Putnam Mathematical Competition, 2 December 2000

Problem A1l

Let A be a positive real number. What are the possible values of Z;io x?, given that
Zg, 1, T2,... are positive numbers for which Z;'io z; =A?

Problem A2

Prove that there exist infinitely many integers n such that n, n + 1, and n + 2 are each
the sum of two squares of integers.

[Ezample: 0=0%+0%,1=0%+12, and 2 =12 + 12]]
Problem A3

The octagon P; P, P3P, P;PsP;Pg is inscribed in a circle, with the vertices around the
circumference in the given order. Given that the polygon P; P3PsP; is a square of area
5 and the polygon P, P, PgPs is a rectangle of area 4, find the maximum possible area of
the octagon.

Problem A4
Show that the improper integral

B

lim sin(z) sin(z?) dz
B—o0 0

converges.
Problem A5

Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.
Show that two of these points are separated by a distance of at least r1/3.

Problem A6

Let f(z) be a polynomial with integer coefficients. Define a sequence ayg, a1, . . . of integers
such that ap = 0 and a, 1 = f(ay) for all n > 0. Prove that if there exists a positive
integer m for which a,, = 0 then either a; = 0 or ay = 0.



Problem B1

Let a;, b;, and c; be integers for 1 < j < N. Assume, for each j, that at least one of
a;,bj,c; is odd. Show that there exist integers r, s, t such that ra; + sb; + tc; is odd for
at least 4N/7 values of j, 1 < j < N.

Problem B2

Prove that the expression

gcd(;n, n) (:)

is an integer for all pairs of integers n > m > 1. [Here (') = iyt and ged(m,n) is
the greatest common divisior of m and n.]

Problem B3
Let f(t) = Z;vzl a; sin(2mjt), where each a; is real and ay # 0. Let Nj denote the
k
number of zeros (including multiplicities) of e Prove that
NOSNlSNQS and khm Nk:2N
—00
Problem B4

Let f(z) be a continuous function such that f(2z? — 1) = 2z f(z) for all z. Show that
f(z)=0for -1 <z <1.

Problem B5
Let Sy be a finite set of positive integers. We define finite sets S7,.52,... of positive
integers as follows:

Integer a is in S,,4+1 if and only if exactly one of @ — 1 or a is in S,,.

Show that there exist infinitely many integers N for which Sy = SgU{N +a:a € Sp}.
Problem B6

Let B be a set of more than 2"*!/n distinct points with coordinates of the form
(+£1,4£1,...,£1) in n-dimensional space, with n > 3. Show that there are three dis-
tinct points in B which are the vertices of an equilateral triangle.



Solutions

D. J. Bernstein, 3 December 2000

Problem A1l

Let A be a positive real number. What are the possible values of Z;io x?, given that

Zo,T1,T2,. .. are positive numbers for which Z;io z; = A?

Solution: One can achieve any real number s with 0 < s < A2 as follows. Define
u = s/A%; then 0 < u < 1. Define r = (1 — u)/(1 + u); then 0 < 7 < 1. Define
z; = Al —r)rf; then z; > 0. Finally Y z; = AQ1—7r)> 7 = A and Y a2 =
A2(1 =723 r2 = A2(1—r)2/(1—-r?) = A2(1 —7)/(1 +7) = A%u=s.

One cannot achieve any other number, since 0 < Y z7 < (3 z;)* = A%

Problem A2

Prove that there exist infinitely many integers n such that n, n + 1, and n + 2 are each
the sum of two squares of integers.

[Ezample: 0=0%+0%,1=0%+12, and 2 =12 + 12]]

Solution: There are infinitely many integers n of the form 2k?(k + 1)?; note that n =
(k2 +k)2+ (k2 +k)?, n+1 = (k2 +2k)2+ (k2 —1)%, and n+2 = (K> +k+1)2+ (k2 +k—1)2.

Problem A3

The octagon P; P, P3P, P;PsP;Pg is inscribed in a circle, with the vertices around the
circumference in the given order. Given that the polygon P; P3 Ps P; is a square of area
5 and the polygon P, P, PgPs is a rectangle of area 4, find the maximum possible area of
the octagon.

Solution: The circle circumscribes a square of area 5, so the circle has radius v/5/2.
Hence the rectangle has sides v/2 and /8. Without loss of generality assume that P, P,
has length V2.

Put P, Py, Ps, Py into the complex plane at v/2(1/2 + 1), v/2(—1/2 + i), V2(—=1/2 — 1),
v2(1/2 —i). Put Py into the complex plane at v/5/2exp(if); then P3, Ps, P; are at
iv5/2exp(if), —v5/2exp(if), —iv'5/2 exp(if).

The triangles P3Py P, and P,Ps;Pgs each have area V5cosf — 1. The triangles P, P3Py

and PsP;Ps each have area v/5/4cosf — 1. Hence the octagon has area 3v/5cosf. The
maximum possible area is 3\/3, achieved for 8 = 0.

Problem A4



Show that the improper integral

B
lim sin(z) sin(z?) dz
B—o0 0

converges.

