Smartphone/tablet CPUs

iPad 1 (2010) was the
first popular tablet:
more than 15 million sold.

IPad 1 contains 45nm
Apple A4 system-on-chip.

Apple A4 contains
1GHz ARM Cortex-A8 CPU core

+ PowerVR SGX 535 GPU.

Cortex-A8 CPU core (2005)
supports ARMv7-A Insn set,
including NEON vector insns.

Apple A4 also appeared
in iPhone 4 (2010).

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)
contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in
Motorola Droid X (2010)
contains Cortex-A8 CPU core.

65nm 800MHz Freescale 1.MX50
in Amazon Kindle 4 (2011)
contains Cortex-A8 CPU core.

one/tablet CPUs

2010) was the
ular tablet:
in 15 million sold.

ontains 45nm

4 system-on-chip.

4 contains

RM Cortex-A8 CPU core
VR SGX 535 GPU.

\8 CPU core (2005)
. ARMV7-A insn set,

r NEON vector insns.

Apple A4 also appeared
in iPhone 4 (2010).

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)
contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in
Motorola Droid X (2010)
contains Cortex-A8 CPU core.

65nm 800MHz Freescale 1.MX50
in Amazon Kindle 4 (2011)
contains Cortex-A8 CPU core.

ARM de
supporti
Cortex-£
Cortex-£
Cortex-£
Cortex-£
Cortex-£

Also son

A9, Alb5
cores are
tries to |
compen:

t CPUs

the
[
on sold.

nm

on-chip.

x-A8 CPU core
35 GPU.

re (2005)
A\ Insn set,
ector Insns.

Apple A4 also appeared
in iPhone 4 (2010).

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)
contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in
Motorola Droid X (2010)
contains Cortex-A8 CPU core.

65nm 800MHz Freescale 1.MX50
in Amazon Kindle 4 (2011)
contains Cortex-A8 CPU core.

ARM designed mc
supporting same f
Cortex-A9 (2007),
Cortex-A5 (2009),
Cortex-Al5 (2010
Cortex-A7 (2011),
Cortex-Al7 (2014

Also some larger €

A9, Alb, Al7, anc
cores are “‘out of ¢
tries to reorder Ins
compensate for di

COre

Apple A4 also appeared
in iPhone 4 (2010).

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)
contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in
Motorola Droid X (2010)
contains Cortex-A8 CPU core.

65nm 800MHz Freescale 1. MX50
in Amazon Kindle 4 (2011)
contains Cortex-A8 CPU core.

ARM designed more cores
supporting same ARMv7-A
Cortex-A9 (2007),
Cortex-A5 (2009),
Cortex-Al5 (2010),
Cortex-A7 (2011),
Cortex-A17 (2014), etc.

Also some larger 64-bit core

A9 Alb Al7, and some 64
cores are “out of order’: CF
tries to reorder instructions
compensate for dumb comp

Apple A4 also appeared
in iPhone 4 (2010).

45nm 1GHz Samsung Exynos

3110 in Samsung Galaxy S (2010)
contains Cortex-A8 CPU core.

45nm 1GHz TI OMAP3630 in
Motorola Droid X (2010)
contains Cortex-A8 CPU core.

65nm 800MHz Freescale 1.MX50
in Amazon Kindle 4 (2011)
contains Cortex-A8 CPU core.

ARM designed more cores
supporting same ARMv7-A insns:
Cortex-A9 (2007),

Cortex-A5 (2009),

Cortex-A15 (2010),

Cortex-A7 (2011),

Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’': CPU
tries to reorder instructions to
compensate for dumb compilers.

4 also appeared
e 4 (2010).

sHz Samsung Exynos
Samsung Galaxy S (2010)
Cortex-A8 CPU core.

sHz TI OMAP3630 in
3 Droid X (2010)
Cortex-A8 CPU core.

)JOMHz Freescale i.MX50
on Kindle 4 (2011)
Cortex-A8 CPU core.

ARM designed more cores

supporting same ARMv7-A insns:

Cortex-A9 (2007),
Cortex-A5 (2009),
Cortex-Al5 (2010),
Cortex-A7 (2011),
Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’: CPU
tries to reorder instructions to
compensate for dumb compilers.

A5, AT,

fewer In:

eared
).

ung Exynos
Galaxy S (2010)
3 CPU core.

VIAP3630 iIn
(2010)
8 CPU core.

sescale 1.MX50
4 (2011)
3 CPU core.

ARM designed more cores

supporting same ARMv7-A insns:

Cortex-A9 (2007),
Cortex-A5 (2009),
Cortex-A15 (2010),
Cortex-A7 (2011),
Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’: CPU
tries to reorder instructions to
compensate for dumb compilers.

Ab, A7, original A
fewer insns at onc

)S
2010)

N

IX50

ARM designed more cores

supporting same ARMv7-A insns:

Cortex-A9 (2007),
Cortex-A5 (2009),
Cortex-Al5 (2010),
Cortex-A7 (2011),
Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’: CPU
tries to reorder instructions to
compensate for dumb compilers.

A5, A7, original A8 are In-ol
fewer insns at once.

ARM designed more cores
supporting same ARMv7-A insns:
Cortex-A9 (2007),

Cortex-A5 (2009),

Cortex-A15 (2010),

Cortex-A7 (2011),

Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’: CPU
tries to reorder instructions to
compensate for dumb compilers.

Ab, A7, original A8 are in-order,
fewer insns at once.

ARM designed more cores
supporting same ARMv7-A insns:
Cortex-A9 (2007),

Cortex-A5 (2009),

Cortex-A15 (2010),

Cortex-A7 (2011),

Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’: CPU
tries to reorder instructions to
compensate for dumb compilers.

Ab, A7, original A8 are in-order,

fewer insns at once. = Simpler,
cheaper, more energy-efficient.

ARM designed more cores

supporting same ARMv7-A insns:

Cortex-A9 (2007),
Cortex-A5 (2009),
Cortex-A15 (2010),
Cortex-A7 (2011),
Cortex-A17 (2014), etc.

Also some larger 64-bit cores.

A9, Alb, Al7, and some 64-bit
cores are “out of order’: CPU
tries to reorder instructions to
compensate for dumb compilers.

Ab, A7, original A8 are In-orc

fewer insns at once. = Simp

er,
er,

cheaper, more energy-efficient.

More than one billion Cortex-A7

devices have been sold.

Popular in low-cost and mid-range

smartphones: Mobiistar Buddy,
Mobiistar Kool, Mobiistar LAl Z1,

Samsung Galaxy J1 Ace Neo,

etc.

Also used in typical TV boxes,

Sony SmartWatch 3, Samsung

Gear S2, Raspberry Pi 2, etc.

signed more cores

ng same ARMv7-A iInsns:

\9 (2007),

\5 (2009),

\15 (2010),

\7 (2011),

\17 (2014), etc.

ne larger 64-bit cores.

~Al7, and some 64-bit
> “out of order”: CPU
reorder instructions to
sate for dumb compilers.

A5, A7, original A8 are in-order,

fewer insns at once. = Simpler,
cheaper, more energy-etficient.

More than one billion Cortex-A7

devices have been sold.

Popular in low-cost and mid-range
smartphones: Mobiistar Buddy,
Mobiistar Kool, Mobiistar LAl Z1,

Samsung Galaxy J1 Ace Neo, etc.

Also used in typical TV boxes,
Sony SmartWatch 3, Samsung
Gear S2, Raspberry Pi 2, etc.

NEON c

Basic Al
16 32-bi

Optiona
16 128-t

Cortex-/

(and Co
and Qus

and Quc
always h

Cortex-/£
sometim

re COres

\RMvV7-A Insns:

), etc.
4-bit cores.

1 some 64-bit
order’: CPU
tructions to
imb compilers.

Ab, A7, original A8 are In-orc

fewer insns at once. = Simp

er,
er,

cheaper, more energy-efficient.

More than one billion Cortex-A7

devices have been sold.

Popular in low-cost and mid-range

smartphones: Mobiistar Buddy,
Mobiistar Kool, Mobiistar LAl Z1,

Samsung Galaxy J1 Ace Neo,

etc.

Also used in typical TV boxes,

Sony SmartWatch 3, Samsung

Gear S2, Raspberry Pi 2, etc.

NEON crypto

Basic ARM insn s
16 32-bit registers

Optional NEON e;
16 128-bit register

Cortex-A7 and Co
(and Cortex-Alb :
and Qualcomm Sc

and Qualcomm Ki
always have NEOI

Cortex-A5 and Co
sometimes have N

INSNS:

bit
o
X0)
lers.

Ab, A7, original A8 are in-order,

fewer insns at once. = Simpler,
cheaper, more energy-etficient.

More than one billion Cortex-A7

devices have been sold.

Popular in low-cost and mid-range
smartphones: Mobiistar Buddy,
Mobiistar Kool, Mobiistar LAl Z1,

Samsung Galaxy J1 Ace Neo, etc.

Also used in typical TV boxes,
Sony SmartWatch 3, Samsung
Gear S2, Raspberry Pi 2, etc.

NEON crypto

Basic ARM insn set uses
16 32-bit registers: 512 bits

Optional NEON extension u
16 128-bit registers: 2048 b

Cortex-A7 and Cortex-A8
(and Cortex-A15 and Cortex
and Qualcomm Scorpion

and Qualcomm Krait)
always have NEON insns.

Cortex-A5 and Cortex-A9
sometimes have NEON insn:

Ab, A7, original A8 are in-order,

fewer insns at once. = Simpler,
cheaper, more energy-efficient.

More than one billion Cortex-A7

devices have been sold.

Popular in low-cost and mid-range
smartphones: Mobiistar Buddy,
Mobiistar Kool, Mobiistar LAl Z1,

Samsung Galaxy J1 Ace Neo, etc.

Also used in typical TV boxes,
Sony SmartWatch 3, Samsung
Gear S2, Raspberry Pi 2, etc.

NEON crypto

Basic ARM insn set uses
16 32-bit registers: 512 bits.

Optional NEON extension uses
16 128-bit registers: 2048 bits.

Cortex-A7 and Cortex-A8
(and Cortex-Al15 and Cortex-Al17

and Qualcomm Scorpion

and Qualcomm Krait)
always have NEON insns.

Cortex-A5 and Cortex-A9
sometimes have NEON insns.

original A8 are in-order,

sns at once. = Simpler,
more energy-efficient.

an one billion Cortex-A7
1ave been sold.

in low-cost and mid-range
ones: Mobiistar Buddy,
r Kool, Mobiistar LAl Z1,

> Galaxy J1 Ace Neo, etc.

d in typical TV boxes,
\artWatch 3, Samsung
- Raspberry Pi 2, etc.

NEON crypto

Basic ARM insn set uses
16 32-bit registers: 512 bits.

Optional NEON extension uses
16 128-bit registers: 2048 bits.

Cortex-A7 and Cortex-AS8
(and Cortex-A15 and Cortex-Al17

and Qualcomm Scorpion

and Qualcomm Krait)
always have NEON insns.

Cortex-A5 and Cortex-A9
sometimes have NEON insns.

2012 Be
“‘NEON
new Cor
for vario

e.g. Cur
460200
408284

Compare
cycles ol
for NIST
9 millior
4.8 milh
3.9 milh

8 are in-order,

e. = Simpler,
rgy-efficient.

lon Cortex-A7
sold.

t and mid-range
listar Buddy,

obiistar LAl Z1,
1 Ace Neo, etc.

1l TV boxes,

3, Samsung
y P12, etc.

NEON crypto

Basic ARM insn set uses
16 32-bit registers: 512 bits.

Optional NEON extension uses
16 128-bit registers: 2048 bits.

Cortex-A7 and Cortex-A8
(and Cortex-A15 and Cortex-Al17

and Qualcomm Scorpion

and Qualcomm Krait)
always have NEON insns.

Cortex-A5 and Cortex-A9
sometimes have NEON insns.

2012 Bernstein—S5¢
“NEON crypto” s
new Cortex-A8 sp:

for various crypto

e.g. Curve25519 E

460200 cyc
498284 cyc

es on |

es on !

Compare to Open

cycles on Cortex-/£
for NIST P-256 E!
O million for Open

4.8 million

3.9 million

for O

for O

ol
ol

pler,
Nt.

-A7

-range
idy,

Al 71,
D, etcC.

