
Ryan Naraine, Eweek, 2004.11.11:

“XP SP2 flaw warning sparks debate on

disclosure

“The debate over responsible disclosure

of security flaw warnings has erupted

again, with Microsoft chiding a private

research firm for releasing information on

10 new flaws found in the Windows XP

SP2 (Service Pack 2) operating system.

“San Jose, Calif.-based Finjan Software

released an alert warning that attackers

could ‘silently and remotely’ hijack SP2

machines because of ‘major flaws’ that

compromise end-user security.



“Finjan chief executive Shlomo Touboul

told eWEEK.com that full technical details

of the vulnerabilities including

proof-of-concept code were given to

Microsoft, but the software giant reacted

sharply by suggesting that the Finjan

warning is overblown.

“ ‘Our early analysis indicates that

Finjan’s claims are potentially misleading

and possibly erroneous regarding the

breadth and severity of the alleged

vulnerabilities in Windows XP SP2,’ a

Microsoft spokesperson said.

“ ‘Once Microsoft concludes investigating

Finjan’s claims and if Microsoft finds any

valid vulnerability in Windows XP SP2, it



will take immediate and appropriate action

to help protect customers,’ she added.

“According to Finjan, the flaws are so

serious that XP SP2 users are at risk if

they simply browse a Web page. The holes

also could be exploited to allow malicious

hackers to remotely access users’ local files

or to switch between Internet Explorer

Security Zones to obtain rights of local

zone.

“The research outfit also claims that

it discovered a bug in the notification

mechanism built into XP SP2 to warn

users when executable files are being

downloaded. Finjan claims it has already

proven to Microsoft that hackers can



bypass the mechanism to inject arbitrary

code without any warning or notification.

“When told that Microsoft was

discounting the severity of his company’s

claims, Finjan’s Touboul lashed back:

‘These are not theoretical assumptions.

These findings are based on code

implementing each and every one of those

10 vulnerabilities.’

“Microsoft said it would continue

investigating Finjan’s claims to confirm

valid vulnerability claims before rolling out

possible fixes.

“ ‘[We encourage] Finjan to abide by the

principles of responsible disclosure and



to decline to provide further comment

or details on the alleged vulnerabilities

until Microsoft is able to complete its

investigation and can respond properly

to protect customers,’ the spokesperson

said.”



Next week: Guest lectures and midterm.

Check web page for latest schedules.

Assignment due 2004.11.22: read

textbook Chapter 4.



Handling open() failures

#include <errno.h>

#include <fcntl.h>

fd = open(...);

if (fd == -1)

if (errno == ENOENT)

file does not exist;

else

not sure, try again later;

else

file exists, use fd;

Should also check for a few

variations of ENOENT:

ENOTDIR, for slash after non-directory;

ENAMETOOLONG.



The following code is wrong:

fd = open(...);

if (fd == -1)

file does not exist;

else

file exists, use fd;

Many reasons that open() can fail

even if the file exists:

EACCES, permission denied;

ENFILE, full system file table;

EINTR, interrupted by a signal;

EIO, disk failure; etc.



Sometimes programmer is sure that

permission won’t be denied,

signals won’t be received,

system file table is big enough

for all normal use, etc.

But attacks are not normal use!

Usually attacker can fill up

system file table.

Wrong code concludes, incorrectly,

that file does not exist.

Attacker has forced code to misbehave.

Right code tries again later.

Attacker has merely delayed service.



Is delayed service a problem?

Often not. Charge users

for their resource use.

Extra use means extra charge.

Another user can avoid delay by

paying for independent resources.

UNIX has very few facilities

to allocate independent resources;

so run an independent machine.

Can still have security problems:

(1) attacker avoiding the charges

for the resources he used;

(2) attacker doing something worse

to another user than delaying service.



Handling getpwnam() failures

#include <sys/types.h>

#include <pwd.h>

pw = getpwnam(...);

if (!pw)

if (errno == ESRCH)

account does not exist;

else

not sure, try again later;

else

account exists, use pw;

Oops—getpwnam() manual

does not promise this use of errno!

Hard to write getpwnam() replacement:

details depend somewhat on system.



Handling fork() failures

#include <sys/types.h>

#include <unistd.h>

pid = fork();

if (pid <= 0)

if (pid == 0)

running in new process;

else

failed, try again later;

else

running in old process;

Attacker can consume all memory,

making fork() fail;

important to check.



Handling read() failures

#include <sys/types.h>

#include <unistd.h>

r = read(...);

if (r <= 0)

if (r == 0)

end of file;

else

try reading again later;

else

have read r bytes, use them;

Can attacker force read()

from a disk file to fail?

With network filesystems, yes:

attacker can flood the network.



Reading from another process:

if the other process dies,

read() returns 0.

(Should be -1. Too late to fix UNIX.)

On many systems, attacker can force

another user’s programs to die:

attacker allocates more memory

than the computer actually has,

and then writes to that memory.

“Overcommitment”:

unfortunate kernel feature

falsely reporting allocation success

and then killing other programs.

To avoid confusion, sender must

send explicit “I’m done” message.


