
KCRA TV, 2004.11.04:

“Students accused of hacking computer,

changing grades

“Three high school students in Elk Grove

have broken into a campus computer and

changed grades, according to

investigators. �����

“ ‘A teacher noticed that she thought that

a grade had been changed,’ said Sheldon

High School principal Paula Duncan.

“The school district launched an

immediate investigation, calling in the

Sacramento Sheriff’s Department’s

High-Tech Crimes Task Force. �����



“The students were allegedly able to

gain access to the information by using

spyware software during school hours in

the school’s library. Computer experts

said they have not seen any evidence that

personal information was stolen.

“The students have been removed from

the school and face potential expulsion.

The school district has hired security

experts from Microsoft to make sure the

computers will be secure from any future

hackings.”



The file-rewriting problem

Contents of /etc/passwd:

root:*:0:0:Root:/root:/bin/csh

djb:*:1001:1001:

D. J. Bernstein,410 SEO,

312-413-9322:/home/djb:

/bin/csh

joe:*:1002:1002:Joseph Evil,

,312-867-5309:/home/joe:

/bin/bash

etc. One line per account.

Joe is allowed to change some of the

information on the joe line.

There are setuid programs

designed to do this: chfn, chsh, etc.



Suppose djb changes shell

from /bin/csh to /bin/tcsh.

How does chsh handle /etc/passwd?

open("/etc/passwd",O_RDONLY);

read(...); read(...); read(...);

read(...); etc.; close().

open("/etc/passwd",

O_WRONLY|O_TRUNC);

write(...); write(...); write(...);

write(...); etc.; close().



O_TRUNC truncates /etc/passwd:

it’s now 0 bytes long.

The first write() puts (e.g.) 512 bytes

onto the end of /etc/passwd.

The second write() puts 512 more bytes

onto the end of /etc/passwd.

Eventually /etc/passwd is complete.

What if another process reads

/etc/passwd before it’s complete?

e.g. Immediately after the O_TRUNC,

before the first write,

login program reads /etc/passwd

looking for a user. User isn’t there!



Typical fix: Lock /etc/passwd.

Recall flock syscall:

wait until any previous programs that

used flock have closed this file.

chsh locks /etc/passwd

before reading it,

and leaves the reading descriptor

open while writing.

login locks /etc/passwd

before reading it.

So login waits for chsh to finish.

Security problem: What if Joe can stop

chsh from completing the file?



Signals

Normal control flow in a process

can be interrupted by a signal.

Sometimes a signal terminates the

process. (May “dump core,” i.e.,

save the process RAM to a disk file.)

Sometimes a signal pauses the process.

Sometimes a signal makes the process

call a function specified by the program.

Sometimes a signal is ignored.



Signals generated by bugs

When process tries to access

a weird memory location,

it receives a SEGV signal.

(“Segmentation violation.”)

Normal effect: terminate process.

When process divides by 0,

it receives an FPE signal.

(“Floating-point exception”;

but floating-point division by 0

doesn’t trigger the signal!)

Normal effect: terminate process.

And more. To avoid these signals,

don’t access weird memory locations,

don’t divide by 0, etc.



Signals generated by kill()

Syscall kill(382,15) tries to send

signal 15 (TERM) to process 382.

Normal effect: terminate process.

Command: kill -15 382 or

kill -TERM 382 or kill 382.

Does kernel allow Joe to kill process 382?

Yes if process 382 has

uid Joe or real uid Joe.

So, if Joe runs setuid program chsh,

Joe can kill chsh at any moment.

Fix: chsh sets its real uid to 0.



Signals generated by the tty

When Joe types Control-C,

“foreground” processes on that tty

receive an INT signal. (“Interrupt.”)

Normal effect: terminate process.

More signals like this: HUP, TSTP, etc.

What are the “foreground” processes?

Complicated combination of system data:

process tty, process sid, process pgrp, etc.

Normally chsh is in foreground.

Fix: chsh “dissociates” from Joe’s tty.



Signals generated by timers

Syscall alarm(10) tells kernel

to send ALRM signal to this process

in 10 seconds.

Normal effect: terminate process.

More signals like this: VTALRM, PROF.

execve doesn’t clear alarms.

/home/joe/evil calls alarm(10) and

then execve("/usr/bin/chsh",...),

timing the alarm to interrupt

the rewrite of /etc/passwd.

Fix: chsh turns off alarms.



Signals generated by fds

When a process writes to a

closed network connection,

closed pipe, etc., it receives

a PIPE signal.

Normal effect: terminate process.

Fix: chsh tells kernel to

ignore PIPE for this process.

Actually, can ignore all signals

except STOP and KILL.

Don’t need to turn off alarms

or dissociate from tty.

But do need to set real uid,

so Joe can’t send KILL.



Resource limits

Each process has several

resource limits in system data.

Complete list of resource limits

depends on the system. See

/usr/include/sys/resource.h.

Some important limits:

limit on CPU time;

limit on memory allocation;

limit on number of fds;

limit on number of bytes

in a file being written.



Process can reduce its own

resource limits.

execve preserves resource limits.

/home/joe/evil sets CPU-time limit

for itself, then runs chsh,

choosing the limit to kill chsh

immediately after O_TRUNC.

Or sets number-of-bytes limit.

Or sets some system-specific limit

that interferes with writing the file.

Fix: chsh can check the limits,

if it knows the complete list.