NEON crypto

Basic ARM insn set uses
16 32-bit registers: 512 bits.

Optional NEON extension uses
16 128-bit registers: 2048 bits.

Cortex-A7 and Cortex-A8
(and Cortex-A15 and Cortex-Al17

and Qualcomm Scorpion

and Qualcomm Krait)
always have NEON insns.

Cortex-A5 and Cortex-A9
sometimes have NEON insns.

2012 Bernstein—Schwabe
"NEON crypto” software:
new Cortex-A8 speed record
for various crypto primitives

e.g. Curve25519 ECDH:
460200 cycles on Cortex-A8
498284 cycles on Cortex-A8

Compare to OpenSSL

cycles on Cortex-A8-slow
for NIST P-256 ECDH:

9 million for OpenSSL 0.9.8
4.8 million for OpenSSL 1.0
3.9 million for OpenSSL 1.0

NEON crypto 2012 Bernstein—Schwabe
“NEON crypto” software:

Basic ARM insn set uses

16 32-bit registers: 512 bits. new Cortex-A8 speed records

for various crypto primitives.
Optional NEON extension uses

16 128-bit registers: 2048 bits. e.g. Curve25519 ECDH;

460200 cycles on Cortex-A8-fast,

Cortex-A7 and Cortex-A3 498284 cycles on Cortex-A8-slow.
(and Cortex-A15 and Cortex-Al17

and Qualcomm Scorpion

Compare to OpenSSL

cycles on Cortex-A8-slow
for NIST P-256 ECDH:

9 million for OpenSSL 0.9.8k.
Cortex-Ab and Cortex-A9 4.8 million for OpenSSL 1.0.1c.

sometimes have NEON insns. 3.9 million for OpenSSL 1.0.2j.

and Qualcomm Krait)
always have NEON insns.

rypto 2012 Bernstein—Schwabe NEON i

"NEON crypto” software:

XM Insn set uses 4x a =t
. . new Cortex-A8 speed records .

t registers: 512 bits. | S s a vect

for various crypto primitives. A TO"
| NEON extension uses . 55510 ECDH :1:
it registers: 2048 bits. ©6- LUIVE | a:]

460200 cycles on Cortex-A8-fast, al2.
\7 and Cortex-A8 498284 cycles on Cortex-A8-slow. al3.

rtex-A15 and Cortex-Al7

. Compare to OpenSSL
lcomm Scorpion

cycles on Cortex-A8-slow
for NIST P-256 ECDH:

9 million for OpenSSL 0.9.8k.
\5 and Cortex-A9 4.8 million for OpenSSL 1.0.1c.
es have NEON insns. 3.9 million for OpenSSL 1.0.2j.

lcomm Krait)
ave NEON insns.

ot uses
- 512 bits.

xtension uses
s: 2048 bits.

rtex-AS8

ind Cortex-Al7
orpion

ait)

N Insns.

rtex-A9
EON insns.

2012 Bernstein—Schwabe
“NEON crypto” software:

new Cortex-A8 speed records

for various crypto primitives.

e.g. Curve25519 ECDH:

460200 cyc
498284 cyc

es on Cortex-A8-fast,

es on Cortex-A8-slow.

Compare to OpenSSL

cycles on Cortex-A8-slow

for NIST P-

256 ECDH:

9 million for OpenSSL 0.9.8k.

4.8 million

3.9 million

for OpenSSL 1.0.1c.
for OpenSSL 1.0.2j.

NEON instruction

dx a=b + C

IS a vector of 4 32

p PR

0

1.
(2.
.

0

1.
(2.
-

.l.

+
+
+

2012 Bernstein—Schwabe NEON instructions
"NEON crypto” software:

dx a=Db + C

new Cortex-A3 speed records Is a vector of 4 32-bit additi

for various crypto primitives.

ses al0] =b[0] + c[0];
o e.g. Curve25519 ECDH:;: all] =bl[1] + c[1];
460200 cycles on Cortex-A8-fast, al2] =b[2] + c[2];
498284 cycles on Cortex-A8-slow. al3] =b[3] + c[3].
-Al7

Compare to OpenSSL

cycles on Cortex-A8-slow
for NIST P-256 ECDH:

9 million for OpenSSL 0.9.8k.
4.8 million for OpenSSL 1.0.1c.
S. 3.9 million for OpenSSL 1.0.2;.

2012 Bernstein—Schwabe NEON instructions
“NEON crypto” software:

dx a=b + C

new (ortex-A8 speed records Is a vector of 4 32-bit additions:

for various crypto primitives.

a[0] =b[0] + c[0];
e.g. Curve25519 ECDH: al1] =b[1] + c[1];
460200 cycles on Cortex-A8-fast, al2] =bl[2] + c[2];
498284 cycles on Cortex-A8-slow. al3] =b[3] + c[3].

Compare to OpenSSL

cycles on Cortex-A8-slow
for NIST P-256 ECDH:

9 million for OpenSSL 0.9.8k.
4.8 million for OpenSSL 1.0.1c.
3.9 million for OpenSSL 1.0.2j.

2012 Bernstein—Schwabe
“NEON crypto” software:

new Cortex-A8 speed records

for various crypto primitives.

e.g. Curve25519 ECDH:

460200 cyc
498284 cyc

es on Cortex-A8-fast,

es on Cortex-A8-slow.

Compare to OpenSSL

cycles on Cortex-A8-slow

for NIST P-

256 ECDH:

9 million for OpenSSL 0.9.8k.

4.8 million

3.9 million

for OpenSSL 1.0.1c.
for OpenSSL 1.0.2j.

NEON instructions

dx a=b + C
Is a vector of 4 32-bit additions:
0.

p PR

Cortex-A8 NEON arithmetic unit
can do this every cycle.

1.
(2.
.

0.

1.
(2.
-

NS

3].

2012 Bernstein—Schwabe
“NEON crypto” software:

new Cortex-A8 speed records

for various crypto primitives.

e.g. Curve25519 ECDH:

460200 cyc
498284 cyc

es on Cortex-A8-fast,

es on Cortex-A8-slow.

Compare to OpenSSL

cycles on Cortex-A8-slow

for NIST P-

256 ECDH:

9 million for OpenSSL 0.9.8k.

4.8 million

3.9 million

for OpenSSL 1.0.1c.
for OpenSSL 1.0.2j.

NEON instructions

dx a=b + C
Is a vector of 4 32-bit additions:

al0] =bl[0] + c[0];
al1] =bl[1] + c[1];
al2] =b[2] + c[2];
al[3] =bl[3] + c[3].

Cortex-A8 NEON arithmetic unit
can do this every cycle.

Stage N2: reads b and c.
Stage N3: performs addition.
Stage N4: a is ready.

2 cycles 2 cycles

ADD > ADD > ADD

rnstein—Schwabe
crypto’ software:
tex-A8 speed records
us crypto primitives.

ve25519 ECDH:
cycles on Cortex-A8-fast,

cycles on Cortex-A8-slow.

> to OpenSSL

1 Cortex-A8-slow

- P-256 ECDH:

 for OpenSSL 0.9.8k.
on for OpenSSL 1.0.1c.
on for OpenSSL 1.0.2].

NEON instructions

dx a=b + C
Is a vector of 4 32-bit additions:

al0] =b[0] + c[0];
al1] =bl[1] + c[1];
al2] =b[2] + c[2];
al[3] =bl[3] + c[3].

Cortex-A8 NEON arithmetic unit
can do this every cycle.

Stage N2: reads b and c.
Stage N3: performs addition.
Stage N4: a is ready.

2 cycles 2 cycles

ADD > ADD > ADD

4x a =t
IS a vect
0.
1
2.
3.

p DR

Stage N
Stage N
Stage N
Stage N

2
ADD —

Also log

hwabe
ftware:

ced records
primitives.

CDH:
Cortex-A8-fast,

Cortex-A8-slow.

SSL

\3-slow

CDH:

SSL 0.9.8k.
nSSL 1.0.1c.
anSSL 1.0.2;.

NEON instructions

dx a=b + C
Is a vector of 4 32-bit additions:

al0] =bl[0] + c[0];
al1] =b[1] + c[1];
al2] =b[2] + c[2];
a[3] =b[3] + c[3].

Cortex-A8 NEON arithmetic unit
can do this every cycle.

Stage N2: reads b and c.
Stage N3: performs addition.
Stage N4: a is ready.

2 cycles 2 cycles

ADD > ADD > ADD

dx a=b -cC

IS a vector of 4 32

0
1
2.
3

Stage N1
Stage N2:
Stage N3:

read

0

1
2] -
3

read

S C
Sk

perforn

Stage N4: a is rez

ADD

2 or 3 cycles

~

Also logic insns, sl

fast,

-slow.

lc.

NEON instructions

dx a=b + C
Is a vector of 4 32-bit additions:

al0] =bl[0] + c[0];
all] =bl[1] + c[1];
al2] =b[2] + c[2];
al3] =b[3] + c[3].

Cortex-A8 NEON arithmetic unit
can do this every cycle.

Stage N2: reads b and c.
Stage N3: performs addition.
Stage N4: a is ready.

2 cycles 2 cycles

ADD > ADD > ADD

dx a=b - cC
IS a vector of 4 32-bit subtr:

p DR

Stage N1
Stage N2:
Stage N3:
Stage N4: a is ready.

ADD

0

1.
(2.
3.

reac

0

1]
(2]
3.

reac

S C.

WMo

-)
-)

-)

S b, negates

performs additior

2 or 3 cycles

>SUB

Also logic insns, shifts, etc.

NEON instructions

dx a=b + C
Is a vector of 4 32-bit additions:

al0] =bl[0] + c[0];
al1] =b[1] + c[1];
al2] =b[2] + c[2];
al[3] =b[3] + c[3].

Cortex-A8 NEON arithmetic unit
can do this every cycle.

Stage N2: reads b and c.
Stage N3: performs addition.
Stage N4: a is ready.

2 cycles 2 cycles

ADD > ADD > ADD

dx a=b -cC

Is a vector of 4 32-bit subtractions:

0

Stage N1
Stage N2:
Stage N3:
Stage N4

(1] =
2] =
3] =

read

0

17
2] - cl
3.

read

ERSNES

S C.

S b, negates c.

performs addition.

a s

ready.

2 or 3 cycles

ADD

>SUB

Also logic insns, shifts, etc.

nstructions

) + C
or of 4 32-bit additions:

=b[0] + cl

<)

<)

+
(@)
N |—x o

1]
=bl[2] + c[2];
3] + c[3].
\8 NEON arithmetic unit
his every cycle.

2: reads b and c.
3: performs addition.
4: a Is ready.

> cycles 2 cycles

> ADD > ADD

dx a=b - cC

is a vector of 4 32-bit subtractions:
0.
1.
2.
3.

=b[0] - c[0];
=b[1] - c[1];
=b[2] - c[2];
= b[3] - c[3].

Stage N1: reads c.

Stage N2: reads b, negates c.

Stage N3: performs addition.

Stage N4: a is ready.

ADD

2 or 3 cycles

>SUB

Also logic insns, shifts, etc.

Multiplic
c[0,1]
cl2,3]

Two cyc

Multiply
c[0,1]
cl2,3]

Also twc

Stage N
Stage N
Stage N

Stage N

-bit additions:

'C__;

o

=

-)

C
'C__;
C

N

3.

arithmetic unit
cycle.

and c.
1s addition.
dy.

2 cycles

oD > ADD

dx a=b-cC

Is a vector of 4 32-bit subtractions:

al0] =Db[0] - c[0];
al1] =b[1] - c[1];
al[2] =b[2] - c[2];
al[3] =bl[3] - c[3].

Stage N1: reads c.

Stage N2: reads b, negates c.

Stage N3: performs addition.
Stage N4: a is ready.

2 or 3 cycles

ADD > SUB

Also logic insns, shifts, etc.

S]

Multiplication insr
cl0,1] = alO._
c[2,3] = ali:

S]

Two cycles on Col

Multiply-accumula
c[0,1] +=al[o0
cl2,3] += all

C
~

C
D

Also two cycles or

Stage N1: reac

Stage N2: reac

Stage N3: reac

Stage N8: c is

réc

Oons:

unit

S

— ADD

dx a=b - cC

Is a vector of 4 32-bit subtractions:

Ol =bl0

11 =

271 =

3 =

p DR

|
O
&N RS

1]
(2]
3

Stage N1
Stage N2:
Stage N3:
Stage N4

2 or 3 cycles

>SUB

reads cC.

reads b, negates c.

performs addition.
a Is ready.

