
Associated Press, 2004.09.16:

“Security breach clears Oakland airport

“Oakland International Airport was

evacuated and all flights were grounded

for about an hour Thursday night after a

suspicious item passed through a security

checkpoint, authorities said.

“About 8:50 p.m., an airport screener saw

a ‘threatening image’ on his video

monitor from an item that had passed

through an X-ray machine. When

airport officials could not match the

image to a bag or passenger, they

evacuated both terminals and ground all

departing flights around 9 p.m.”

Assignment due 2004.09.03: read Gaim.

http://cr.yp.to/2004-494/gaim.html

Assignment due 2004.09.08: read

textbook Chapter 7 pages 277–308.

Assignment due 2004.09.15: read

textbook Chapter 7 pages 309–336.

Assignment due 2004.09.17: read

textbook Chapter 7 pages 360–366.

Assignment due 2004.09.20: read libpng.

cr.yp.to/2004-494/libpng.html

#define NOCHAR -1

register int c;

for (;;) {

c = *p++;

if (...)

*q++ = ’\\’;

...

if (c != NOCHAR)

if (q > ...)

break;

}

How do we know that *q is inside array?

The q > ... tries to check—but only

if c != -1. Can c be set to -1?

Byte *p is 0 through 255, right?

Not exactly! Actually -128 through 127.

m(...,char **x,...,int xlen)

{

int nchar = 0;

while (...) {

...

if (++nchar > xlen) break;

*(*x)++ = ...;

}

}

char obuf[MAXLINE + 1];

char *obp = obuf;

while (...)

m(...,&obp,...,MAXLINE);

m can write to (*x)[0],

(*x)[1], ..., (*x)[xlen-1];

i.e., obp[0], ..., obp[MAXLINE-1].

How do we know these are inside obuf?

obuf[0], ..., obuf[MAXLINE]

are all okay. Isn’t obp equal to obuf?

Not necessarily!

obp starts out equal to obuf,

but m changes *x, i.e., changes obp.

The second call to m can overflow obuf.

Which writes are buffer overflows?

*p = x may be an overflow.

Typically p started out

pointing to the beginning of an array,

but was then increased or decreased.

How far was it moved?

How long is the array?

If *p = x is protected by

adjacent tests that p >= thearray

and p < thearray + itslength,

and if we’re sure about itslength,

then there’s clearly no buffer overflow.

Similarly: a[n] = x, same as

*(a + n) = x, may be an overflow.

How big is n? How long is a?

If a[n] = x is protected by

adjacent tests that n >= 0

and n < a + itslength,

and if we’re sure about itslength,

then there’s clearly no buffer overflow:

int a[30];

int n;

...

if (n >= 0)

if (n < 30)

a[n] = j;

while (*tz != ’\0’)

*q++ = *tz++;

Question you should be asking:

Is q buffer longer than tz?

if (first >= tTsize)

first = tTsize - 1;

tTvect[first] = i;

Questions you should be asking:

What if first is negative?

Is tTsize the size of tTvect?

readdata(buf);

Question you should be asking:

Does readdata know how long buf is?

How serious is a buffer overflow?

You’ve found a write that can

overflow a buffer in a program.

Does this bug allow an input source

to take control of the program?

Is that source controlled by an attacker?

Example: p = buf; ... p = 0; *p = 3

always crashes. No worse effects.

Example:

myreadfile("/usr/src/README",buf)

might overflow buf with data

from the /usr/src/README file,

but that file can’t be affected

except by the system administrator.

Finding new buffer overflows

www.sourceforge.net

has many free programs.

I decided to download latex2rtf.

You’re not allowed to use latex2rtf

for your homework.

Let’s look at www.sourceforge.net

and then look at latex2rtf.

