
Paul Roberts, IDG News Service,

2004.10.18:

“Oracle pleads with customers to install

August patches

“Oracle is warning customers to apply

software patches it released in August,

following the release of malicious code

that exploits the holes.

“The company acknowledged in a

recent security alert that it has received

notification that there are published

exploits for ‘some of the issues’ addressed

in the alert. �����



“In September, the US government’s

Computer Emergency Response Team

issued an alert about the flaws, noting

that they could be used to shut down or

take control of vulnerable systems running

the software or to corrupt or steal data

from the Oracle databases.

“Oracle strongly recommends affected

customers apply the software patches

‘without delay’.”



Assignment due 2004.10.15: read

textbook Chapter 6 pages 233–244.

Assignment due today: read

textbook Chapter 6 pages 244–253.

Assignment due 2004.10.20: read

textbook Chapter 6 pages 254–263.

Assignment due 2004.10.22: read

textbook Chapter 6 pages 263–276.



History of shared libraries, part 1

Often two processes are running

the same program:

process 152 system data

process 152 regs

process 152 text: /bin/csh

process 152 stack, heap, etc.

process 170 system data

process 170 regs

process 170 text: /bin/csh

process 170 stack, heap, etc.



/bin/csh is around 1 megabyte.

Each process has a copy of

/bin/csh in its RAM.

This uses 2 megabytes of

the computer’s memory. Wasteful.

UNIX solution: Store both copies in

the same physical memory location.

(Processes cannot write to text.)

If 200 copies of /bin/csh

are running, they occupy only

1 megabyte of physical memory,

rather than 200 megabytes.



History of shared libraries, part 2

Often different programs

use the same library functions:

process 149 system data

process 149 regs

process 149 text: xterm

process 149 stack, heap, etc.

process 10551 system data

process 10551 regs

process 10551 text: xclock

process 10551 stack, heap, etc.

xterm and xclock both include

sprintf(), XCreateGC(), etc.



X functions such as XCreateGC()

occupy a large fraction of the memory

in xterm and xclock.

There are two copies of these

functions in memory, and on disk.

Wasteful. (In fact, hundreds of copies.)

Traditional UNIX response:

Well-designed software doesn’t

have this kind of overlap.

There should be one xwindow

program with all these functions,

and tiny xterm and xclock

programs that talk to xwindow,

in the same way that a

tiny web server talks to a browser.



Basic idea of shared libraries:

Have the compiler try to do this

without help from the programmer.

Programmer merely specifies

a list of xwindow functions.

Compiler throws all those functions

into a new xwindow program;

changes xterm, xclock, etc.

to start xwindow before main();

and changes all the function calls

to talk to the xwindow program,

which actually calls the functions.

Many variations on this basic idea.

Many problems, especially with setuid.



Details of the shared-library attack

Joe creates a replacement open():

joe% cat > myopen.c

int open()

{ system("rm -rf /"); }

joe% gcc -shared \

-o myopen.so myopen.c

Joe runs a setuid program:

joe% env \

LD_PRELOAD=‘pwd‘/myopen.so \

lpr

Before calling main(),

the setuid program tries to start

the official libopen program.

(Why is the official open()

in a shared library? Good question.)



Bug: because of LD_PRELOAD,

the program uses Joe’s myopen

instead of the official libopen.

Joe’s open() function

runs, removing all files,

as soon as the setuid program

calls the open() function.

Fix: the shared-library loader

ignores LD_PRELOAD when

geteuid() != getuid(),

i.e., when it is setuid.