ADD

Also logic insns, shifts, etc.

C

C

Multip

0,1

2,3

iIcation Insn:
= al[0] signedx* b
= al[1l] signedx* b

Two cycles on Cortex-AS8.

C

C

Multip

0,1,

2,3

y-accumulate insn:

+=

+=

alo0]

al1l]

signedx* L

signed* L

Also two cycles on Cortex-A

Stage N1
Stage N2:
Stage N3: reac

Stage N8:

reac

reac

C IS

S b.
S a.

s ¢ If accumi

ready.

4x a=b -cC Multiplication insn:

Is a vector of 4 32-bit subtractions: c[0,1] = a[0] signedx* b[0];
al0] =bl[0] - c[0]; c[2,3] = all] signedx* b[1_
a:1: B jlj - © jlj ; Two cycles on Cortex-A8.
al2l =bl2] - cl2];
al[3] =b[3] - c[3]. Multiply-accumulate insn:

c[0,1] += a[0] signed* b[0];

t N1: . 5 Q7 "1° 1]
Stage reads c c[2,3] += a[1] signed* b[1]

Stage N2: reads b, negates c.

Stage N3: performs addition. Also two cycles on Cortex-A8.
Stage N4: a is ready. Stage N1: reads b.
ADD 2 or 3 cycles SUB Stage N2: reads a.

Stage N3: reads c if accumulate.

Also logic insns, shifts, etc.

Stage N8: c is ready.

) — C

or of 4 32-bit subtractions:

=blO0] - clO];

= b[1] - c[1];

= b[2] - c[2];
=bl[3] - c[3].

1: reads c.

2: reads b, negates c.
3: performs addition.
4: a Is ready.

or 3 cycles

>SUB

IC insns, shifts, etc.

C

C

Multip

0,1

2,3

ication insn:

= al[0]

= al[l]

signed* b[0];

signed* b[1_

Two cycles on Cortex-AS8.

C

C

Multip

0,1,

2,3

y-accum
+= a[0]
+= a[1]

ulate insn:

signed* b [0

signed* b[1

Also two cycles on Cortex-AS.

Stage N1
Stage N2:
Stage N3:

reac

reac

reac

S b.
S a.

s ¢ If accumulate.

Stage N8: c is ready.

Typical :

C

C

0,1
2,3

0,1
2,3

0,1
2,3

Cortex-£
Reads c

-bit subtractions:

C

O

S B

C
C
C

:oo

, hegates c.
1s addition.
dy.

- SUB

1ifts, etc.

C

C

Multip

0,1

2,3

iIcation Insn:
= al[0] signed* b[0];
= al[1l] signed* b[1._

Two cycles on Cortex-A8.

C

C

Multip

0,1,

2,3,

y-accum

+= a0,

+=all.

ulate insn:

] signed* b[0];

signed* b[1_

Also two cycles on Cortex-AS.

Stage N1
Stage N2: reac
Stage N3: reac

reac

S b.

S a.

s ¢ If accumulate.

Stage N8: c is ready.

Typical sequence

C

C

0,1,

0,1,

2,3

2,3

0,1
2,3

+= e

t=g
t=g

S]
S]
<
<

C
D

C
~

Cortex-A8 recogni
Reads ¢ in N6 inst

1ctions:

c[0,1] = a[O0]
c[2,3] = al1]

Multiplication insn:

signed* b[0];

signed* b[1_

Two cycles on Cortex-AS8.

cl[0,1] +=
cl[2,3] +=

a

a

Multiply-accumulate insn:
0_
1

signed* b [0

signed* b[1

Also two cycles on Cortex-AS.

Stage N1
Stage N2:

Stage N3: reac

Stage N8:

rea
rea

C

C

S b.
S a.

s ¢ If accumulate.

c IS ready.

Typical sequence of three in

c[0,1] = al[0] signedx* b]
c[2,3] = all] signedx* b

c[0,1] += e[2] signedx* f

cl2,3] +=e[3] signedx* f

c[0,1] += g[0] signedx* &

c[2,3] += gl[1] signed* &

Cortex-A8 recognizes this p:
Reads ¢ in N6 instead of N:

C

C

Multip

0,1

2,3

iIcation Insn:
= al[0] signed* b[0];
= al[l] signed* b[1._

Two cycles on Cortex-A8.

C

C

Multip

0,1,

2,3,

y-accumulate insn:

+=

+=

a

a

0.
1]

] signed* b[0];

signed* b[1_

Also two cycles on Cortex-AS.

Stage N1
Stage N2: reac
Stage N3: reac

reac

S b.
S a.

s ¢ If accumulate.

Stage N8: c is ready.

Typical sequence of three insns:

C

C

Cortex-A8 recognizes this pattern.

0,1
2,3

0,1
2,3

0,1
2,3

+= e

+= e

&
t=g

alo
all

2
3.

0.
1.

signed* b

signed* b

signed* f [

signed* f [

signed* h

signedx* h

Reads c in N6 instead of N3.

0] ;
1]

2] ;
3

~ation Insn:

= al[0]

= al[l]

signed* b[0];

signed* b[1_

les on Cortex-AS.

-~accumulate 1nsn:

+= a

+= a

0_
1.

signed* b [0

signed* b[1

) cycles on Cortex-AS.

1: rea
2" rea
3: rea

C

C

C

S b.
S a.

s ¢ If accumulate.

3: c Is ready.

Typical sequence of three insns:

C

C

Cortex-A8 recognizes this pattern.

0,1

2,3

0,1,

2,3

0,1

2,3

= a[0] signed* b
= al[l] signed* b
+= e[2] signedx* f
+= e [3] signedx* f
+= g[0] signedx* h
+= g[1] signedx* h

0.
1

Reads ¢ in N6 instead of N3.

3

3

2] :

2] ;

10

Time

OO NO CG1 B Wi

= = =
N — O O

)
gned* b[0] ;
gned* b[1_

tex-AS.

te Insn:
signed* b[0];
signed* b[1_

 Cortex-AS8.

.

1f accumulate.

dy.

Typical sequence of three insns:

C

C

Cortex-A8 recognizes this pattern.

0,1
2,3
0,1
2,3
0,1
2,3

= a[0] signed* b

= al[l] signed* b
+= e [2] signedx* f[
+= e[3] signedx* f[
+= g[0] signedx* h
+= g[1] signed* h

Reads c in N6 instead of N3.

0] ;
1

2] ;
3

10

Time|/NI1|N2IN3|N:
1|b '
2 a
3|f X
4 = X
5\h X
6| |g X
{ X
3 X
9

10
11
12

1late.

Typical sequence of three insns:

C

C

Cortex-A8 recognizes this pattern.

0,1
2,3
0,1
2,3
0,1
2,3

= a[0] signed* b

= al[l] signed* b
+= e [2] signedx* f[
+= e[3] signedx* f[
+= g[0] signedx* h
+= g[1] signedx* h

Reads ¢ in N6 instead of N3.

0] ;
1

2] ;
3

10

Time|N1IN2IN3[N4|N5[N6

1{b

2 a

3|f X

4 = X

5|h X X

6| |g X X
{ X X

3 X X
9 X

10 X
11

12

Typical sequence of three insns:

C

C

Cortex-A8 recognizes this pattern.

0,1
2,3
0,1
2,3
0,1
2,3

= a[0] signed* b

= al[l] signed* b
+= e [2] signedx* f[
+= e [3] signedx* f[
+= g[0] signedx* h
+= g[1] signed* h

Reads c in N6 instead of N3.

0] ;
1

2] ;
3

10

Time|/NIIN2IN3IN4{N5N6|{N7|[N8

1{b

2 a

3|f X

4 = X

5\h X X

6| |g X X

{ X X

3 X X C
9 X —
10 X C
11 +
12 C

11

sequence of three insns:

+= g [0_
+= g [1_

\8 recognizes this pattern.

] signed* b
] signed* b

2] signedx £

+= e [3.

signed* f

signedx* h
signedx* h

In N6 instead of N3.

0] ;
1

(2]
(3
(2]
(3

)

10

Time|NIIN2IN3IN4IN5N6{N7[N8

1{b

2 a

3|f X

4 = X

5|h X X

6| |g X X

{ X X

3 X X C
9 X —
10 X C
11 +
12 C

11

NEON ¢
and perr

r =s[1

Cortex-£
NEON I
that run
NEON =

Arithme
most Im

can ofte
to hide |

Cortex-£
handling

f three insns:

gned* b[0];
gned* b[1_

signed* f[2];
signed* f[3.

signed* h[2];
signed* h[3.

zes this pattern.

read of N3.

10

Time|/NI1IN2IN3IN4{N5N6|{N7|{N8

1{b

2 a

3|f X

4 = X

5\h X X

6| |g X X

{ X X

3 X X C
9 X —
10 X C
11 +
12 C

11

NEON also has lo

and permutation i
=s[1] t[2] rl

Cortex-A8 has a s
NEON load/store

that runs in parall
NEON arithmetic

Arithmetic is typic
most important b
can often schedule
to hide loads/stor:

Cortex-AT is differ
handling all NEOR

L :2: ;
L3

1ttern.

).

10

Time|NIIN2IN3IN4IN5N6{N7|{N8

1{b

2 a

3|f X

4 = X

5|h X X

6| |g X X

{ X X

3 X X C
9 X —
10 X C
11 +
12 C

11

NEON also has load/store i

and permutation insns: e.g.
r =s[1] t[2] r[(2,3]

Cortex-A8 has a separate
NEON load/store unit
that runs in parallel with
NEON arithmetic unit.

Arithmetic is typically
most important bottleneck:
can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one |
handling all NEON insns.

Time/NIIN2IN3IN4{N5N6|{N7|[N8

1{b

2 a

3|f X

4 = X

5\h X X

6| |g X X

{ X X

3 X X C
9 X —
10 X C
11 +
12 C

11

12
NEON also has load/store insns

and permutation insns: e.g.,
r =s[1] t[2] r[(2,3]

Cortex-A8 has a separate
NEON load/store unit
that runs in parallel with
NEON arithmetic unit.

Arithmetic is typically
most important bottleneck:
can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one unit
handling all NEON insns.

IN2|N3[N4|N5|N6|N7|N8
a
X
e X
X X
g X X
X X
X X C
X +
X C
I
C

11

NEON also has load/store insns

and permutation insns: e.g.,
r =s[1] t[2] r[(2,3]

Cortex-A8 has a separate
NEON load/store unit
that runs in parallel with
NEON arithmetic unit.

Arithmetic is typically
most important bottleneck:
can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one unit
handling all NEON insns.

12

Curve2b

Radix 2+
(fo, f1, 12
to repre:
f = f() =

2102 f1 +
2204 f8 L

Unscalec

f 1s valu
foto + 2

f4t4 —

_2'

f8t8 -

-2

N5

N6

N7

N8

11

NEON also has load/store insns
and permutation insns: e.g.,

=s([1] t[2] r[2,3]

Cortex-A8 has a separate
NEON load/store unit
that runs in parallel with
NEON arithmetic unit.

Arithmetic is typically
most important bottleneck:
can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one unit
handling all NEON insns.

12

Curve25519 on NE

Radix 22°-2: Use <
(fo, f1, P2, f3, 14, 15,
to represent the In
f = fo+2%°h +!
2102 f4 n 2128 f5 4
2204 fg + 2230 fg M

Unscaled polynom
f is value at 222
fot? + 2071t +
fath +29°f51> + 4

fg t8 1 205 fg t9.

NG

11

NEON also has load/store insns

and permutation insns: e.g.,
r =s[1] t[2] r[(2,3]

Cortex-A8 has a separate
NEON load/store unit
that runs in parallel with
NEON arithmetic unit.

Arithmetic is typically
most important bottleneck:
can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one unit
handling all NEON insns.

12

Curve25519 on NEON

Radix 22°°: Use small integ
(fo. f1, £, B3, fa, 15, f6, 17, f3, fc
to represent the integer

f = fy+2%°f + 2°16 + 2f
2102 f1 + 2128 f5 L 2153 f6 4+ 2]
2204 fg + 2230 fg modulo 2295

Unscaled polynomial view:

f is value at 22°-2 of the pol

f8t8 + 20'5f9t9.

