
Danny Brierley, Local London, 2004.09.30:

“BA flight diverted after security scare

“A flight bound for London was forced to

make an emergency landing in Amsterdam

following a security alert.

“The British Airways flight, which flew

from Berlin, was said to have been

escorted to Holland by fighter jets.

“A spokesman for the airline said the

diversion had to be made after a threat

was received.

“The scare comes days after a plane

bound for New York from Athens was

diverted to Stanstead after Greek

newspapers received threats.”

Finding exploitable buffer overflows: recap

1. Look for an interesting target program

on, e.g., www.sourceforge.net. Choose

program that inspects data from an

untrusted source: e.g., program that

reads file from network and converts it

to another format.

2. Find buffer overflow that receives

untrusted input. May need quite a bit

of effort: read the program; also try

various inputs, watching the program

in the debugger. Work backwards from

unchecked array accesses; work forwards

from untrusted inputs.

3. Create input that smashes return

address (or other interesting pointer).

Often very easy, but sometimes need to

create complicated input.

4. Modify input so that function returns

(or uses other smashed pointer). Often

very easy, rarely very difficult.

5. Modify input to place payload at

smashed return address. Usually very easy.

Can usually copy payload from another

target.

Reporting a security hole

Identify problem: “There is a remotely

exploitable security hole in LaTeX2RTF, at

least in the current version, 1.9.15.”

Summarize data flow: “For example,

an attacker runs the C program below

and saves the output as foo.tex. The

attacker sends foo.tex to you by email.

You feed foo.tex through LaTeX2RTF

on an x86-compatible computer running

FreeBSD. (The documented purpose of

LaTeX2RTF is to convert LaTeX files to

RTF files; users are not told that they

must not run LaTeX2RTF on network

data.) Result: LaTeX2RTF removes all

of your files in the current directory.”

Explain how to install the program: “To

see the attack in action under FreeBSD

4.10, first download LaTeX2RTF:

mkdir $HOME/tmp

cd $HOME/tmp

wget http://

umn.dl.sourceforge.net

/sourceforge/latex2rtf

/latex2rtf-1.9.15.tar.gz

gunzip latex2rtf-1.9.15.tar

tar -xf latex2rtf-1.9.15.tar

cd latex2rtf-1.9.15

Change the PREFIX line in Makefile to

PREFIX=$(HOME)/tmp. Then type

make install

to compile and install the program.”

Explain how to run the attack: “Now save

the attack program below as attack.c,

and run it to create foo.tex:

cd $HOME/tmp

gcc -o attack attack.c

./attack >foo.tex

Finally, feed attack.out through

LaTeX2RTF:

bin/latex2rtf <foo.tex >foo.rtf

This runs rm *, a command specified by

the attacker.”

Summarize the bug: “Here’s

the relevant bug in the program:

strcpy(expanded,macro_piece) in

expandmacro() fails to check for enough

buffer space for a copy of macro_piece.”

Homework procedures

Put credits at top of report: “This security

hole was discovered by George W. Bush

and John Kerry.”

On class FreeBSD machine, send report:

mail homework < bug1

I’ll check that program is deployed; attack

involves reasonable (even if uncommon)

user behavior; attack works; attack is

new. If security hole was discovered by
� -member team, each member receives

1
� � credit. Rediscoveries receive no credit.

I’ll handle public notification. Do not

attempt to notify public yourself.

The full-disclosure debate

Charles Tomlinson, “Rudimentary treatise

on the construction of locks,” 1853:

“A commercial, and in some respects

a social, doubt has been started within

the last year or two, whether or not it is

right to discuss so openly the security or

insecurity of locks. Many well-meaning

persons suppose that the discussion

respecting the means for baffling the

supposed safety of locks offers a premium

for dishonesty, by showing others how to

be dishonest. This is a fallacy. Rogues

are very keen in their profession, and

already know much more than we can

teach them respecting their several kinds

of roguery. Rogues knew a good deal

about lockpicking long before locksmiths

discussed it among themselves, as they

have lately done. If a lock—let it have

been made in whatever country, or by

whatever maker—is not so inviolable as

it has hitherto been deemed to be, surely

it is in the interest of honest persons to

know this fact, because the dishonest are

tolerably certain to be the first to apply

the knowledge practically; and the spread

of knowledge is necessary to give fair play

to those who might suffer by ignorance. It

cannot be too earnestly urged, that an

acquintance with real facts will, in the

end, be better for all parties.

“Some time ago, when the reading

public was alarmed at being told how

London milk is adulterated, timid persons

deprecated the exposure, on the plea that

it would give instructions in the art of

adulterating milk; a vain fear—milkmen

knew all about it before, whether they

practiced it or not; and the exposure only

taught purchasers the necessity of a little

scrutiny and caution, leaving them to obey

this necessity or not, as they pleased. �����

“The unscrupulous have the command of

much of this kind of knowledge without

our aid; and there is moral and commercial

justice in placing on their guard those

who might possibly suffer therefrom. We

employ these stray expressions concerning

adulteration, debasement, roguery, and

so forth, simply as a mode of illustrating

a principle—the advantage of publicity.

In respect to lock-making, there can

scarcely be such a thing as dishonesty

of intention: the inventor produces

a lock which he honestly thinks will

possess such and such qualities; and he

declares his belief to the world. If others

differ from him in opinion concerning

those qualities, it is open to them to

say so; and the discussion, truthfully

conducted, must lead to public advantage:

the discussion stimulates curiosity, and

curiosity stimulates invention. Nothing but

a partial and limited view of the question

could lead to the opinion that harm can

result: if there be harm, it will be much

more than counterbalanced by good.”

How quickly should software-security-hole

information be made public? What if we

do manage to teach the rogues something

they don’t know about roguery?

Short-term view: Public disclosure

hurts users and programmers by forcing

emergency upgrades. Hide as much

information as possible, as long as

possible.

Long-term view: Public disclosure

creates incentive to write and use secure

programs. Disclose as much information as

possible, as quickly as possible.

