is the winner?

(a) 1/9 (b) 2/9 (c) 4/9 (d) 5/9 (e) 6/9

23. Ten percent of the students are science majors (S), 20 percent are engineering majors
(E), and 70 percent are humanities majors (H). Of S,10 percent have read 2 or more
articles in Newsweek, 20 percent 1 article, 70 percent 0 articles. For E, the correspond-
ing percents are 5, 15, 80. For H they are 20, 30, 50. Given that a student has read 0
articles in Newsweek, what is the probability that the student is S or E (i.e., not H)?

(a) 21/58 (b) 23/58 (c) 12/29 (d) 13/29 (e) 1/2
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Answers: 1 (d), 2 (e), 3 (d), 4 (c), 5 (b), 6 (c), 7 (d), 8 (a), 9 (c), 10 (c), 11 (d),
12 (a), 13 (b), 14 (a), 15 (c), 16 (b), 17 (c), 18 (b), 19 (e), 20 (a), 21 (a), 22 (b),
23 (b).
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