NEON also has load/store insns
and permutation insns: e.g.,

=s([1] t[2] r[2,3]

Cortex-A8 has a separate
NEON load/store unit
that runs in parallel with
NEON arithmetic unit.

Arithmetic is typically
most important bottleneck:
can often schedule insns

to hide loads/stores/perms.

Cortex-A7 is different: one unit
handling all NEON insns.

12

13

Curve25519 on NEON

Radix 22°°: Use small integers
(fo, 1, f2, f3, fa, 15, fo, 17, T3, fo)

to represent the

Integer

f=f+2°1+22H +2/7f +

2102 f4 n 2128 f5 i

2153f6|_2179f7_|_

2204 £ 4 22308 modulo 22°° — 19.

Unscaled polynomial view:

f is value at 2%°

2 of the poly

fot? + 2057t + fHt? 4 209643 +
fat* + 20251 + fot® + 20°f7t" +

fg t8 1 205 fg t9.

Iso has load/store insns
nutation insns: e.g.,

| t[2] r[2,3]

\8 has a separate

oad/store unit
s In parallel with
rithmetic unit.

tic 1s typically
portant bottleneck:
n schedule insns
oads/stores/perms.

\7 is different: one unit
“all NEON insns.

12

13
Curve25519 on NEON

Radix 22°°: Use small integers
(fo, 1, f2, f3, fa, 15, fo, 17, T3, fo)

to represent the integer
f=1fo+2%h+221H +217H +
2102 f4 n 2128 f5 n 2153 f6 4+ 2179 f7 4+
2204 £, 4+ 22308 modulo 22°° — 19.

Unscaled polynomial view:

f is value at 222 of the poly

foto -+ 20'5f1t1 -+ f2t2 -+ 20'5f3t3 +
f4t4 —+ 20'5f5 t5 —+ f6t6 —+ 20'5f7t7 -
f8t8 + 20'5f9t9.

h=fg

ho = fp &0
h = fo&1
hy = fog
h3 = 1083
hy = foga
hs = fogs
he = f086
h7 = fogr
hg = fogs
hg = fo&9
Proof: r

ad /store insns
nsns: e.g.,
2,3]

cparate
unit
e| with

unit.

ally
ttleneck:
 1NSNS

s / perms.

ent: one unit
l Insns.

12

Curve25519 on NEON

Radix 22°°: Use small integers

(fo. f1

o, 13, fa, 15, g, 17, f3, fo)

to represent the integer
f=f+2°1+22Hh +2/7f +
2102 f4 L 2128 f5 L 2153 f6 + 2179 f7 4+
2204 £ 4 2230 modulo 22°° — 19.

Unscaled polynomial view:

f 1s value at

2229 of the poly

fot? + 20571 + fHt? 4 20963 +

f4t4 —

f8t8 -

- 20'5f9 t9.

h=fg (mod?2?

hg = fogp+38f1 g9+ 1¢

hy = fog1+
hy = fogo+
h3 = fog3+
hy = foga+
hs = fogs +
he = foge +
h7 = fog7+
hg = fogg +
hg = fogg +

f180

-1

2f1 81
f182

21183

f184+
2f1g5—|—

f186 1

21 87"

f188

Proof: multiply pc

1SNS

nit

12

13
Curve25519 on NEON

Radix 22°°: Use small integers
(fo, 1, f2, f3, fa, 15, fo, 17, T3, fo)

to represent the integer
f=1fo+2%h+221H +217H +
2102 f4 n 2128 f5 n 2153 f6 4+ 2179 f7 4+
2204 £, 4+ 22308 modulo 22°° — 19.

Unscaled polynomial view:

f is value at 222 of the poly
foto -+ 20'5f1t1 -+ f2t2 -+ 20'5f3t3 +
f4t4 —+ 20'5f5 t5 —+ f6t6 —+ 20'5f7t7 -

fg 8 1 20'5f9 £

h=fg (mod 2% —19)w

hg = fogo+38f189 +19f>gg +3813¢

hy = fog1t+ Hgo+19f289+1913¢
hy = fogo+ 2f1g1+ fogp+38f3¢
h3 = fogz+ figp+ fhgi+ f3g
hy = foga+ 2f1g3+ fhgr+ 2f3¢
hs = fogs+ figa+ fgz+ f3g
he = foge+ 2185+ foga+ 2f3¢

hy = fogr+ fge+ fhgst+ f3g
hg = fogg+ 2f1g7+ gt 2f3g
hg = fogg+ figg+ fhgrt+ fag

Proof: multiply polys mod 1

Curve25519 on NEON

Radix 22°°: Use small integers

(fo. f1

o, i3, fa, 15, g, 17, f3, fo)

to represent the integer
f=1fy+2%f[+2°16 + 2777 +
2102 f4 L 2128 f5 L 2153 f6 + 2179 f7 4+
2204 £ 4 22308 modulo 22°° — 19.

Unscaled polynomial view:

f is value at 222 of the poly
fot? + 205711 + fHt? 4 20963 +

f4t4 —

f8t8 —

- 20'5f9 t9.

h=fg (mod 22> —19) where

14

hg = fogo+38f189 +19frgg+38f387 +19f286+

h = fog1+
hp = fogo+
h3 = fogz+
hy = foga+
hs = fogs +
he = foge +
h7 = fog7+
hg = fogg +
hg = fogg +

f180

2f181
f182

21183

184+
2f1g5—|—

f186 1

21 87~

f188

=191 g9 -

f280
frg1 -

fr 8o -

frg3+
foga+
fo g5+

f2 86 -

f287-

-19f3 83 -

-381389 -

f380 -

2381

f3go+
2f3g3+

f384 +

21385 -

f386 -

-19f487 -

-191,85 -
-191489 -

f480 -

fag1+
fago +
fa g3+

f484

f485 -

Proof: multiply polys mod 19 — 19.

519 on NEON

2-2: Use small integers
g f31 f41 f51 f61 f71 f81 fg)

sent the

Integer

2128 f5 i

2153f6|_2179f7_|_

2230f5 modulo 22°° — 19.

1 polynomial view:

e at 2%°

2 of the poly

13

hy = fog1+
hy = fogo+
h3 = foga+
hy = fogs+
hs = fogs +
he = foge +
hy = fog7 +
hg = fogs+
hg = fogg +

f180

-19f g9

2f181
182

2f1 83

184+
2f1g5—|—

f186 1

21 87"

f188 -

f280
fr 81
fr 82

191383 -

h=fg (mod 2% —19) where

-19f4g7 +

381389 -
f380 -

-1974 g8 +
-19f4 89+

21381

frg3+ 38+
foga+ 2f383+

fo g5+

f286
frg7

f384 +

21385 -

f386

14

hg = fogo+38f189 +19frgg+38f387+19f486+

f480+
fag1+
f4go+
f483+
fag4+
a5+

Proof: multiply polys mod 10 — 19.

38f5 g5+ 191
-191

19f5g6—

381587 -
19f5g8—

-191
-191

38f5g9—

-191
f5g0—|—19f
2f5g1—|—

fo 8o +

21583 -

fo 84 -

f
f
f

-ON

mall integers

fe, f7, fg, fo)
teger

251f2 —+ 277 fg —+
21537% + 2179f7 +
ydulo 22°° — 19,

1al view:

of the poly

:'2t2 4 20'5f3t3 +
:'6t6 4+ 20'5f7t7 4+

13
h =

hy = fog1+
hy = fogo+
h3 = fog3+
hy = foga =+
hs = fogs +
he = foge +
h7 = fog7 +
hg = fogg +
hg = fogg +

180+ 19f g9 -

2f181+
f182+
2f183+

184+
2f1g5—|—

f186 1
2f187+
f188 1

fogy +
fogo +
fog3+
foga +
fogs +
fog6 +
fog7 +

-19f3 83 -
fo g0 +381389 -
f380+191489+

fg (mod 22°° — 19) where

21381+
f3g0 +
2f3g3+
f384 +
21385+
f386 +

-19f4g7 +
-19f4. g3+

14

hg = fogo+38f189 +19frgg+38f387 +1914286+

fago+
fag1+
fago+
fag3+
faga+
a5+

Proof: multiply polys mod 19 — 19.

38f5 g5+ 191594 +38f7 g3

19f5g6—

—19f6g5

381587 -
19f5g8—

-19165 86
-197687

38f5g9—

-191 g3

19784
381785

1917 g6
381787

f5g0—|—19f6g9—|—19f7g8

2f5g1+
fo 8o +

21583 -

- feg

fo 84

- 1683

fo 80 +38f7 89
feg1+ 1780

21781
f7 82

13

h

14

fg (mod 22°° — 19) where

hg = fogo+38f1 89 +19frgg+38f387+ 191486+

hy = fog1+
hy = fogo+
h3 = foga+
hy = fogy+
hs = fogs +
he = foge +
hy = fog7 +
hg = fogg +
hg = fogg+

f180 T19f2g9 191388 + 191487+
2fig1+ fhgpt+338f3gg 191488+
f1go+ hgit 1R3g+19f489+
2f183+ hgyt 2381+ f1480+
figat fgst+ Rgt+ fag1+
2f1g5t+ gyt 2383+ fagd+
fige+ fes+ fgat f483+
2f1gr+ fhget 2385+ fagat
figg+ fgrt+ f3get f485+

Proof: multiply polys mod t10 — 19.

38fgg5 +19fg g4 +38f7g3+19fggr +3

19f5g6—

—19f6g5—

381587 -
19f5g8—

-19%7g4 -

191686 -
-19687 -

38f5g9—

-191gg3 -

~381785-
-19f786-

191583 -

19754 -
—19f8g5—

-381787 -

1915 g6 -

frgo+19f689 +19f, g5 +19fgg7 +1
2fc g1+ fegp+38f7g9+191fggg+3
fegot+ feg1+ fr80+19fggg+1

21583 -

f6 82 -

fo 84 -

- 2f781-

f683 -

fa g0

f182-

_3;

fag1 -

h =

hg = fogo+38f189 +19frgg+38f387 +19f286+

hy = fog1+
hy = fogo+
h3 = fog3+
hy = foga =+
hs = fogs +
he = foge +
h7 = fog7 +
hg = fogg +
hg = fogg +

14

fg (mod 22°° — 19) where

381585+ 191684 +38f7 g3+ 1913 g2 + 387941,

19f5g6—

—19f6g5—

381587 -
19f5g8—

-19f7g4 -

1916 g6 -
-197687 -

38f5g9—

-191gg3 -

~381785-
-19f786-

191585 -

-197gg4 -
—19f8g5—

-381787-

-191g g6 -

-1919 g0,
-381943,

197984,
3819 g5,

f180 T19f g9 +191388 + 191487
2fig1+ fago+38f389+191a838
f1go+ g1t 13801197489
2f1g3t fhgyt 281+ 1480
figat+ fhegs+ f3gxt+ fa81+
2f1g5+ gyt 2383+ fago+
fige+ fes+ fgat fa83+
2f1 g7+ fhget 2385+ faga
figs+ fegrt+ f3get 1485

Proof: multiply polys mod 19 — 19.

frgo+ 19189 +19f7 g5 +19f3g7 +191f9 g5,
fogo +38f7g9+19f3gg +38fgg7,
fog1+ 17801191389 +1979gs,

2f5g1+

fo 8o +
2f5 83+
fsga+

fegot 2f781+
fegzt frgxt

fag1 +

fago+3819 49,
fo80-

15

14

(mod 22°° — 19) where

+38f1 89 +19f0gg +38f387 +1914286 +

f180 T19f2g9 +1913g8 + 191487 +
2fig1+ fhgpt+338f3gg 191488+
f1go+ hgit R3g+19f489+
2f183+ hgyt 2381+ f1480+
figat fg3t+ Rgt+ fag1+
2f1g5t+ gyt 2383+ fagdt
fige+ fes+ fagat f483+
2f1gr+ fhget 20385+ fagat
figs+ fgrt+ f3get f485+

nultiply polys mod ¢19 — 19.

