
Doreen Hemlock, Fort Lauderdale Sun

Sentinel, 2004.10.21:

“FedEx chief stresses need for real, virtual

security in business

“Calling security a top priority for

business, FedEx Corp. Chief Executive

Fred Smith appealed Wednesday in Miami

Beach for tough legislation against

e-mail tampering, identity theft and other

offenses on the Internet. �����

“Governments need to penalize breaches

online, from hackers who plant viruses in

computers to those who pose as banks to

seek private information by e-mail from

bank clients, he said.



“While it’s a federal offense to tamper

with U.S. Postal Service mail, there are no

tough penalties for tampering with

e-mail, Smith told the Cargo Facts 2004

conference.”



Course grade:

60% homework.

10% midterm 1.

10% midterm 2, probably 17 November.

20% final.

Need 85% for A, 75% for B, etc.



Another setuid security hole

Sendmail bug fixed 1996.11.17:

execv(argv[0],argv);

What is this? Why is it a bug?

When Sendmail starts,

it reads several configuration files.

Sendmail can run for days

handling thousands of messages.

What if configuration changes?

User can tell Sendmail

to re-read configuration.

How does Sendmail do this?

By restarting itself.



On some UNIX systems,

Sendmail is /usr/lib/sendmail.

On others, /usr/sbin/sendmail.

Normally the name is in argv[0].

Sendmail calls

execv(argv[0],argv)

which eventually does

execve("/usr/lib/sendmail",...) or

execve("/usr/sbin/sendmail",...).

Unfortunately for Sendmail,

argv[0] can be changed

by whoever started Sendmail—

any user on the system.



Joe calls

execve("/usr/lib/sendmail"

,{"/home/joe/evil",...}

,{...})

to run /usr/lib/sendmail

with arguments /home/joe/evil etc.

Because /usr/lib/sendmail

is setuid (4755) 0 (owned by root),

this process now has uid 0.

Sendmail now runs argv[0],

i.e., /home/joe/evil.

Process still has uid 0.

Joe’s /home/joe/evil program

now controls the entire computer:

it can read and write any user’s file.



Another setuid security hole

Bug announced 2004.08 by Max Vozeler.

/dev/cdrom reads CD-ROMs,

reads and writes CD-RWs.

cdrecord is a setuid program

so that it can write to /dev/cdrom.

It can also log into another computer

to record a CD on that computer:

cdrecord \

dev=REMOTE:djb@x:1,0,0 -

RSH environment variable

specifies remote-login program.

“Use e.g. RSH=/usr/bin/ssh

to create a secure shell connection.”



Joe runs

env RSH=/home/joe/evil \

cdrecord \

dev=REMOTE:x:1,0,0 -

cdrecord is setuid 0,

and runs /home/joe/evil.

Joe’s /home/joe/evil program

now controls the entire computer.

Fix: Before calling execve,

cdrecord calls

setuid(getuid());

to set uid to real uid,

i.e., switch back to Joe’s uid.

Note: setuid program; setuid syscall.



Does setuid(getuid())

really give up all extra powers

obtained by a setuid program?

Not necessarily!

1. For programs setuid to non-root,

Linux and Solaris allow process to undo

setuid(getuid()). (BSD doesn’t.)

Say cd user owns /dev/cdrom

and cdrecord is setuid cd.

cdrecord calls setuid(getuid())

and then execve’s /home/joe/evil.

evil undoes setuid(getuid())

and now can write to /dev/cdrom,

destroying or modifying next user’s CD.



Linux kernel bug, fixed 2000:

Joe could disable setuid()

even for setuid-root programs,

easily taking over through (e.g.) Sendmail.

How?

As a “security” mechanism,

Linux invented new system data:

process can disable its ability

to perform various syscalls.

In particular, process can disable

the setuid() syscall. Oops!

Joe does this, runs Sendmail.

(Actually disabled the ability

for setuid() to set “saved uid.”

Setting saved uid prevents undo.)


