
USA Today, 2004.10.08:

“Tests uncover lax security at Newark

“Security screeners at Newark Liberty

International Airport, one of the airports

breached by the Sept. 11 hijackers, failed

to detect 25% of fake bombs or weapons

in inspection tests, a report said Thursday.

“The Newark Star-Ledger, citing

confidential inspection reports, said the

vast majority of failures resulted from the

federal screeners’ inability to detect phony

explosive devices hidden in carry-on bags

sent through X-ray machines.

“They also missed some guns in carry-on

luggage or concealed under the clothing of



inspectors as they walked through metal

detectors at the airport near New York.

�����

“A total of 327 tests were conducted

at the airport’s nine checkpoint areas.

Screeners succeeded 246 times and failed

81 times for a failure rate of 24.8%,

according to the TSA documents cited

by the newspaper.

“ ‘We’re working diligently to increase

our explosive detection capabilities at

our passenger checkpoints,’ said Mark

Hatfield, a TSA spokesman. ‘The key

point here—testing is training.’ ”



The printing problem

A university system administrator

creates accounts for thousands of

students and faculty members.

(The system administrator is

someone authorized to control the

entire computer; e.g., the owner.)

Computer has a laser printer.

Any picture written to /dev/ulpt0

is sent directly to the laser printer.

System administrator wants to allow

people with accounts to use the printer.

How does he do it?



First try at a solution

Each file has owner and permissions.

Owner is allowed to change permissions.

/dev/ulpt0 is owned by root,

the system administrator.

Normal permissions: 600, meaning

other users can’t open /dev/ulpt0.

System administrator runs command

chmod 622 /dev/ulpt0

changing permissions to 622.

This allows all users to

write data to /dev/ulpt0.

Now, to print, a user simply

copies a picture to /dev/ulpt0.



Security holes

An unscrupulous student

(or maybe a faculty member?)

prints thirty copies of a book,

consuming all the printing resources.

As revenge, another student

opens /dev/ulpt0 at the same time

and writes random garbage,

ruining twenty copies of the book.

System administrator decides to

limit access to the printer:

only 500 pages per user;

only one print job at a time.

How does he do it?



Second try at a solution

System administrator writes a

printing program, lpr,

and makes it available to everyone:

vi lpr.c

gcc -o lpr lpr.c

cp lpr /usr/bin/lpr

System administrator tells users

to print using this program:

lpr < mypicture



lpr looks up the user’s home directory,

say /home/joe, and creates a new file

/home/joe/.pagesprinted

containing the number 1.

If /home/joe/.pagesprinted already

exists, lpr increments the number in it.

If the number reaches 500, lpr exits.

lpr then opens /dev/ulpt0,

applies flock to /dev/ulpt0,

and copies its input to /dev/ulpt0.

What does flock do?

It waits until any previous programs that

used flock have closed /dev/ulpt0.

(“Exclusive advisory lock.”)



Security holes

Users can skip the lpr program

and write directly to /dev/ulpt0.

Setting permission back to 600

would make lpr fail.

Joe can also change

/home/joe/.pagesprinted

from 500 back to 1, or simply remove it.

Users can also run a separate program

that flocks /dev/ulpt0

and waits forever,

making lpr fail for everyone else.



Third try at a solution

System administrator changes lpr

to make a TCP connection to port 515,

send username, send picture to be printed.

System administrator runs

tcpserver 0 515 lpd &

so that any TCP connection to port 515

runs lpd as root and talks to it.

lpd reads user’s account name,

say joe, from the connection;

handles /etc/lpd/joe/pagesprinted;

and copies input to /dev/ulpt0,

making sure not to wait forever.

System administrator sets permissions

600 for /dev/ulpt0 and /etc/lpd/*/*.



Security holes

Joe makes a TCP connection,

sends name Bill, sends picture.

Spammer in China

connects to port 515,

sends name Bill, sends an ad.

lpd has no idea who it’s talking to.

It blindly trusts username

controlled by an attacker.

How can lpd figure out

who it’s talking to?



Fourth try at a solution

System administrator

turns off the network service

and keeps permissions at 600.

System administrator changes lpr

to directly handle /dev/ulpt0

and /etc/lpd/joe/pagesprinted.

lpr doesn’t have permission

to access those files—until

system administrator turns lpr

into a setuid program:

chmod 4755 /usr/bin/lpr



What happens when the owner

of a program makes it setuid?

That program runs as the owner,

rather than as whichever user

started the program.

Lower level: When a process

execve’s a setuid program,

the process owner (the “uid”)

changes to the program’s owner.

So lpr runs as root.

It can write to /dev/ulpt0

and /etc/lpd/joe/pagesprinted,

even though Joe can’t.



Security holes

Setuid lpr can be secure,

but only if it’s written

very, very, very carefully.

Local attacker has many ways

to control a setuid program:

fds, args, environ, cwd, tty,

rlimits, timers, signals, etc.

Even worse, this list varies

between Linux, BSD, Solaris, etc.

Writing a program that handles

all of these channels safely

is much more difficult than

writing a program that handles

a single input channel safely.