38f5 g5+ 191594 +38f7 g3 +191fgg> +38fg g7,

19f5g6—

—19f6g5—

381587 -
19f5g8—

-19%7g4 -

191686 -
-19687 -

38f5g9—

21583 -

-1913g3

~381785 -
-19f786-

191583 -

- fegn-

fo 84 -

-191gg4
—19f8g5

-381787 -

- 2f781-

- 1683

-1913 g6

- 1380

- frgo-

- fggy

191987,
381943,

191984,
381985,
frgo+ 19189 +19f7 g5+ 197387 +1919 g5,
2fc g1+ fego+38f7g9+ 19fggg +38fg g7,
g+ fog1+ f780+19fgg9+19fggs,
381949,

fo 80 -

15

Each h/
products
of 211, 2
1941, 19

Each h;

under re
sizes of

(Analyze
bugs car
See 201
Barbosa
several r

hg, h1, ..
for subs:

14

> 19) where

)f>gg +38f387 +19f1 86+

)fr g9 +19f3g3 -
fo g0 +381389 -

fogy +
fogo +
fog3+
foga +
fogs +
fog6 +
fog7 +

-19f487 -

f380 -

-1974 g3 -
-191489 -

2381

f3go+
2f3g3+

f384 +

21385 -

- 480"

- 484

f386 -

fag1+
fago +
fa g3+

- f485-

lys mod 10 — 19.

381585+ 191684 +38f7 g3+ 191382+ 387941,

19f5g6—

—19f6g5—

381587 -
1915 gg -

191686 -
-19687 -

38f5g9—

-19%7g4 -

-191gg3 -

~381785-
-191786-

19185 -

-191g84 -
—19f8g5—

-381787-

2fc g1+
580 +
2fsg3t+ fega+ 2f781-
foga+ feg3+ f782-

1915 g6 -

- fggo-

- fgg1-

-1919 g0,
-381943,

-191984,
-38f985,
frgo+ 19189 +19f7 g5 +19f3g7 +1919 g5,
fego +38f7g9+19f3gg +38fgg7,
feg1+ fr80 1191389 +19f9gs,
-381989,

- f980.

15

Each h; is a sum «
products after pre
of 2f1, 2f3, 2f5, 2f7
19g1,19g>, ..., 19

Each h; fits into 6
under reasonable |
sizes of f1,41,...,

(Analyze this very
bugs can slip past
See 2011 Brumley
Barbosa—Vercaute
several recent Ope

ho, h1, .

for subsequent mu

. are too

14

/here

7191486+

8~

-197487 -

{*h
0~

-1974g3
-197489

1

D T
3+

- 1480

- 484+

fag1+
fago +
fags+

- f485-

10 _ 10,

38f5 g5+ 191594 +38f7 g3 +191fgg> +38fg g7,

19f5g6—

—19f6g5—

381587 -
19f5g8—

-19%7g4 -

191686 -
-197687-

38f5g9—

-191gg3 -

~381785-
-19f786-

191585 -

2fs g1+
580 +
2fsg3t+ fega+ 2f781-
foga+ feg3t+ f782-

19754 -
—19f8g5—

-381787 -

1915 g6 -

- fggo-

- fggy-

-191980,
-38f983,
197984,
-3819g5,
frgo+ 19189 +19f7 g5+ 191387 +1919 g5,
fogo +38f7g9+ 1971385 +381f9g7,
feg1+ 17801191389 +19f9gs,
-3819 20,

- fogp.

15

Each h; is a sum of ten

products after precomputati
of 2f1, 213, 215, 2f7, 219,

19g1,19g, ..., 19g9.

Each h; fits into 64 bits
under reasonable [imits on

sizes of fl,gl, C ey fg,gg.

(Analyze this very carefully:

bugs can slip past most test
See 2011 Brumley—Page—
Barbosa—Vercauteren and
several recent OpenSSL bug

hg, h1, ..
for subsequent multiplicatiol

. are too large

381585+ 1916 g4 +38f7 g3+ 1913 g2 + 387941,

19f5g6—

—19f6g5—

381587 -
19f5g8—

191686 -
-197687 -

38f5g9—

19185 -

-19%7g4 -

-191gg3 -

-1919 g0,

~381785-
-191786-

-191g84 -
—19f8g5—

-381983,
-191984,

-381787-

2fc g1+
580 +
2fsg3t+ fega+ 2f781-
foga+ feg3+ f782-

-1915 g6 -

- 1380

-38fg g5,
frgo+ 19189 +19f7 g5 +19f3g7 +1919 g5,
fego +38f7g9+1913g5 +38fgg7,
feg1+ f780+ 191389 +19f9gs,
-381940,

- fgg1-

- f980.

15

Each h; is a sum of ten

products after precomputation
of 2f1, 213, 2fs, 2f7, 219,

19g1,19g9>,...,19g9.
Each h; fits into 64 bits

under reasonable limits on

sizes of fl,gl, C ey fg,gg.

(Analyze this very carefully:
bugs can slip past most tests!
See 2011 Brumley—Page-—
Barbosa—Vercauteren and
several recent OpenSSL bugs.)

hg, h1, ..
for subsequent multiplication.

. are too large

16

684 1387 g3 +19f3g» +38fg g1,

685 -

-19%7g4 -

-191gg3 -

686
687 -

~381785-
-19f786-

-197gg4 -
—19f8g5—

688

682 -

-381787 -

- 2f781-

1915 g6 -

- fggo-

683 -

- frgo-

- fggy-

-19f9 82,
-381943,
-19f9g4,
-38f985,
689+ 19f7 g9 +191f3g7 +1919 g5,
680 381789 +191ggg +38fg g7,
6811+ 1780 1191ggg+19f9gs,
-38f989,

- fogp.

15

Each h; is a sum of ten

products after precomputation
of 2f1, 213, 215, 2f7, 219,

19g1,19g, ..., 19g9.

Each h; fits into 64 bits
under reasonable [imits on

sizes of fl,gl, C ey fg,gg.

(Analyze this very carefully:

bugs can slip past most tests!
See 2011 Brumley—Page—
Barbosa—Vercauteren and
several recent OpenSSL bugs.)

hg, h1, ..
for subsequent multiplication.

. are too large

16

Carry hq
replace

(hg moc
This ma

Similarly
Eventua

We actu
Slightly
(given d
but mor

Some th
e Mix si
e Interle

+19fgg» +38fg g7,

+191gg3+ 191982,
+19fgg4 +381983,
+191gg5+191944,
+19fg3g6 +38f9g5,
+19f3g7 +1919 g6,
+19f3gg +38f9g7,
+19f3g9 +1919g3,

+ fggp+38fygo,
+ fgg1+ f980.

15

Each h; is a sum of ten

products after precomputation
of 2f1, 213, 2fs, 2f7, 219,

19g1,19g>,...,19g9.

Each h; fits into 64 bits
under reasonable limits on
sizes of fl,gl, C ey fg,gg.

(Analyze this very carefully:
bugs can slip past most tests!
See 2011 Brumley—Page-—
Barbosa—Vercauteren and
several recent OpenSSL bugs.)

hg, h1, ... are too large

for subsequent multiplication.

16

Carry hg — hy: 1.€
replace (hg, h1) wi
(hg mod 220 h1 +
This makes hg sm

Similarly for other
Eventually all h; a

We actually use si
Slightly more expe
(given details of ir
but more room fol

Some things we h:
e Mix signed, unsi
e Interleave reduc

31981,
M98,
31983,
IM9ga4,
31985,
9986,
81987,
9988,
31989,

f980-

15

Each h; is a sum of ten

products after precomputation
of 2f1, 213, 215, 2f7, 219,

19g1,19g>,...,19g9.

Each h; fits into 64 bits
under reasonable limits on
sizes of fl,gl, C ey fg,gg.

(Analyze this very carefully:

bugs can slip past most tests!
See 2011 Brumley—Page—
Barbosa—Vercauteren and
several recent OpenSSL bugs.)

hg, hy, ... are too large
for subsequent multiplication.

16

Carry hg — hy: l.e.,
replace (hg, h1) with
(hg mod 22°, hy + | ho/2%° |’
This makes hg small.

Similarly for other h;.
Eventually all h; are small el

We actually use signed coefl
Slightly more expensive carr
(given details of insn set)

but more room for ab + ¢?

Some things we haven't trie
e Mix signed, unsigned carri
e Interleave reduction, carry

Each h; is a sum of ten

products after precomputation
of 2f1, 213, 2fs, 2f7, 219,

19g1,19g>,...,19g9.
Each h; fits into 64 bits

under reasonable limits on
sizes of fl,gl, C ey fg,gg.

(Analyze this very carefully:
bugs can slip past most tests!
See 2011 Brumley—Page-—
Barbosa—Vercauteren and
several recent OpenSSL bugs.)

hg, h1, ... are too large

for subsequent multiplication.

16

Carry hg — hy: l.e.,
replace (hg, h1) with
(hg mod 22°, hy + | hg/2°°]).
This makes hg small.

Similarly for other h;.

Eventually all h; are small enough.

We actually use signed coeffs.
Slightly more expensive carries
(given details of insn set)

but more room for ab + c? etc.

Some things we haven't tried yet:
e Mix signed, unsigned carries.
e Interleave reduction, carrying.

17

IS a sum of ten

, after precomputation
f3, 2fs, 217, 21,

g2, ..., 19g9.

fits into 64 bits
asonable limits on

f1,81,...,19, 89.

> this very carefully:

1 slip past most tests!
| Brumley—Page—
—\ercauteren and
ecent OpenSSL bugs.)

. are too large
2quent multiplication.

16

Carry ho — hy: le.,
replace (hg, h1) with
(ho mod 22°, hy + | hg/2°°]).
This makes hg small.

Similarly for other h;.

Eventually all h; are small enough.

We actually use signed coeffs.
Slightly more expensive carries
(given details of insn set)

but more room for ab + c? etc.

Some things we haven't tried yet:
e Mix signed, unsigned carries.
e Interleave reduction, carrying.

17

Minor cl
Result o
used unt

Find an
for the (
while th

Sometin
higher-le

Example
h2 — h3
h7 — h8
have lon

f ten

computation
219,

89

4 bits
Imits on

fg, 89.

carefully:
most tests!
—Page—

ren and
nSSL bugs.)

arge

ltiplication.

16

Carry ho — hy: l.e.,
replace (hg, h1) with
(hg mod 2%°, hy + | ho/22°]).
This makes hg small.

Similarly for other h;.

Eventually all h; are small enough.

We actually use signed coeffs.
Slightly more expensive carries
(given details of insn set)

but more room for ab + c? etc.

Some things we haven't tried yet:
e Mix signed, unsigned carries.
e Interleave reduction, carrying.

17

Minor challenge: |
Result of each insi
used until a few ¢

Find an independe
for the CPU to stz
while the first insr

Sometimes helps t
higher-level compt

Example: carries |
hy — h3 — hg —
h7 — hg — hg —
have long chain of

on

16

Carry ho — hy: l.e.,
replace (hg, h1) with
(hg mod 2%°, hy + | ho/22°]).
This makes hg small.

Similarly for other h;.
Eventually all h; are small enough.

We actually use signed coeffs.
Slightly more expensive carries
(given details of insn set)

but more room for ab + ¢? etc.

Some things we haven't tried yet:
e Mix signed, unsigned carries.
e Interleave reduction, carrying.

17

Minor challenge: pipelining.
Result of each insn cannot &
used until a few cycles later

Find an independent insn
for the CPU to start working
while the first insn is in prog

Sometimes helps to adjust
higher-level computations.

Example: carries hg — h1 —
ho — h3 — ha — hs — hg -
h7—>h8—>h9—>h0—>h1

have long chain of depender

Carry ho — h1: l.e.,
replace (hg, h1) with
(hg mod 2%°, hy + | ho/22°]).
This makes hg small.

Similarly for other h;.
Eventually all h; are small enough.

We actually use signed coeffs.
Slightly more expensive carries
(given details of insn set)

but more room for ab + c? etc.

Some things we haven't tried yet:
e Mix signed, unsigned carries.
e Interleave reduction, carrying.

17

18
Minor challenge: pipelining.

Result of each insn cannot be
used until a few cycles later.

Find an independent insn
for the CPU to start working on
while the first insn is in progress.

Sometimes helps to adjust
higher-level computations.

Example: carries hg — h; —

hy — h3 — hg — hs — hg —
h7—>h8—>h9—>h0—>h1

have long chain of dependencies.

— h1: l.e.,
[ho, hl) with
220 hi + Lh0/226J).
kes hg small.

