
Matthew Broersma, Techworld,

2004.11.23:

“WinAmp blows another security fuse: the

third major vulnerability this year

“For those enterprise IT managers who’ve

been eagerly anticipating the next major

WinAmp security flaw, the wait is over.

Brett Moore of Security-Assessment.com

on Tuesday published details of a security

hole allowing attackers to take over a PC

when a user visits a specially crafted Web

page.

“The bug, a boundary error in the

‘IN CDDA.dll’ file, is the latest in a string

of serious vulnerabilities in WinAmp,

including an August flaw in the handling

of ‘skin’ files which attackers began to

exploit before it had been discovered by

researchers. The new bug, the skin file

flaw and an April flaw in in the handling of

‘.xm’ files could all be exploited by luring

an affected user to a website containing a

specific type of file, which would then be

automatically downloaded and executed.

“This week’s bug can be exploited in a

number of ways, the most dangerous being

via an ‘.m3u’ playlist file, according to

Moore. ‘When hosted on a website, these

files will be automatically downloaded

and opened in winamp without any user

interaction,’ he wrote in

Security-Assessment.com’s advisory. ‘This

is enough to cause the overflow that would

allow a malicious playlist to overwrite EIP

and execute arbitrary code.’ ”

File-editing security holes

User edits a file for an hour:

emacs fancy.c

When emacs starts,

it copies fancy.c into memory.

When emacs finishes,

it rewrites fancy.c

with the new contents.

Security hole 1:

Attacker fills up disk.

emacs truncates fancy.c

and fails to rewrite it.

Many programs have these bugs.

Example from xchat:

fp=fopen("servlist.conf","w");

fprintf(fp,...);

Fix: emacs uses rename

for safe rewriting,

so it doesn’t lose old version;

and notifies user that

new data is not yet saved.

Security hole 2:

Attacker fills up memory.

Overcommitment forces

emacs to die.

Fix: emacs tells user

to save to disk frequently,

for example using the

emacs auto-save option.

Somewhat annoying but standard

security policy: it’s okay

for a few minutes of work

to be lost, if user is notified

that the work has been lost.

World-writable directories

DavFS2 bug fixed 2004.10.30:

f = concat("/tmp",d,".pid",0);

fp = fopen(f,"w");

Impact: Any user can destroy

any file on the system.

Possibly worse effects.

This is a very common problem.

Fix: Replace /tmp with /var/run.

/tmp and /var/tmp are directories

with permissions 01777.

Any user can create and remove

files in these directories:

echo hello > /tmp/test

cat /tmp/test

rm /tmp/test

These directories are sticky,

so a user cannot remove

another user’s files.

A minor historical side note

The first UNIX security hole

I ever found:

ULTRIX 2.0 failed to check

sticky bit during rename(), so

rename("/tmp/evil","/tmp/victim")

would replace /tmp/victim

owned by another user.

Could easily steal mail etc.

Sysadmin Kevin R. Perry, 1988.10.05:

“My God, you’re right. �����

Try not to abuse this

for the next couple of days,

until I figure out the fix.”

So what’s wrong with DavFS2?

fopen() ends up calling

open("/tmp/whatever.pid",

O_WRONLY|O_TRUNC|O_CREAT,0644).

Before this happens, attacker

guesses name /tmp/whatever.pid,

and creates /tmp/whatever.pid

as a symbolic link:

ln -s /etc/passwd \

/tmp/whatever.pid

open() sees that

/tmp/whatever.pid links to

/etc/passwd, so it

opens /etc/passwd,

also truncating /etc/passwd.

A different attack: attacker

guesses name /tmp/whatever.pid

and creates /tmp/whatever.pid

as a world-writable file.

DavFS2 opens that file.

Attacker still owns the file

and changes its contents.

DavFS2 later reads the file

and gets attacker’s information.

Partial fix: Use O_EXCL,

making open() fail if

file already exists

(or if it is a symbolic link).

Attacker can still create file,

making DavFS2 fail to create it.

Fix: Choose random filename;

create with O_EXCL;

if that fails, try again

with another random filename.

Use unpredictable source

of random numbers,

such as /dev/urandom.

Much better fix:

Never use /tmp, /var/tmp, etc.

Figure out non-world-writable

locations for all files.

In some languages (e.g., /bin/sh),

no easy way to use O_EXCL.

“Who cares?” programmer says.

“I can check for myself whether

file already exists. Much easier

than giving up on /tmp.”

while :

do

x=‘jot -r 1 1 1000000‘

test -e /tmp/$x || break

done

echo mydata > /tmp/$x

...

rm /tmp/$x

while : do ... done

is an infinite loop.

jot -r 1 1 1000000

prints random 6-digit number.

x=‘...‘ puts the

random number into $x.

test -e /tmp/$x || break

quits loop if /tmp/$x

does not exist.

e.g. Number is 769488;

/tmp/769488 does not exist;

script then writes to /tmp/769488.

“TOCTOU gap”: the script’s

time of checking /tmp/769488

is not the same as the script’s

time of using /tmp/769488.

The file may be created

after the check and before the use.

Attacker guesses the number

and creates /tmp/769488

as a world-writable file

or a symbolic link.

“Race condition”: the attacker

and the script are in a race.

Race starts when the script

checks /tmp/769488;

race ends when file is created.

Another type of race condition:

fopen("mydata","w");

chmod("mydata",0600);

Suppose umask is 022;

most common setting.

mydata has mode 0644

until chmod changes it to 0600.

Attacker races to open mydata

after fopen, before chmod.

Attacker can then read mydata,

including information written later.

Presumably this is unauthorized.