2 2

Solution: Rewrite sin z sin z? as (cos(z? — x) — cos(z? +z))/2. In the improper integral
J;” cos(z? + z) dz substitute u = 22 + z to obtain [~ 2cosudu/(v/1+ 4u — 1). The
integrand is negative on (7/2,3m/2), positive on (37/2,57/2), etc. The corresponding
integrals form an alternating decreasing series since

ST 2|cosu| du ST 2cosu| du ST27 9 cosv| dv

> — — .
s vV1+4u—1 s vV1+4u+4m —1 s+r V1+4v—1

Thus [, cos(z? + z) dz converges. Similar comments apply to [~ cos(z? — z) dz.

Problem A5

Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.
Show that two of these points are separated by a distance of at least r1/3.

Solution: The following solution is stolen from Dave Rusin.

The triangle formed by the points has area abc/4r where a, b, c are the distances between
the points. If a,b, ¢ < 71/3 then the area is smaller than 1/4; but the area is at least 1/2
since the points have integer coordinates.

Problem A6

Let f(z) be a polynomial with integer coefficients. Define a sequence ay, a1, . . . of integers
such that ap = 0 and an 41 = f(ay) for all n > 0. Prove that if there exists a positive
integer m for which a,, = 0 then either a; = 0 or as = 0.

Solution: The stated conclusion is false, because the word “either” means that exactly
one is true. Presumably the intent was to say that a; = 0 or ay = 0.

Fact 1: a,,_1 divides ay. Proof: a,, 1 divides f(am—_1) — f(0) = ap, — a1 = —ay.

Fact 2: a; divides a,, if n > 0. Proof: If n = 0 then a,, = 0. Otherwise a; divides a,,_1
by induction, so it divides f(an—1) — f(0) = a,, — as.

Fact 3: a, — ap—1 divides apyx — @nik—1 if » > 1 and k£ > 0. Proof: If k& = 0 then
Gp — Qp—1 = Qptk — Ontk—1. Otherwise a,, —a,—1 divides apx—1 —a@n4r—2 by induction,
so it divides f(anir—1) — f(@ntk—2) = Anik — Anik—1.

Fact 4: a, — an—1 € {—a1,a1} if 1 <n < m. Proof: Define kK = m —n. Then a,, — an—1
divides an+x—Gntk—1 = QGm—am—1 = —Qm—1, Which divides a1; and a; divides a,—a,—1.



Fact 5: ag = 0. Proof: ay — a; € {—aj1,a1}. Suppose that az # 0. Then ay = 2a; and
a; # 0, so m > 3. Observe that a, = na, for n € {0,1,2}, but not for n = m. Find
the smallest n > 3 for which a, # na;. Then a,_1 = (n — 1)a1, so a, — an—1 # a1,
SO Gp — Gp—1 = —ay, S0 ap = (N — 2)a; = ap—s. By induction a; € {an—1,a,—2} for
all £ > n. In particular 0 = a,, € {an—1,an—2}. Thus (n —1)a; =0 or (n — 2)a; = 0.
Contradiction.

I would have written this problem as follows: “Define a9 = 0 and an4+1 = f(an), where
f is a polynomial with integer coefficients. Assume that asgog = 0. Prove that as = 0.”
Problem B1

Let aj, b;, and c; be integers for 1 < j < N. Assume, for each j, that at least one of
aj,bj,c; is odd. Show that there exist integers r, s, t such that ra; + sb; + tc; is odd for
at least 4N/7 values of j, 1 < j < N.

Solution: Define f(u,v,w) = # {j : (a; mod 2,b; mod 2, ¢; mod 2) = (u,v,w)}. Define
g(r,s,t) = #{j : ra; + sb; + tc; is odd}. Then

9(0, 1,0) f(O 1,0) + £(0,1,1) + f(1,1,0) + f(1,1,1),
9(0,0,1) = £(0,0,1) + f(0,1,1) + f(1,0,1) + f(1,1,1),
9(1,1,0) = f(1,0,0) + f(0,1,0) + f(1,0,1) + f(0,1,1),
9(0 1,1) f(0 1,0) + f(0,0,1) + f(1,1,0) + f(1,0,1),
9(1,1,1) = £(1,0,0) + £(0,1,0) + f(0,0,1) + f(1,1,1).
Add: ¢(1,0,0) + ¢(0,1,0) + ¢(0,0,1) + ¢g(1,1,0) + ¢(1,0,1) + ¢(0,1,1) + g(1,1,1) =
4f(1,0,0)+4£(0,1,0)+4£(0,0, 1)+4f(1, ,0)+4f(1,0 ,1)+4f(0,1, 1)+4f(1,1,1) =4N
Thus g(r, s,t) > 4N/7 for some (r, s,t).
Problem B2
Prove that the expression
ged(m,n) (n
)
is an integer for all pairs of integers n > m > 1. [Here (") = #lm), and ged(m,n) is

the greatest common divisior of m and n.]
Solution: Presumably “divisior” means “divisor.”