' for other h;.

lly all h; are small enough.

ally use signed coeffs.
more expensive carries
etails of insn set)

= room for ab + ¢ etc.

ings we haven't tried yet:
oned, unsigned carries.
ave reduction, carrying.

17

Minor challenge: pipelining.
Result of each insn cannot be
used until a few cycles later.

Find an independent insn
for the CPU to start working on

while the first insn is in progress.

Sometimes helps to adjust
higher-level computations.

Example: carries hg — h; —
hy — h3 — has — hs — hg —
h7—>h8—>h9—>h0—>h1

have long chain of dependencies.

18

Alternat
hO — h1
h1 — h2
h2 — h3
h3 — h4
h4 — h5
h5 — h6

12 carrie
but latel

Now mu
to find |
for CPU

A
JI,

th
Lh0/226J).

all.

h:.

re small enough.

egned coeffs.
NSive carries
sn set)

- ab + ¢? etc.

aven't tried yet:
gned carries.
Lion, carrying.

17

Minor challenge: pipelining.
Result of each insn cannot be
used until a few cycles later.

Find an independent insn
for the CPU to start working on

while the first insn is in progress.

Sometimes helps to adjust
higher-level computations.

Example: carries hg — hy —
h — h3 — hgs — hs — hg —
h7—>h8—>h9—>h0—>h1

have long chain of dependencies.

18

Alternative: carry
ho — hy1 and hs —

h1 %hg anc h6—
ho) — h3 and h7 —
h3—+h4 ana h8—
hs — hs and hg —

hs — hg and hg —

12 carries instead
but latency 1s muc

Now much easier

to find independer
for CPU to handle

nough.

S.
les

etC.

d yet:

Ing.

17

Minor challenge: pipelining.
Result of each insn cannot be
used until a few cycles later.

Find an independent insn
for the CPU to start working on

while the first insn is in progress.

Sometimes helps to adjust
higher-level computations.

Example: carries hg — hy —
hy — h3 — has — hs — hg —
h7—>h8—>h9—>h0—>h1

have long chain of dependencies.

18

Alternative: carry
hO — h1 ang h5 — h6;

h1 — h2 anc h6 — h7;
h2 — h3 ang h7 — hg;
h3 — h4 ana hg — hg;
h4 — h5 ang hg — ho;

h5 — h6 ang h() — hy.

12 carries instead of 11,
but latency i1s much smaller.

Now much easier
to find independent insns
for CPU to handle in paralle

Minor challenge: pipelining.
Result of each insn cannot be
used until a few cycles later.

Find an independent insn
for the CPU to start working on

while the first insn is in progress.

Sometimes helps to adjust
higher-level computations.

Example: carries hg — h; —

h — h3 — has — hs — hg —
h7—>h8—>h9—>h0—>h1

have long chain of dependencies.

18

Alternative: carry
ho — h1 and h5 — h6;

h1 — h2 anc h6 — h7;
h2 — h3 and h7 — hg;
h3 — h4 and h8 — hg;
h4 — h5 and hg — h();

h5 — h6 and ho — hy.

12 carries instead of 11,
but latency 1s much smaller.

Now much easier
to find independent insns

for CPU to handle in parallel.

19

1allenge: pipelining.
f each insn cannot be
il a few cycles later.

independent insn
_PU to start working on

e first insn Is In progress.

1es helps to adjust
vel computations.

: carries hg — h; —
— hg — hs — hg —
—>h9—>h0—>h1

g chain of dependencies.

18

Alternative: carry
hO — h1 ang h5 — h6;

h1 — h2 ancC h6 — h7;
hy — h3 ancC h7 — hg;
h3 — h4 ana hg — hg;
h4 — h5 ang hg — ho;

h5 — h6 and h() — hl.

12 carries instead of 11,
but latency i1s much smaller.

Now much easier
to find independent insns

for CPU to handle in parallel.

19

Major cl

e.g. 4x
does 4 3
but neec
of input:

On Cort
occasior
run in p.

but freq

would b

On Cort
every op

ipelining.
1 cannot be
vcles later.

nt 1nsn

rt working on

IS 1IN progress.

0 adjust
itations.

'70%/71%
hs — hg —
h0—>h1

~dependencies.

18

Alternative: carry
ho — h1 and h5 — h6;

h1 — h2 and h6 — h7;
hy — h3 and h7 — hg;
h3 — h4 and h8 — hg;
h4 — h5 and hg — h();

h5 — h6 and ho — h1.

12 carries instead of 11,
but latency 1s much smaller.

Now much easier
to find independent insns

for CPU to handle in parallel.

19

Major challenge:

eg. 4dxa=b+c
does 4 additions a
but needs particul.

of inputs and outf

On Cortex-AS8,

occasional permut
run in parallel witl
but frequent perm
would be a bottler

On Cortex-A7,
every operation cc

)€

Y on

ress.

1CIES.

18

Alternative: carry
hO — h1 ang h5 — h6;

h1 — h2 ancC h6 — h7;
hy — h3 ancC h7 — hg;
h3 — h4 angd hg — hg;
h4 — h5 ang hg — ho;

h5 — h6 and h() — hl.

12 carries instead of 11,
but latency 1s much smaller.

Now much easier
to find independent insns

for CPU to handle in parallel.

19

Major challenge: vectorizati

eg. 4xa=b+c
does 4 additions at once,
but needs particular arrange

of inputs and outputs.

On Cortex-AS8,
occasional permutations
run in parallel with arithmet

but frequent permutations

would be a bottleneck.

On Cortex-A7,
every operation costs cycles.

Alternative: carry
ho — h1 and h5 — h6;

h1 — h2 and h6 — h7;
hy — h3 and h7 — hg;
h3 — h4 and h8 — hg;
h4 — h5 and hg — h();

h5 — h6 and ho — h1.

12 carries instead of 11,
but latency 1s much smaller.

Now much easier
to find independent insns

for CPU to handle in parallel.

19

20
Major challenge: vectorization.

eg. 4dxa=b+c
does 4 additions at once,
but needs particular arrangement

of inputs and outputs.

On Cortex-AS8,

occasional permutations

run in parallel with arithmetic,
but frequent permutations
would be a bottleneck.

On Cortex-A7,
every operation costs cycles.

lve: carry
and hs — hg;

and hg — h7;
and h7 — hg;
angd hg — hg;
ang hg — ho;

ang h() — hy.

s instead of 11,

1cy Is much smaller.

ch easier
ndependent insns

to handle in parallel.

19

Major challenge: vectorization.

eg. 4xa=b+c
does 4 additions at once,
but needs particular arrangement

of inputs and outputs.

On Cortex-AS8,
occasional permutations
run in parallel with arithmetic,

but frequent permutations

would be a bottleneck.

On Cortex-A7,
every operation costs cycles.

20

Often hi
do a pal
h=1g;

Vectoriz
Merge f
and f! f
Into vec
Similarly
Then co

Comput
into NE
cl[0,1
cl2,3

> he;
> hy;
> hg;
> ho;
> ho;
? h1.

of 11,
h smaller.

1t INSNns
- in parallel.

19

Major challenge: vectorization.

eg. 4dxa=b+c
does 4 additions at once,
but needs particular arrangement

of inputs and outputs.

On Cortex-AS8,

occasional permutations

run in parallel with arithmetic,
but frequent permutations
would be a bottleneck.

On Cortex-A7,
every operation costs cycles.

20

Often higher-level

do a pair of mults
h=fg i =f'g

Vectorize across tl
Merge fo, fl, C ey f(
/ / /
and fo,f,...,fg
into vectors (f;, f,’

Similarly (gj, g7).
Then compute (h;

Computation fits t
into NEON insns:
cl0,1
cl2,3

= al|l0] s]

=alll| si

19

Major challenge: vectorization.

eg. 4xa=b+c
does 4 additions at once,
but needs particular arrangement

of inputs and outputs.

On Cortex-AS8,

occasional permutations

run in parallel with arithmetic,
but frequent permutations

would be a bottleneck.

On Cortex-A7,
every operation costs cycles.

20

Often higher-level operation

do a pair of mults in paralle
h=fg, i =fg.

Vectorize across those mults
Merge fo, fl, C ey fg

/ / /
and fO,f,... f9

into vectors (f;, f/).

Similarly (gj, g7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,
c[0,1] = al[0] signedx* b]

c[2,3] = all] signedx* b]

Major challenge: vectorization.

eg. 4dxa=b+c
does 4 additions at once,
but needs particular arrangement

of inputs and outputs.

On Cortex-AS8,

occasional permutations

run in parallel with arithmetic,
but frequent permutations
would be a bottleneck.

On Cortex-A7,
every operation costs cycles.

20

Often higher-level operations

do a pair of mults in parallel:

h=fg W =fg

Vectorize across those mults.
Merge fo, fl, C ey fg

/ / /
and fo,f,...,fg

into vectors (f;, f/).

Similarly (gj, g7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = al[0] signed* b

c[2,3] = all] signed* b

21

1allenge:

1 = Db + C

vectorization.

dditions at once,

Is particu
5 and out

ex-A8,

ar arrangement
Duts.

al permutations

arallel with arithmetic,

uent permutations

> 3 bottleneck.

ex-A7,

eration costs cycles.

20

Often higher-level operations

do a pair of mults in parallel:

h=fg, h =fg

Vectorize across those mults.
Merge fo, fl, C ey fg

/ / /
and fO,f,... f9

into vectors (f;, f/).

Similarly (gj, g7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = al[0] signedx* b[0];
c[2,3] = all] signed* b[1_

21

Example
C =X;
inside pc
for Edw:

/ectorization.

t once,
ar arrangement
)uts.

ations

1 arithmetic,
utations
eck.

sts cycles.

20

Often higher-level operations

do a pair of mults in parallel:

h=fg W =fg

Vectorize across those mults.
Merge fo, fl, C ey fg
/ / /
and fo,f,...,fg
- /
into vectors (f;, f.).

Similarly (gj, g7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = al[0] signed* b

c[2,3] = all] signed* b

21

Example: Recall

C=X1-Xo; D=
inside point-additi
for Edwards curve:

on.

ment

20

Often higher-level operations

do a pair of mults in parallel:
h=fg i =fg.

Vectorize across those mults.
Merge fo, fl, C ey fg

and fo’,f’,...,fé

into vectors (f;, f/).

Similarly (g;, g7).

Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = al0] signedx* b[0];
c[2,3] =all] signed* b[1_

21

Example: Recall
C=X1 - Xo:D=Y1-Y
inside point-addition formul:
for Edwards curves.

Often higher-level operations

do a pair of mults in parallel:
h=fg, i =fg.

Vectorize across those mults.
Merge fo, fl, C ey fg

/ / /
and fo,f,...,fg

into vectors (f;, f/).

Similarly (gj, 7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = a[0] signedx* b[0];
c[2,3] =all] signed* b[1_

21

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

22

Often higher-level operations

do a pair of mults in parallel:

h=fg; W =fg'

Vectorize across those mults.
Merge fo, fl, C ey fg
/ / /
and fo,f,... f9
- /
into vectors (f;, f.).

Similarly (gj, 7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = a[0] signedx* b[0];
c[2,3] = al[l1] signed* b[1_

21

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

Example: Can compute
2P, 3P, 4P, 5P, 6P, 7P as
2P = P+ P;

3P = 2P + P and 4P = 2P + 2P;

5P = 4P + P and 6P = 3P + 3P
and 7P = 4P + 3P.

22

Often higher-level operations

do a pair of mults in parallel:

h=fg; W =fg'

Vectorize across those mults.
Merge fo, fl, C ey fg
/ / /
and fo,f,... f9
- /
into vectors (f;, f.).

Similarly (gj, 7).
Then compute (hj, h’).

Computation fits naturally
into NEON insns: e.g.,

c[0,1] = a[0] signedx* b[0];
c[2,3] = al[l1] signed* b[1_

21

Example:

Recall

C=X1-Xo;:D=Y1-Y
inside point-addition formulas

for Edwards curves.

Example: Can compute
2P, 3P, 4P, 5P, 6P, 7P as

2P = P +
3P = 2P -
5P = 4P -

P;
- P anc

- P anc

4P = 2P -

6P = 3P -

and 7P = 4P + 3P.

Example: Typical algorithms

for fixed-base scalarmult

-3P

have many parallel point adds.

