
Laura Berrill, Techworld, 2004.10.11:

“Solaris security suffers image problem

“A highly critical security hole has been

reported in the X Pixmap (libXpm)

technology shipped with Solaris and JDS

for Linux, which could allow someone to

run code on your system if a modified X

Pixmmap [sic] (.xpm) image is loaded. �����

“Sun is still building a patch to the

problem, first detected on Friday, and

advice to users is to avoid loading

X PixMap (.xmp) [sic] images from

untrusted sources in the meantime.”



Many programs use libxpm;

Sun’s JDS is just one of them.

This bug was published

on 2004.09.15 by Chris Evans:

http://msgs.securepoint.com

/cgi-bin/get/bugtraq0409/119.html



Assignment due 2004.10.15: read

textbook Chapter 6 pages 233–244.

Assignment due 2004.10.18: read

textbook Chapter 6 pages 244–253.

Assignment due 2004.10.20: read

textbook Chapter 6 pages 254–263.

Assignment due 2004.10.22: read

textbook Chapter 6 pages 263–276.



The printing problem, recap

If printer and user’s pagesprinted file

are writable to user

(i.e., owned by user, or permissions 622),

then the user has too much power.

If writable to network server

that trusts user to identify himself,

then the user has too much power.

The setuid-lpr solution:

printer and user’s pagesprinted file

are writable only to root;

lpr program is setuid,

so it runs as root.



Setuid lpr can be secure,

but only if it’s written

very, very, very carefully.

Local attacker has many ways

to control a setuid program:

fds, args, environ, cwd, tty,

rlimits, timers, signals, etc.

Even worse, this list varies

between Linux, BSD, Solaris, etc.

Writing a program that handles

all of these channels safely

is much more difficult than

writing a program that handles

a single input channel safely.



UNIX has many setuid programs

providing restricted access to

the password database, modems,

printers, mailboxes, terminals, etc.

Tiny bugs in these programs

have produced many security holes.

We’ll see the details.

Could eliminate the setuid programs

using new getpeereid syscall

or using cryptographic tools,

but setuid is still widely used

and continues generating new holes.



What is a process?

Computer’s memory is divided into

processes and the kernel:

kernel

process 1

process 2

process 3
...

process 30000



Each process contains

system data, registers, and RAM:

kernel

process 1 data regs RAM

process 2 data regs RAM

process 3 data regs RAM
...

process 30000 data regs RAM

Picture is not to scale.

RAM has several big “segments”:

text (running program),

data (global variables),

stack (local variables),

heap (allocated variables), etc.



System data for a process

(often called struct proc):

user identifier, more identifiers,

process group, process session,

open file information,

signal actions, etc.

Details: /usr/include/sys/proc.h.

Process cannot read or write this data

except through syscalls.

Process cannot read or write

another process’s data/regs/RAM

except through syscalls.

(CPU enforces these restrictions.

Syscalls are defined by kernel.)



Say user Joe has identifier 1257.

Joe logs in and runs a program,

i.e., creates a process

containing that program in its RAM.

Process user identifier is 1257.

Process tries opening /dev/ulpt0

for writing with open syscall.

The open syscall checks

whether this access is allowed.

Rules, a bit simplified: if /dev/ulpt0’s

owner matches process’s user identifier,

or if process’s user identifier is 0 (root),

or if file permissions are 622,

writing is allowed. Otherwise not.



Assume that /dev/ulpt0

has permissions 600

and owner different from 1257.

Then the open fails.

However, suppose the program has

owner 0 and permissions 4755 (setuid).

Then the process user identifier

is 0 instead of 1257,

so the open succeeds.

Similarly: If root logs in

and runs a non-setuid program,

the process user identifier is 0,

so the open succeeds.



A simple setuid security hole

Recall that lpr needs to

handle /etc/lpd/joe/pagesprinted.

Where does it find username joe?

Here’s an easy way: getenv("USER").

Whoops, that’s a security hole!

Joe can charge his printing to Bill.

SunOS 4.1.3 chsh command had

the same security hole until 1997.

(Caught by Trevor Linton.)



What does Joe do? He runs

env USER=bill lpr

so that getenv("USER")

returns "bill" inside lpr.

What env does:

execve("/usr/bin/lpr"

,{"lpr",0}

,{"PATH=...","USER=bill",0})

The strings PATH=... and

USER=... are environment variables.

They’re controlled by Joe.

getenv ends up reading

USER=bill and trusting it.



Let’s watch this attack in detail.

Process is owned by Joe:

i.e., user identifier 1257.

Process runs

execve("/usr/bin/lpr"

,{"lpr",0}

,{"PATH=...","USER=bill",0}).

What does the execve syscall do?

1. It copies the lpr code and data

from the file /usr/bin/lpr into RAM.

2. Because /usr/bin/lpr is setuid 0,

execve sets the process uid to 0.



3. It clears the rest of memory,

except that it pushes

{"lpr",0} and

{"PATH=...","USER=bill",0}

onto the stack.

4. It creates a variable environ

pointing to {"PATH=...",...}.

5. It pushes that pointer,

a pointer to {"lpr",0},

and 1 onto the stack.

6. It jumps to the start of lpr’s main.

Later getenv uses environ

to find "USER=bill".



What should lpr do instead?

Process has another uid in system data:

the “real uid.”

For setuid programs,

the uid changes; the real uid doesn’t.

In this case,

the uid is 0; the real uid is 1257.

getuid is a syscall

that returns the real uid.

lpr should call getuid,

handle /etc/lpd/1257/pagesprinted.

getenv("USER") can’t be trusted

in setuid programs, but getuid() can.



Another example

Sendmail bug fixed 1996.10.17:

h = res_search(host,...);

Why is this a bug?

Sendmail is a setuid program.

It accepts mail from local users

into an outgoing “mail queue”:

bill% sendmail -t

To: eric@cs

Here’s the secret number

you wanted: 867-5309.

Sendmail might deliver the mail now,

but not if this computer is busy.

(Attacker can make the computer busy.)



Sendmail also allows local users

to “run the queue,” i.e.,

try delivering all mail now:

joe% sendmail -q

Because Sendmail is setuid,

it can read and write the queue.

Sendmail tries to deliver

Bill’s message to eric@cs.

It uses res_search,

a BIND library function that sees

search uic.edu

in /etc/resolv.conf,

converts cs into cs.uic.edu,

and looks up address of cs.uic.edu.

Okay; why is this a bug?