Find integers a,b with ged(m,n) = am + bn. Then (gcd(m,n)/n) (") = a(n_l) +b(").

m—1 m



Problem B3
Let f(t) = Z;V:1 a; sin(2mjt), where each a; is real and ay # 0. Let Nj denote the

k
number of zeros (including multiplicities) of Tk Prove that
NO§N1SN2S and lim Nk:2N

k— o0

Solution: The stated conclusion is false: f has infinitely many roots. Presumably the
intent was to say “roots in [0,1).” Does anyone proofread the Putnam problems before
they are printed?

Say the roots of f in [0,1) are 71 < 72 < -+ < 7, with multiplicities mq, ma, ..., m,.
Then f’ has a root at r; with multiplicity m; — 1 if m; > 2; a root in (r;,7r;41) for
1<i<n-—1;aroot in (r,,1+ r1); and possibly more roots. Thus there are at least
1+ (n—1)+>,(m;—1) = >, m; roots of f' in [ry,1+ r1), hence in [0,1); and there
are exactly ) . m; roots of f in [0,1). Thus Ny < N;. By the same argument N7 < Ny,
N2 S N3, etc.

Find ko such that Y, . n(i/N)* laj/an| < 1/2 for all k > ko. Abbreviate d/dt as D.
I will show that D* f has exactly 2N roots in [0,1) for k > k.

Find a real number s with (D¥sin)(2rNs) = 1. Then (D* sin)(2rNt) decreases from 1
at s to —1 at s+ 1/2N, increases to 1 at s +2/2N, etc. By construction

(D*£)(®)

.\ k )
S — (ptsimeeNy + Y () S(0Fsin)(ani),

a
1<j<N N

so (D¥f)(t) has the same sign as ay(D" sin)(2rNt) whenever |(D*sin)(2rNt)| > 1/2:
in particular, at s,s + 1/2N,s + 2/2N,.... Therefore D*f has at least one root in
[s,s + 1/2N).

It is not possible for D* f to have two roots in [s,s+1/2N). Indeed, the roots are in the
subinterval [s + 1/6N, s + 1/3N] where (D sin)(2rNt) is in [—1/2,1/2]. If there were
two roots then D**1f would also have a root in the subinterval, so (D**!sin)(2wNt)
would be in [—1/2,1/2]; contradiction.

The same comments apply to [s + 1/2N,s + 2/2N) and so on. Thus D*f has exactly
2N roots in [s,s + 1), hence in [0, 1).
Problem B4

Let f(x) be a continuous function such that f(2z% — 1) = 2z f(z) for all z. Show that
f(@)=0for -1 <z <1.



Solution: Thanks to Kahan for pointing out the role of cos here. My original solution
constructed cos manually.

Define g(y) = f(cos2my). Then g is continuous; g is even; g has period 1; and ¢g(2y) =
f(cosdny) = f(2(cos 2my)? — 1) = 2(cos 27y) f (cos 27y) = 2(cos 27y) g(y)-

In particular, g(1/3) = g(—1/3) = ¢g(2/3) = —g(1/3), s0 g(1/3) = 0. Thus g(n+1/3) =0
for all integers n. In fact, g((n+1/3)/2%) = 0 for all n and all k > 0. Indeed, if k¥ > 1, then
g((n+1/3)/2k=1) = 0 by induction, and cos(2m(n+1/3)/2F) # 0, so g((n+1/3)/2F) = 0.

The set {(n + 1/3)/2%} is dense, so g is 0 everywhere. Thus f is 0 on the range of cos,
namely [—1, 1].

Robin Chapman comments that one can remove the 2cos27y factor by considering
f(cos 2my)/ sin 27y for all non-integer y.

Problem B5

Let Sy be a finite set of positive integers. We define finite sets S7,S5,... of positive
integers as follows:

Integer a is in S,,+1 if and only if exactly one of a — 1 or a is in §5,.

Show that there exist infinitely many integers N for which Sy = SgU{N +a:a € Sp}.

Solution: Define a polynomial f, as >°,cg % Then f,11 = (z+1)f, (mod 2), so

In particular, if n is a power of 2 larger than deg fy, then f, = (z+1)"fo = (2" +1) fo =
x" fo + fo, and all coefficients of =" fo + fo are 0 or 1, so f,, = 2" fo + fo; i.e., a € S, if
and only if a € Sy or a —n € Sp.

Problem B6

Let B be a set of more than 2"t!/n distinct points with coordinates of the form
(+£1,#£1,...,+1) in n-dimensional space, with n > 3. Show that there are three dis-
tinct points in B which are the vertices of an equilateral triangle.

Solution: The following solution is a composite of solutions from several other people.

Define A = {(£1,+1,...,£1)}. For each p € A define A, ={q € B: |p—q| =2}. Then

dopea?tBp =2 cp#H{p€EA:ip—ql=2} =3 pn=n#B > 27+l — 24 A, Thus
#A, > 2 for some p € A. Any distinct ¢1, ¢2,93 € A, form an equilateral triangle in B.