- 2P

22

gher-level operations

r of mults in parallel:

n=fg

e across those mults.

y, i1, ..., fg
P

tors (f;, /).
(&1, 8;)-
mpute (h;, h’).

ation fits naturally
ON insns: e.g.,

= a[0] signed* b[0];

= al[1l] signed* b[1._

21

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

Example: Can compute
2P, 3P, 4P, 5P, 6P, 7P as
2P =P+ P;

3P = 2P + P and 4P = 2P + 2P;

5P = 4P + P and 6P = 3P + 3P
and 7P = 4P + 3P.

Example: Typical algorithms
for fixed-base scalarmult
have many parallel point adds.

22

Example
with a b
can vect

operations
in parallel:
10se mults.
)
).
/
h).
aturally
e.g.,
gned* b[0];

gned* b[1.

21

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

Example: Can compute
2P, 3P, 4P, 5P, 6P, 7P as
2P = P+ P;

3P = 2P + P and 4P = 2P + 2P;

5P = 4P + P and 6P = 3P + 3P
and 7P = 4P + 3P.

Example: Typical algorithms
for tfixed-base scalarmult
have many parallel point adds.

22

Example: A busy
with a backlog of
can vectorize acro

21

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

Example: Can compute
2P, 3P, 4P, 5P, 6P, 7P as
2P =P+ P;

3P = 2P + P and 4P = 2P + 2P;

5P = 4P + P and 6P = 3P + 3P
and 7P = 4P + 3P.

Example: Typical algorithms
for fixed-base scalarmult
have many parallel point adds.

22

Example: A busy server

with a backlog of sca

armult

can vectorize across t

NEM.

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

Example: Can compute

2P, 3P, 4P,5P, 6P, 7P as
2P = P+ P;
3P=2P+ P and 4P = 2P
5P =4P + P and 6P = 3P
and 7P = 4P + 3P.

Example: Typical algorithms
for tfixed-base scalarmult
have many parallel point adds.

2P:

3P

22

Example: A busy server
with a backlog of scalarmults
can vectorize across them.

23

Example: Recall
C=X1-Xo;:D=Y1-Y
inside point-addition formulas
for Edwards curves.

Example: Can compute

2P, 3P, 4P,5P, 6P, 7P as
2P = P+ P;
3P=2P+ P and 4P = 2P
5P =4P + P and 6P = 3P
and 7P = 4P + 3P.

Example: Typical algorithms
for tfixed-base scalarmult
have many parallel point adds.

2P:
3P

22

Example: A busy server
with a backlog of scalarmults
can vectorize across them.

Beware a disadvantage of
vectorizing across two mults:
256-bit £, f', g, g’ h, W
occupy at least 1536 bits,
leaving very little room

for temporary registers.

We use some loads and stores
iInside vectorized mulmul.

Mostly invisible on Cortex-A8,
but bigger issue on Cortex-ATY.

23

: Recall

- Xo; D=Y1-Y
int-addition formulas
ards curves.

: Can compute

LP,5P, 6P, (P as

+ P;

>+ P and 4P = 2P + 2P;
>+ P and 6P =3P + 3P
= 4P + 3P.

: Typical algorithms
-base scalarmult
ny parallel point adds.

22

Example: A busy server

with a backlog of sca
can vectorize across t

armults

NEM.

Beware a disadvantage of

vectorizing across two mults:
256-bit £, f', g, g’ h W
occupy at least 1536 bits,

leaving very little room

for temporary registers.

We use some loads and stores

inside vectorized mulmul.

Mostly invisible on Cortex-A8,
but bigger issue on Cortex-ATY.

23

Some fie
Inside a

Example

convert
71X ¢

Easy, co
11M 4
z2 = zl1
z8 = z2
z9 = zl:
z11
z22

I
N

I
N

z 10_5 -

Y1 - Y
on formulas

>.

npute
/P as

4P = 2P + 2P;

6P =3P + 3P
D.

algorithms
armult

| point adds.

22

Example: A busy server
with a backlog of scalarmults
can vectorize across them.

Beware a disadvantage of
vectorizing across two mults:
256-bit £, f', g, g’ h, W
occupy at least 1536 bits,
leaving very little room

for temporary registers.

We use some loads and stores
iInside vectorized mulmul.

Mostly invisible on Cortex-A8,
but bigger issue on Cortex-ATY.

23

Some field ops are
Inside a single scal

Example: At end

convert fraction (.
Z71x e{o0,1,...

Easy, constant tim
11M + 254S for ¢

z2 = z17271
z8 = 227272
z9 = z1%*z3
z1l1l = z2%z9

z22 = z11°2"1
Z 5 0 = z9%z22
z 105 =z 5 072

22

1S

V1

ds.

Example: A busy server
with a backlog of scalarmults

can vectorize across them.

Beware a disadvantage of
vectorizing across two mults:
256-bit £, f', g, g’ h, W
occupy at least 1536 bits,
leaving very little room

for temporary registers.

We use some loads and stores
inside vectorized mulmul.

Mostly invisible on Cortex-A8,
but bigger issue on Cortex-ATY.

23

Some field ops are hard to
inside a single scalarmult.

Example: At end of ECDH,
convert fraction (X : Z) int
Z'xe{o0,1,....p—1}

Easy, constant time: 71 =

11M + 2548 for p = 222> —
z2 = z1°271

z8 = 227272
z9 = z1%z8
z1l1l = z2%xz9

z22 = z11°2"°1
Z 5 0 = z9%xz22
z 105 =z 5 07275

23 24
Example: A busy server Some field ops are hard to pair

with a backlog of scalarmults inside a single scalarmult.

can vectorize across them. Example: At end of ECDH,

Beware a disadvantage of convert fraction (X : Z) into
vectorizing across two mults: 71X ¢ {0,1,...,p—1}.
256-bit £, f', g, g’ h, W

| Easy, constant time: 71— z7zp—2
occupy at least 1536 bits,

11M + 254S for p = 22°° — 10:

leaving very little room

_ z2 = 217271
for temporary registers. 8 = somnmo
We use some loads and stores z9 = z1%z8
iInside vectorized mulmul. z11 = z2%z9
Mostly invisible on Cortex-AS, z22 = z11°2"1
but bigger issue on Cortex-A7Y. z_5_0 = z9*z22

z_10_5 = z_5_07275

: A busy server

acklog of sca
orize across t

armults

NEM.

a disadvantage of

ng across two mults:
F.f g, g h K

1t least 15360 bits,
sery little room

orary registers.

some loads and stores

ctorized mulmul.

nvisible on Cortex-AS8,

er issue on Cortex-A7.

23

Some field ops are hard to pair
inside a single scalarmult.

Example: At end of ECDH,
convert fraction (X : Z) into
Z'xe{o0,1,....p—1}

Easy, constant time: Z—1 = ZP—2.

11M + 2548 for p = 2222 — 19:
z2 = z17271

z8 = 227272

z9 = z1%*z3

z1l1l = z2%z9

z22 = z11°271

z_5_0 = z9%z22

z_10_5 = z_5_07275

24

z_10_0 :
z_20_10
z_20_0 :
z_40_20
z_40_0 -
z_50_10
z_50_0 :
z_100_5
z_100_0
z_200_11
z_200_0
z_250_5
z_250_0
z_255_5
z_255_2

server
scalarmults
ss them.

tage of
two mults:
h, H

36 bits,
room
sters.

s and stores

ulmul.

' Cortex-AS8,
1 Cortex-AT.

23

24

Some field ops are hard to pair

inside a single scalarmult.

Example: At end of ECDH,
convert fraction (X : Z) into
Z'xe{o0,1,....p—1}

Easy, constant time: Z—1 = ZP—2

11M
z2 =
z8 =
z9 =
z11

Z22

Z_5_

0

2548 for p = 2%2° — 10:
z1°271
z2"272

z1*xz8

22%z9
z11°271
= z9%z22

z_10_5 = z_5_07275

z_10_0 = z_10_bx*
z_20_10 = z_10_0
z_20_0 = z_20_10
z_40_20 = z_20_0
z_40_0 = z_40_20
z_50_10 = z_40_0
z_50_0 = z_50_10
z_100_50 = z_50_
z 100_0 = z_100_
z_200_100 = z_10
z_200_0 = z_200_
z_250_50 = z_200
z_250_0 = z_250_
z_255_5 = z_250_
z_2bb5_21 = z_2bb

€S

\ /.

23

24

Some field ops are hard to pair

inside a single scalarmult.

Example: At end of ECDH,
convert fraction (X : Z) into
Z'xe{o0,1,....p—1}

Easy, constant time: Z—1 = ZP—2.

11M
z2 =
z8 =
z9 =
z11

z22

Z_5_

0

2548 for p = 22°° — 10:
z1°271
22”272

z1*xz8

22%z9
z11°271
= z9%xz22

z_10_5 = z_5_07275

z_10_0 = z_10_o*z_5_0
z_20_10 = z_10_072710
z_20_0 = z_20_10%z_10_0
z_40_20 = z_20_072720
z_40_0 = z_40_20%z_20_0
z_50_10 = z_40_072710
z_50_0 = z_50_10*%z_10_0
z_100_50 = z_50_072"50
z_100_0 = z_100_50*z_50_C
z_200_100 = z_100_0"2710C
z_200_0 = z_200_100*z_10C
z_250_50 = z_200_072"50
z_250_0 = z_250_50%z_50_C
z_255_b = z_250_07275
z_255_21 = z_2bb_bx*zl11

Some field ops are hard to pair
inside a single scalarmult.

Example: At end of ECDH,
convert fraction (X : Z) into
Z-'xe{o,1,....p—1}

Easy, constant time: Z—1 = ZP—2

11M + 254S for p = 22°° — 10:
z2 = z1"2"1

z8 = 227272
z9 = z1%z8
z1l1l = z2%z9

z22 = z11°2"1
Z 5 0 = z9%z22
z 1005 =z 5 07275

24

z_10_0 = z_10_5*z_5_0
z_20_10 = z_10_0"2710
z_20_0 = z_20_10%z_10_0
z_40_20 = z_20_072720
z_40_0 = z_40_20%z_20_0
z_50_10 = z_40_0"2710
z_50_0 = z_50_10*%z_10_0
z_100_50 = z_50_0"2"50
z_100_0 = z_100_50%z_50_0
z_200_100 = z_100_0727100

z_200_0 = z_200_100*z_100_0

z_250_50 = z_200_072"50

z 250_0
z 255 b5
z_25b_21

z_250_50*%z_b0_0
z_250_0"2"5
z_25b_b5%*z11

25

ld ops are hard to pair
single scalarmult.

. At end of ECDH,
fraction (X : Z) into

{0,1,...,p—1}.

nstant time: Z— ! = ZP—2.

548 for p = 22°° — 10:
"271

"272

k23

2%*Z9

117271

z9%z22

= z_5_07275

24

z_10_0 = z_10_o*z_5_0
z_20_10 = z_10_0"2710
z_20_0 = z_20_10%z_10_0
z_40_20 = z_20_072720
z_40_0 = z_40_20%z_20_0
z_50_10 = z_40_072710
z_50_0 = z_50_10*%z_10_0
z_100_50 = z_50_072"50
z_100_0 = z_100_50%z_50_0
z_200_100 = z_100_0727100
z_200_0 = z_200_100*z_100_0
z_250_50 = z_200_072"50
z_250_0 = z_250_50%z_50_0
z_255_b = z_250_07275
z_255_21 = z_2bb_bx*zl11

25

Can still
Inside a

Strategy

50 mul 1|
(f0.2f1).(f
(f1.78).(f3.1
(0.81).(82
(€0.1981).(
(19g5,19g3
(1922.83).(

Change
e.g., (ho

' hard to pair
armult.

of ECDH,

X : Z) into

p— 1}

e: 71 = zpP2
= 2295 _ 10:

~5

24

z_10_0 = z_10_5*z_5_0
z_20_10 = z_10_0"2710
z_20_0 = z_20_10%z_10_0
z_40_20 = z_20_072720
z_40_0 = z_40_20%z_20_0
z_50_10 = z_40_0"2710
z_50_0 = z_50_10*%z_10_0
z_100_50 = z_50_0"2"50
z_100_0 = z_100_50%z_50_0
z_200_100 = z_100_0727100
z_200_0 = z_200_100*z_100_0
z_250_50 = z_200_07"2"50
z_2050_0 = z_250_50%z_50_0
z_205_b5 = z_250_0"2"5
z_255_21 = z_2bb_bx*zl11

25

Can still vectorize
inside a single fiel

Strategy in our so

50 mul insns start
fo.211).(£2,213).(f4.2f5).
f1.13).(f3.19).(f5./72).(f7

g0.81).(82.83).(84.85).(

19g5,19g3),(19g4.,19g5).

(
(A1
(
(80.19¢1).(&2.19¢3).(&4.
(19
(1982.83),(1984.85).(19

Change carry patt
e.g., (hg, hg) — (F

alr

24

z_10_0 = z_10_o*z_5_0
z_20_10 = z_10_0"2710
z_20_0 = z_20_10%z_10_0
z_40_20 = z_20_072720
z_40_0 = z_40_20%z_20_0
z_50_10 = z_40_0"2710
z_50_0 = z_50_10*%z_10_0
z_100_50 = z_50_072"50
z_100_0 = z_100_50%z_50_0
z_200_100 = z_100_0727100
z_200_0 = z_200_100%z_100_0
z_250_50 = z_200_072"50
z_250_0 = z_250_50%z_50_0
z_255_b = z_250_072"5
z_255_21 = z_2bb_bx*zl11

25

Can still vectorize
inside a single field op.

Strategy in our software:

50 mul insns starting from

(f0.2f1).(f2.213).(f4.215).(f5.2f7).(fg, 21
(f1.13).(3.70).(f5.12).(f7.14).(f9.T5);
(80.81).(82.83).(84.85).(86.87):
(80.1981).(82.1983).(84.1985) (86,198
(192.19¢3).(19¢4.,19g5).(1986.1987).(

(1982.83),(1984.85).(1986.87).(19g3 .8

Change carry pattern to vec
e.g., (ho, h4) — (hl, h5).

z 10_0 =

z 20_10 =

z 20_0 =

z 40_20 =

z 40_0 =

z 50_10 =

z 50_0 =

Z_

Z_

Z

Z_

z_100_50 =

z 100_0 =
z 200_100 =
z 200_0 =

z_250_50 =

z 250_0 =
z 2565 5 =

z_255_21

10_5*%z_5_0
z_10_072710
20_10%z_10_0
z_20_0"2720
_40_20%z_20_0
z_40_072710
50_10%z_10_0
z_50_072750
z_100_50*z_50_0
z_100_0727100
z_200_100*z_100_0
z_200_0"2"50
z_250_50*z_5b0_0
z_250_0"2"5
z_25b_b5%*z11

25

26
Can still vectorize

inside a single field op.
Strategy in our software:

50 mul insns starting from
fo.211).(f2.213),(f4.215),(15.217).(f3.2g);
f1.13).(f3.19).(15.12).(f7.14).(f9.15);

g80.81).(82.83).(84.85).(86.87);

19g5,19g3),(19g4.19g5).(1986.19g7).(19g5.,19¢9),

(
(A1
(
(80.1981).(82.19¢3).(84.1985).(86.1987) (88,1989);
(19
(19£2.83).(1924.85).(19g6.87).(1983.89) -

Change carry pattern to vectorize,
e.g., (ho, ha) — (hy, hs).

= Z

= Z

= Z

= Z

) =

00

) =

1 =

_10_5%z_5_0
z_10_0"2710
_20_10%z_10_0
z_20_072720
_40_20%z_20_0
z_40_072710
_50_10%z_10_0
z_50_072750
z_100_50%z_50_0
= z_100_0727100
z_200_100*z_100_0
z_200_0"2750
z_250_50*z_50_0
z_250_0"2"5
z_25b_b5%z11

25

26
Can still vectorize

inside a single field op.
Strategy in our software:

50 mul insns starting from

(fo.2f1).(f2.213).(f4.215).(5.2f7).(f3.2fg);
(f1.13).(3.90).(f5.12).(f7.14).(fg 15);
(80.81).(82.83).(84.85).(86.87):
(80.1981).(82.19g3).(84.1985).(86.1987).(88.1989)
(19g2.19¢3).(1984.19g5).(1986.1987).(1988.1989)

(19g2.£3).(1984.85).(1986.87).(1983.89)

Change carry pattern to vectorize,
e.g., (ho, ha) — (hy, hs).

Core ari
on mul |

Squaring
Some lo

ECDH:

More de
356019
~78% o
Cortex-£
Still son

z_5_0
2710
xz_10_0
~2720
xz_20_0
2710
xz_10_0
02750
50*%z_50_0
0_0727100
100*z_100_0
_072750
50*%z_50_0
07275
_o*z11

25

26
Can still vectorize

inside a single field op.
Strategy in our software:

50 mul insns starting from
fo.211),(f2,213).(14,215),(f6.2f7).(fg,21g);
f1.18).(f3.10).(f5.12).(7.13),(9.15);

g80.81).(82.83).(84.85).(86.87);

19g5,19g3),(19g4.19g5).(1986.19¢g7).(19g5.,19¢9),

(
(A1
(
(80.1981).(82.19¢3).(84.1985).(86.1987) (88,1989);
(
(1982.83).(1924.85).(19g6.87).(1983.89) -

Change carry pattern to vectorize,
e.g., (ho, ha) — (hy, hs).

Core arithmetic: 1
on mul insns for e
Squarings are som

Some loss for carr

ECDH: =10 field |

More detailed ana
356019 cycles on -
~78% of software
Cortex-A8-fast cyc
Still some room fc

25

26
Can still vectorize

inside a single field op.
Strategy in our software:

50 mul insns starting from

(f0.2f1).(f2.213).(f4.215).(5.2f7).(f3.2fg);
(f1.13).(f3.70).(f5.12).(7.14).(fg 15);
(80.81).(82.83).(84.85).(86.87):
(80.1981).(82.19g3).(84.1985).(86.1987).(88.1989)
(19g2.19¢3).(1984.19g5).(1986.1987).(1988.19g9)

(19g2.£3).(1984.85).(1986.87).(1983.89) -

Change carry pattern to vectorize,
e.g., (ho, ha) — (hy, hs).

Core arithmetic: 100 cycles
on mul insns for each field r
Squarings are somewhat fas:

Some loss for carries etc.
ECDH: ~10 field muls - 255

More detailed analysis:
356019 cycles on arithmetic
~78% of software’s total
Cortex-A8-tfast cycles for EC
Still some room for improve

26
Can still vectorize

inside a single field op.
Strategy in our software:

50 mul insns starting from
fo.211).(f2.213),(f4.215),(15.217).(f3.,2g);
f1.1).(f3.10).(15.12).(f7.14).(f9.15);

g80.81).(82.83).(84.85).(86.87);

19g5,19g3),(19g4.19g5).(1986.19g7).(1985.,19¢9),

(
(A1
(
(80.1981).(82.19¢3).(84.1985).(86.1987) (88,1989);
(19
(19£2.83).(1924.85).(19g6.87).(1983.89) -

Change carry pattern to vectorize,
e.g., (ho, ha) — (hy, hs).

27
Core arithmetic: 100 cycles

on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.

ECDH: ~10 field muls - 255 bits.

More detailed analysis:
356019 cycles on arithmetic;
~78% of software’s total

Cortex-A8-fast cycles for ECDH.
Still some room for improvement.

26
Can still vectorize

inside a single field op.
Strategy in our software:

50 mul insns starting from
fo.211).(f2.213),(f4.215),(15.217).(f3.,2g);
f1.1).(f3.10).(15.12).(f7.14).(f9.15);

g80.81).(82.83).(84.85).(86.87);

19g5,19g3),(19g4.19g5).(1986.19g7).(1985.,19¢9),

(
(A1
(
(80.1981).(82.19¢3).(84.1985).(86.1987) (88,1989);
(19
(19£2.83).(1924.85).(19g6.87).(1983.89) -

Change carry pattern to vectorize,
e.g., (ho, ha) — (hy, hs).

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.

ECDH: ~10 field muls - 255 bits.

More detailed analysis:
356019 cycles on arithmetic;
~78% of software’s total

Cortex-A8-fast cycles for ECDH.
Still some room for improvement.

Each CPU is a new adventure.

e.g. Could it be better to use
Cortex-A7 FPU with radix 221227

27

26
vectorize

single field op.
In our software:

nsns starting from

213).(f4.215).(5.2f7).(f3.2fg);
0):(f5.%2).(f7.14).(f9.76);
&83).(84.85).(86.87);
g2.19g3).(84.1985).(86.1987).(&8.1989);
),(1984.19g5),(1986.1987).(1988.1989)

19g4.85).(19g6.87).(1985.89) -

carry pattern to vectorize,
 ha) — (hy, hs).

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.
ECDH: ~10 field muls - 255 bits.

More detailed analysis:
356019 cycles on arithmetic;
~78% of software's total

Cortex-A8-fast cycles for ECDH.
Still some room for improvement.

Each CPU is a new adventure.

e.g. Could it be better to use
Cortex-A7 FPU with radix 221227

27

Much m

https:,
benchm:
2137 pu
hundred
39 DH ¢
56 signa
304 autt

26

1 op.
ftware:

ing from
(f5.217).(fg.21g);
fa).(fg.15);

8687);
19g5).(86.1987).(88.1980);
(19g6,19g7).(19g5.19g9);

6:87).(1988.89)-

ern to vectorize,
11, h5).

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.
ECDH: ~10 field muls - 255 bits.

More detailed analysis:
356019 cycles on arithmetic;
~78% of software’s total

Cortex-A8-fast cycles for ECDH.
Still some room for improvement.

Each CPU is a new adventure.

e.g. Could it be better to use
Cortex-A7 FPU with radix 221227

21

Much more work t

https://bench.¢
benchmarks for (c
2137 public implet
hundreds of cryptc
39 DH primitives,
56 signature primi
304 authenticated

26

7).(88.19g9);
19g8,19g9);

9)-

torize,

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.
ECDH: ~10 field muls - 255 bits.

More detailed analysis:
356019 cycles on arithmetic;
~78% of software's total

Cortex-A8-fast cycles for ECDH.
Still some room for improvement.

Each CPU is a new adventure.

e.g. Could it be better to use
Cortex-A7 FPU with radix 221227

27

Much more work to do

https://bench.cr.yp.to:
benchmarks for (currently)
2137 public implementation:
hundreds of crypto primitive
39 DH primitives,

b6 signature primitives,

304 authenticated ciphers, €

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.
ECDH: ~10 field muls - 255 bits.

More detailed analysis:
356019 cycles on arithmetic;
~78% of software’s total

Cortex-A8-fast cycles for ECDH.
Still some room for improvement.

Each CPU is a new adventure.

e.g. Could it be better to use
Cortex-A7 FPU with radix 221227

21

Much more work to do

https://bench.cr.yp.to:
benchmarks for (currently)
2137 public implementations of
hundreds of crypto primitives—
39 DH primitives,

56 signature primitives,

304 authenticated ciphers, etc.

23

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.

ECDH: ~10 field muls - 255 bits.

More detailed analysis:

356019 cycles on arithmetic;
~78% of software’s total
Cortex-A8-fast cycles for ECDH.

Still some room for improvement.

Each CPU is a new adventure.
e.g. Could it be better to use

Cortex-A7 FPU with radix 241257

21

Much more work to do

https://bench.cr.yp.to:
benchmarks for (currently)
2137 public implementations of
hundreds of crypto primitives—
39 DH primitives,

56 signature primitives,

304 authenticated ciphers, etc.

Many interesting primitives
are far slower than necessary
on many important CPUs.

23

Core arithmetic: 100 cycles
on mul insns for each field mul.
Squarings are somewhat faster.

Some loss for carries etc.

ECDH: ~10 field muls - 255 bits.

More detailed analysis:

356019 cycles on arithmetic;
~78% of software’s total
Cortex-A8-fast cycles for ECDH.

Still some room for improvement.

Each CPU is a new adventure.
e.g. Could it be better to use

Cortex-A7 FPU with radix 241257

21

Much more work to do

https://bench.cr.yp.to:
benchmarks for (currently)
2137 public implementations of
hundreds of crypto primitives—
39 DH primitives,

56 signature primitives,

304 authenticated ciphers, etc.

Many interesting primitives
are far slower than necessary
on many important CPUs.

Exercise: Make them faster!

23

